
Autopilot Documentation
Release 0.5.0a1

Jonny Saunders

Jun 02, 2022

USER GUIDE:

1 Program Structure 3

2 Tasks 5

3 Module Tour 7

4 Quickstart 9

5 Installation 15

6 Configuration 19

7 Training a Subject 27

8 Writing a Task 39

9 Plugins & The Wiki 49

10 Examples 59

11 FAQ 79

12 Agents 81

13 data 93

14 GUI 169

15 hardware 219

16 networking 257

17 stim 273

18 tasks 295

19 Transformations 313

20 Utils 337

21 setup 361

22 prefs 367

i

23 Root 375

24 external 377

25 Changelog 379

26 To-Do 399

27 References 407

28 Tests 409

29 Indices and tables 415

Bibliography 417

Python Module Index 419

Index 421

ii

Autopilot Documentation, Release 0.5.0a1

Autopilot is a Python framework to perform behavioral experiments with one or many Raspberry Pis.

Its distributed structure allows arbitrary numbers and combinations of hardware components to be used in an experi-
ment, allowing users to perform complex, hardware-intensive experiments at scale.

Autopilot integrates every part of your experiment, including hardware operation, task logic, stimulus delivery, data
management, and visualization of task progress – making experiments in behavioral neuroscience replicable from a
single file.

Instead of rigid programming requirements, Autopilot attempts to be a flexible framework with many different modal-
ities of use in order to adapt to the way you do and think about your science rather than the other way around. Use only
the parts of the framework that are useful to you, build on top of it with its plugin system as you would normally, while
also maintaining the provenance and system integration that more rigid systems offer.

For developers of other tools, Autopilot provides a skeleton with minimal assumptions to integrate their work with its
broader collection of tools, for example our integration of DeepLabCut-live as the DLC transform ([KLS+20]).

Our long-range vision is to build a tool that lowers barriers to tool use and contribution, from code to contextual
technical knowledge, so our broad and scattered work can be cumulatively combined without needing a centralized
consortium or adoption of a singular standard.

For a detailed overview of Autopilot’s motivation, design, and structure, see our whitepaper.

What’s New v0.5.0a0 - The Data Modeling Edition (2022-06-01)
A prerelease as Jonny is finishing their dissertation and doesn’t want to break anyone’s experiments!

• Adding the whole autopilot.data module, which starts the process of making everything work with formal
data models.

• Rewriting the Subject class!

• A ModelWidget to fill and edit data models that will eventually replace much of the aging GUI

• Less jitter in JackClient by removing calls to queue.get

• Repackaging autopilot with poetry!

• log_parsers and programmatic reading of logs

• See the changelog for more!

This documentation is very young and is very much a work in progress! Please submit an issue with any incomplete-
nesses, confusion, or errors!

Todo: This page is still under construction! For a more detailed description, see the whitepaper, particularly “Program
Structure”

https://www.biorxiv.org/content/10.1101/807693v1

USER GUIDE: 1

https://www.raspberrypi.org/
https://github.com/DeepLabCut/DeepLabCut-live
https://www.biorxiv.org/content/10.1101/807693v2
https://github.com/auto-pi-lot/autopilot/issues/new
https://www.biorxiv.org/content/10.1101/807693v1

Autopilot Documentation, Release 0.5.0a1

2 USER GUIDE:

CHAPTER

ONE

PROGRAM STRUCTURE

Autopilot performs experiments by distributing them over a network of desktop computers and Raspberry Pis. Each
Computer or Pi runs an Autopilot agent, like the user-facing Terminal or a Raspberry Pi Pilot .

The Terminal agent provides a gui to operate the system, manage Subject s and experimental protocols, and plots
for visualizing data from ongoing experiments.

Each Terminal manages a swarm of Pilot s that actually perform the experiments. Each Pilot coordinates
hardware and stim uli in a Task . Pilot s can, in turn, coordinate their own swarm of networked Children that can
manage additional hardware components – allowing Task s to use effectively arbitrary numbers and combinations of
hardware.

3

Autopilot Documentation, Release 0.5.0a1

4 Chapter 1. Program Structure

CHAPTER

TWO

TASKS

Behavioral experiments in Autopilot consist of Task s. Tasks define the parameters, coordinate the hardware, and
perform the logic of an experiment.

Tasks may consist of one or multiple stages, completion of which constitutes a trial. Stages are analogous to states
in a finite-state machine, but don’t share their limitations: Tasks can use arbitrary transitions between stages and have
computation or hardware operation persist between stages.

Multiple Tasks can be combined to make protocols, in which subjects move between different tasks according to
graduation criteria like accuracy or number of trials. Protocols can thus be used to automate shaping routines that
introduce a subject to the experimental apparatus and task structure.

For more details on tasks, see the guide for writing tasks

5

Autopilot Documentation, Release 0.5.0a1

6 Chapter 2. Tasks

CHAPTER

THREE

MODULE TOUR

Autopilot is intended to be used as a toolkit where you can pick and choose which parts of it you want to use for your
experiments. Most of the documentation is thus contained in the API-level documentation, though we attempt to keep
that as friendly and readable as we can.

• Terminal - user facing agent class used to control and configure program operation.

• pilot - Experimental agent that runs tasks on Raspberry Pis

• data - Data modeling, storage, and interfaces to external formats

• gui - GUI classes built with PySide2/Qt5 used by the terminal. Plots, menus, and widgets!

• hardware - Hardware objects that can be used both independently and as part of Tasks

• networking - Networking modules used for communication between agents, tasks, and hardware objects

• setup - Setting up and configuring Autopilot and the system it runs on

• stim - Stimulus generation & presentation, of which sound is currently the most heavily developed

• tasks - Tasks implement experimental logic, coordinating hardware and data to perform an experiment!

• transform - Composable data transformations, for analyzing or converting data on the fly for use within a task,
as well as implementations of common algorithms and procedures used in experiments.

• utils - Utility functions, most of which are either basic functions used everywhere, or modules that are place-
holders until they can split off into their own more formal organization

– utils.common - Common operations used across multiple modules

– utils.decorators - Decorators and mixins that augment the functionality of other Autopilot Objects

– utils.hydration - Utilities for making serializable versions of autopilot objects that can be recreated in
other processes/agents

– utils.log_parsers - Tools to analyze logs, load them into memory to be able to extract information for
better debugging

– utils.loggers - The main logging facility used by nearly all autopilot objects to coordinate stdout and
logs written to disk

– utils.plugins - Functions for loading plugins

– utils.registry - the autopilot.get() functions that return autopilot objects from both the main
library and plugins

– utils.wiki - Tools to integrate the Autopilot Wiki with the software

7

https://wiki.auto-pi-lot.com

Autopilot Documentation, Release 0.5.0a1

8 Chapter 3. Module Tour

CHAPTER

FOUR

QUICKSTART

Autopilot is an integrated system for coordinating all parts of an experiment, but it is also designed to be permissive
about how it is used and to make transitioning from existing lab tooling gentler – so its modules can be used indepen-
dently.

To get a sample of autopilot, you can check out some of its modules without doing a fully configured Installation . As
you get more comfortable using Autopilot, adopting more of its modules and usage patterns makes integrating each of
the separate modules simpler and more powerful, but we’ll get there in time.

4.1 Minimal Installation

Say you have a Raspberry Pi with Raspbian installed . Install autopilot and its basic system dependencies & configu-
ration like this:

pip3 install auto-pi-lot[pilot]
python3 -m autopilot.setup.run_script env_pilot pigpiod

4.2 Blink an LED

Say you connect an LED to one of the gpio pins - let’s say (board numbered) pin 7. Love 7. Great pin.

Control the LED by using the gpio.Digital_Out class:

from autopilot.hardware.gpio import Digital_Out
led = Digital_Out(pin=7)

turn it on!
led.set(1)

turn if off!
led.set(0)

Or, blink “hello” in morse code using series() !

letters = [
['dot', 'dot', 'dot', 'dot'], # h
['dot'], # e
['dot', 'dash', 'dot', 'dot'], # l
['dot', 'dash', 'dot', 'dot'], # l

(continues on next page)

9

https://www.raspberrypi.org/documentation/installation/installing-images/README.md

Autopilot Documentation, Release 0.5.0a1

(continued from previous page)

['dash', 'dash', 'dash'] # o
]
make a series of 1's and 0's, which will last for the time_unit
times = {'dot': [1, 0], 'dash': [1, 1, 1, 0], 'space':[0]*3}
binary_letters = []
for letter in letters:

binary_letters.extend([value for char in letter for value in times[char]])
binary_letters.extend(times['space'])

time_unit = 100 #ms
led.series(id='hello', values=binary_letters, durations=time_unit)

4.3 Capture Video

Say you have a Raspberry Pi Camera Module , capture some video! First make sure the camera is enabled:

python3 -m autopilot.setup.run_script picamera

and then capture a video with cameras.PiCamera and write it to test_video.mp4:

from autopilot.hardware.cameras import PiCamera
cam = PiCamera(name="my_picamera", fps=30)
cam.write('test_video.mp4')
cam.capture(timed=10)

Note: Since every hardware object in autopilot is by default nonblocking (eg. work happens in multiple threads, you
can make other calls while the camera is capturing, etc.), this will work in an interactive python session but would
require that you sleep or call cam.stoppping.join() or some other means of keeping the process open.

While the camera is capturing, you can access its current frame in its frame attribute, or to make sure you get every
frame, by calling queue() .

4.4 Communicate Between Computers

Synchronization and coordination of code across multiple computers is a very general problem, and an increasingly
common one for neuroscientists as we try to combine many hardware components to do complex experiments.

Say our first raspi has an IP address 192.168.0.101 and we get another raspi whose IP is 192.168.0.102 . We can
send messages between the two using two networking.Net_Node s. networking.Net_Node s send messages with
a key and value , such that the key is used to determine which of its listens methods/functions it should call to
handle value .

For this example, how about we make pilot 1 ping pilot 2 and have it respond with the current time?

On pilot 2, we make a node that listens for messages on port 5000. The upstream and port arguments here don’t
matter since this node doesn’t initiate any connection, just received them (we’ll use a global variable here and hardcode
the return id since we’re in scripting mode, but there are better ways to do this in autopilot proper):

10 Chapter 4. Quickstart

https://www.raspberrypi.org/products/camera-module-v2/

Autopilot Documentation, Release 0.5.0a1

from autopilot.networking import Net_Node
from datetime import datetime
global node_2

def thetime(value):
global node_2
node_2.send(

to='pilot_1', key='THETIME',
value=datetime.now().isoformat()

)

node_2 = Net_Node(
id='pilot_2', router_port=5000, upstream='', port=9999,
listens={'WHATIS':thetime}

)

On pilot 1, we can then make a node that connects to pilot 2 and prints the time when it receives a response:

from autopilot.networking import Net_Node

node_1 = Net_Node(
id='pilot_1', upstream='pilot_2',
port=5000, upstream_ip = '192.168.0.102',
listens = {'THETIME':print}

)

node_1.send(to='pilot_1', key='WHATIS')

4.5 Realtime DeepLabCut

Autopilot integrates DeepLabCut-Live [KLS+20] ! You can use your own pretrained models (stored in your autopilot
user directory under /dlc) or models from the Model Zoo .

Now let’s say we have a desktop linux machine with DeepLabCut and dlc-live installed. DeepLabCut-Live is imple-
mented in Autopilot with the transform.image.DLC object, part of the transform module.

First, assuming we have some image img (as a numpy array), we can process the image to get an array of x,y positions
for each of the tracked points:

from autopilot import transform as t
import numpy as np

dlc = t.image.DLC(model_zoo='full_human')
points = dlc.process(img)

Autopilot’s transform module lets us compose multiple data transformations together with + to make deploying chains
of computation to other computers. How about we process an image and determine whether the left hand in the image
is raised above the head?:

select the two body parts, which will return a 2x2 array
dlc += t.selection.DLCSlice(select=('wrist1', 'forehead'))

(continues on next page)

4.5. Realtime DeepLabCut 11

https://github.com/DeepLabCut/DeepLabCut-live/
http://www.mackenziemathislab.org/dlc-modelzoo

Autopilot Documentation, Release 0.5.0a1

(continued from previous page)

slice out the 1st column (y) with a tuple of slice objects
dlc += t.selection.Slice(select=(

slice(start=0,stop=2),
slice(start=1,stop=2)

))

compare the first (wrist) y position to the second (forehead)
dlc += t.logical.Compare(np.greater)

use it!
dlc.process(img)

4.6 Put it Together - Close a Loop!

We’ve tried a few things, why not put them together?

Let’s use our two raspberry pis and our desktop GPU-bearing computer to record a video of someone and turn an LED
on when their hand is over their head. We could do this two (or one) computer as well, but let’s be extravagant.

Let’s say pilot 1, pilot 2, and the gpu computer have ip addresses of 192.168.0.101, 192.168.0.102, and 192.
168.0.103, respectively.

4.6.1 Pilot 1 - Image Capture

On pilot 1, we configure our PiCamera to stream to the gpu computer. While we’re at it, we might as well also save a
local copy of the video to watch later. The camera won’t stop capturing, streaming, or writing until we call capture():

from autopilot.hardware.cameras import PiCamera
cam = PiCamera()
cam.stream(to='gpu', ip='192.168.0.103', port=5000)
cam.write('cool_video.mp4')

4.6.2 GPU Computer

On the gpu computer, we need to receive frames, process them with the above defined transformation chain, and send
the results on to pilot 2, which will control the LED. We could do this with the objects that we’ve already seen (make
the transform object, make some callback function that sends a frame through it and give it to a Net_Node as a listen
method), but we’ll make use of the Transformer “child” object – which is a peculiar type of Task designed to perform
some auxiliary function in an experiment.

Rather than giving it an already-instantiated transform object, we instead give it a schematic representation of the
transform to be constructed – When used with the rest of autopilot, this is to both enable it to be dispatched flexibly to
different computers, but also to preserve a clear chain of data provenance by keeping logs of every parameter used to
perform an experiment.

The Transformer class uses make_transform() to reconstitute it, receives messages containing data to process,
and then forwards them on to some other node. We use its trigger mode, which only sends the value on to the final
recipient with the key 'TRIGGER' when it changes.:

12 Chapter 4. Quickstart

Autopilot Documentation, Release 0.5.0a1

from autopilot.tasks.children import Transformer
import numpy as np

transform_description = [
{

"transform": "DLC",
"kwargs": {'model_zoo':'full_human'}

},
{

"transform": "DLCSlice",
"kwargs": {"select": ("wrist1", "forehead")}

}
{

"transform": "Slice",
"kwargs": {"select":(

slice(start=0,stop=2),
slice(start=1,stop=2)

)}
},
{

"transform": "Compare",
"args": [np.greater],

},
]

transformer = Transformer(
transform = transform_description
operation = "trigger",
node_id = "gpu",
return_id = 'pilot_2',
return_ip = '192.168.0.102',
return_port = 5001,
return_key = 'TRIGGER',
router_port = 5000

)

4.6.3 Pilot 2 - LED

And finally on pilot 2 we just write a listen callback to handle the incoming trigger:

from autopilot.hardware.gpio import Digital_Out
from autopilot.networking.Net_Node

global led
led = Digital_Out(pin=7)

def led_trigger(value:bool):
global led
led.set(value)

node = Net_Node(
(continues on next page)

4.6. Put it Together - Close a Loop! 13

Autopilot Documentation, Release 0.5.0a1

(continued from previous page)

id='pilot_2', router_port=5001, upstream='', port=9999,
listens = {'TRIGGER':led_trigger}

)

There you have it! Just start capturing on pilot 1:

cam.capture()

4.7 What Next?

The rest of Autopilot expands on this basic use by providing tools to do the rest of your experiment, and to make
replicable science easy.

• write standardized experimental protocols that consist of multiple Task s linked by flexible graduation criteria

• extend the library to use your custom hardware, and make your work available to anyone with our plugins
system integrated with the autopilot wiki

• Use our GUI that makes managing many experimental rigs simple from a single computer.

and so on. . .

14 Chapter 4. Quickstart

https://wiki.auto-pi-lot.com

CHAPTER

FIVE

INSTALLATION

Autopilot must be installed on the devices running the Terminal and the Pilot agents. The Pilot runs on a Raspberry
Pi (remember: Pi for “Pilot”) and the Terminal runs on a regular desktop computer. So Autopilot must be installed on
both. This document will show you how to do that.

5.1 Supported Systems

OS
• Pilot: raspiOS >=Buster (lite recommended)
• Terminal: Ubuntu >=16.04

Python Version >=3.7,<3.10
Raspberry Pi >=3b (4b recommended)

Autopilot is linux/mac only, and supports Python 3.7 - 3.9 (3.10 will be supported after updating the terminal to use
PySide 6). Some parts might accidentally work in Windows but we make no guarantees.

We have tried to take care to make certain platform-specific dependencies not break the entire package, so if you have
some difficulty installing autopilot on a non-raspberry-pi linux machine please submit an issue!

5.2 Pre-installation

5.2.1 On the Pilot device

For Pilots, we recommend starting with a fresh Raspbian Lite image (see the raspi installation documentation). Note
that the Lite image doesn’t include a desktop environment or GUI, just a command-line interface, but that’s all we need
for the Pilot. It’s easiest to connect a monitor and keyboard directly to the Pi while configuring it. Once it’s configured,
you won’t need to leave the monitor and keyboard attached, and/or you can choose to connect to it with ssh – see the
headless setup wiki page.

After the Pi has been started up for the first time, run sudo raspi-config to do things like connect to a wifi network, set
the time zone, and so on. It’s very important to change the password for the pi user account to a new one of your choice
so that you don’t get hacked, especially if you’re opening up ssh access.

It’s also best to update the Pi’s operating system at this time:

sudo apt update
sudo apt upgrade -y

15

https://downloads.raspberrypi.org/raspios_lite_armhf_latest.torrent
https://www.raspberrypi.org/documentation/installation/installing-images/README.md
https://wiki.auto-pi-lot.com/index.php/Headless_Setup

Autopilot Documentation, Release 0.5.0a1

Now install the system packages that are required by Autopilot. You can do this by running this command, or it’s
also available as a setup script in the guided installation of Autopilot. (python -m autopilot.setup.run_script
env_pilot)

sudo apt install -y \
python3-dev \
python3-pip \
git \
libatlas-base-dev \
libsamplerate0-dev \
libsndfile1-dev \
libreadline-dev \
libasound-dev \
i2c-tools \
libportmidi-dev \
liblo-dev \
libhdf5-dev \
libzmq3-dev \
libffi-dev

5.2.2 On the Terminal device

The following system packages are required by PySide2 (which no longer packages xcb):

sudo apt-get update && \
sudo apt-get install -y \
libxcb-icccm4 \
libxcb-image0 \
libxcb-keysyms1 \
libxcb-randr0 \
libxcb-render-util0 \
libxcb-xinerama0 \
libxcb-xfixes0

5.3 Installing Autopilot

Now we’re ready to install Autopilot on both the Pilot and Terminal devices. Follow the same instructions on both the
Pi and the computer.

We recommend using autopilot within a virtual environment. Since v0.5.0 autopilot has been packaged with po-
etry , which manages its own environment, but instructions for using virtualenv and conda are in the guide page
guide_venvs .

16 Chapter 5. Installation

https://python-poetry.org/
https://python-poetry.org/

Autopilot Documentation, Release 0.5.0a1

5.3.1 Optional dependencies

Since autopilot is intended to be deployed as differentiable agents, we have separated the requirements into different
groups of optional dependencies. In each of the following commands, use the appropriate package specifier like pip
install auto-pi-lot[pilot] or poetry install -E pilot

• pilot - includes pigpio to control GPIO pins and other pi-specific requirements

• terminal - includes PySide2 and other terminal-specific requirements

• docs - includes Sphinx et al.

• tests - includes pytest et al.

5.3.2 Method 1: Installation from PyPI

If you’re just taking a look at Autopilot, the easiest way to get started is to install it from PyPI!

pip3 install auto-pi-lot

5.3.3 Method 2: Installation from source

If you want to start writing your own experiments and tinkering with Autopilot, suggest you clone or fork the repository
. One of the design goals of autopilot is to minimize the distinction between “developer” and “user,” so we like to
encourage people to get their hands dirty with the source so your wonderful work can be integrated later.

First clone the repository:

git clone https://github.com/auto-pi-lot/autopilot.git
cd autopilot

Install with poetry - if you have poetry installed (pip install poetry), it is easiest to use it to manage your autopilot
environment:

poetry shell
poetry install
or if installing optional dependencies
poetry install -E <optional>

Install with pip - install an “editable” version with -e, this makes it so python uses the source code in your cloned
repository, rather than from the system/venv libraries:

pip3 install -e .[<optional>]

Note: Depending on your permissions, eg. if you are not installing to a virtual environment, you may get a permissions
error and need to install with the --user flag

Note: Development work is done on the dev branch, which may have additional features/bugfixes but is much less
stable! To use it just git checkout dev from your repository directory.

5.3. Installing Autopilot 17

https://github.com/auto-pi-lot/autopilot/

Autopilot Documentation, Release 0.5.0a1

18 Chapter 5. Installation

CHAPTER

SIX

CONFIGURATION

idea
Also see the prefs API documentation page!

6.1 Guided Configuration

After installation, set Autopilot up! Autopilot comes with a “guided installation” process where you can select the
actions you want and they will be run for you. The setup routine will:

• install needed system packages

• prepare your operating system and environment

• set system preferences

• create a user directory (default ~/autopilot) to store prefs, logs, data, etc.

• create a launch script

To start the guided process, run the following line.

python3 -m autopilot.setup

6.1.1 Select Agent

Each runtime of Autopilot is called an “Agent”, each of which performs different roles within a system, and thus have
different requirements. If you’re running the setup script on the Pi, select “Pilot”. If you’re running the setup script on
a desktop computer, select “Terminal”. If you’re configuring multiple Pis, then select “Child” on the child Pis. Then
hit “OK”.

You can navigate this interface with the arrow keys, tab key, and enter key.

19

Autopilot Documentation, Release 0.5.0a1

6.1.2 Select scripts

Now you will see a menu of potential scripts that can be run. Select the scripts you want to run, and then hit “OK”.
Note that even the simplest task (“free water”) requires pigpio, so you may want to include that one. You can see
the commands that will be run in each of these scripts with setup.run_script in the setup.scripts.SCRIPTS
dictionary.

20 Chapter 6. Configuration

Autopilot Documentation, Release 0.5.0a1

Note: Autopilot uses a slightly modified version of pigpio (https://github.com/sneakers-the-rat/pigpio) that allows it
to get absolute timestamps (rather than system ticks) from gpio callbacks, increases the max number of scripts, etc. so
if you have a different version of pigpio installed you will need to remove it and replace it with this one (you can do so
with python -m autopilot.setup.run_script pigpiod

6.1.3 Configure Agent

Each agent has a set of systemwide preferences stored in <AUTOPILOT_DIR>/prefs.json and accessible from
autopilot.prefs.

6.1.4 Configure Hardware

If configuring a Pilot, you’ll be asked to configure your hardware.

Press ctrl+x to add Hardware, and fill in the relevant parameters (most are optional and can be left blank). Consult
the relevant page on the docs to see which arguments are relevant and how to use them.

6.1. Guided Configuration 21

Autopilot Documentation, Release 0.5.0a1

After completing this step, the file prefs.json will be created if necessary and populated with the information you
just provided. If it already exists, it will modified with the new information while preserving the previous preferences.

You can also manually edit the prefs.json file if you prefer. an example prefs file for the Pilot is available that defines
the ports, LEDs, and solenoids that are necessary for the “free water” task, which may be a useful way to get started.

6.1.5 Testing the Installation

A launch script should have been created by setup_autopilot at <AUTOPILOT_DIR>/launch_autopilot.sh –
this is the primary entrypoint to autopilot, as it allows certain system-level commands to precede launch (eg. activating
virtual environments, enlarging shared memory, killing conflicting processes, launching an x server, etc.).

To launch autopilot::

~/autopilot/launch_autopilot.sh

Note: Selecting the script alias in setup_autopilot allows you to call the launch script by just typing autopilot

The actual launch call to autopilot resembles:

python3 -m autopilot.agents.<AGENT_NAME> -f ~/autopilot/prefs.json

22 Chapter 6. Configuration

https://github.com/auto-pi-lot/autopilot/blob/main/examples/prefs/pilot_prefs.json

Autopilot Documentation, Release 0.5.0a1

6.2 The User Directory

After configuration, all the files you’ll interact with will be in the user directory - ~/autopilot by default.

An example user directory might look like this:

./autopilot
calibration
data

subject_1.h5
subject_2.h5

launch_autopilot.sh
logs

agents.terminal.log
plugins.my_plugin.log

pilot_db.json
plugins

my_plugin
my_task.py

prefs.json
protocols

2afc_easy.json
2afc_hard.json

sounds

6.2.1 prefs.json

See the prefs module documentation for documentation of specific preferences

The prefs.json file stores all the configuration options for this particular Autopilot instance, including configurations
of local hardware objects, audio output, etc. Each agent will have its own combination of prefs determined by :class:.
prefs.SCOPES.

6.2.2 pilot_db.json

The pilot_db.json file is used by the Terminal to keep track of which pilots have been configured to connect to it.
For each pilot the Terminal will create a set of widgets (see gui.widgets.terminal) to control it as well as plots
to display data from running tasks.

For each pilot, the db file will contain

• subjects - a list of Subjects that run on that pilot. The Subject class keeps track of which pilot it was assigned
to, but at the moment the pilot db file will be used to actually dispatch the task to that pilot

• ip - the last known IP address the pilot has connected from

• prefs - the prefs for that pilot

In the future the pilot_db will also track the versions and hashes for autopilot and any plugins running on other pilots

6.2. The User Directory 23

Autopilot Documentation, Release 0.5.0a1

6.2.3 launch_autopilot.sh

A launch script created by setup to launch the configured autopilot agent. Will enable any virtual environment that
is detected when configuring, start and external daemons that need to be started, and explicitly pass the location of the
prefs.json file that determine its operation.

6.2.4 calibration

Calibration files for individual hardware objects identified by group and ID (see configuring hardware and
calibration()).

When the calibration property of any hardware object is set, the dictionary passed is then stored as a .json file.

For example, the Solenoid class stores a calibration generated by menus.tools.Calibrate_Water that converts
an open duration to a volume of fluid dispensed. If a given solenoid’s group and id are PORTS and L, we’d get a file
PORTS_L.json that looks like:

{
"intercept": 2.667731629392975,
"slope": 5.591054313099041

}

6.2.5 data

Each Subject has a corresponding .h5 file that stores its history, biographical information, and data collected during
tasks. The data directory is searched in by default for a subject’s .h5 file, so it is possible to access a subject’s data by
just instantiating the subject object with its ID (ie. Subject(subject_id)) rather than passing its full location. To
use the subject class with data outside the data directory pass the containing directory as the dir argument.

6.2.6 logs

Many (and eventually all) autopilot objects have a logger attribute created with init_logger() like self.logger
= init_logger(self) that inspects the object to create a logger based on its module and id.

Logfiles are created for each module, and then if an object has a name or id attribute it will be used in each log message
to identify the source. Logfiles are also created for any classes run as separate processes (like JackClient) because
separate processes can’t write to the same file without overwriting each other. Logfiles are also rotated using suffixes
like .1, .2 to keep individual log files manageable and browsable by typical text editors while maintaining as much
history as is desired.

Logs are written to stdout using the rich.logging.RichHandler for greater interpretability:

24 Chapter 6. Configuration

https://rich.readthedocs.io/en/stable/reference/logging.html#rich.logging.RichHandler

Autopilot Documentation, Release 0.5.0a1

Since logs take time to write to both stdout and to files, we recommend keeping your log level to INFO or WARNING
during normal operation — where we assume performance is usually a priority. the DEBUG mode will print a huge
number of messages, including every network transaction, etc.

Logging is configured using a few prefs:

• LOGLEVEL - All messages above this loglevel will be written to file and stdout, possible options are:

– DEBUG - Detailed information about system operation to fix problems

– INFO - Information about major operations that don’t require any special attention but are good to know
when they happen

– WARNING - Warnings that don’t break system operation but might make recommendations, alert the user
about implicit or automatic activity that might not be desirable, etc.

– ERROR - Errors that prevent normal system operation, but have been handled in such a way that the whole
process hasn’t crashed.

• LOGSIZE - The maximum size of an individual logfile (in bytes), the default being 5MB

• LOGNUM - The number of rotating logfiles of size LOGSIZE to keep

When running autopilot as a systemd daemon, you can access stderr logs that are not caught by the logger because they
are unexpected or otherwise outside normal system operation by using journalctl -u autopilot, or to just see the
end use the -e flag.

6.2.7 plugins

See the Using Plugins documentation, as well as the plugins and registry modules.

Plugins are where you do your work!

Plugins contain additional Task , Hardware, or other autopilot types (see REGISTRIES) that can be accessed by the
registry.get() function to extend the basic functionality of autopilot. We recommend making plugins as versioned
subfolders within the plugin directory to keep track of changes and make the easier to share, but at the moment there
is no restriction on their structure.

Plugins will be automatically imported if the AUTOPLUGIN pref is set to True. Autopilot will attempt to import each
file within the plugin directory, but since plugins can contain scripts or other files not intended to extend autopilot, may
log a number of exceptions which can be ignored, but provide details about where each plugin is failing to import.

6.2.8 protocols

See the models.protocol.Step_Data and models.protocol.Protocol_Data classes, as well as the :class:.
Protocol_Wizard which creates them.

Each Protocol consists of a list of parameter dictionaries for a number of individual tasks with graduation criteria for
moving between them. Protocols within the protocol directory can be assigned (:meth:.Subject.assign_protocol)
by name (filename excluding .json), and the representation of the protocol stored within the Subject file is updated
when it detects that the protocol file has changed.

6.2. The User Directory 25

Autopilot Documentation, Release 0.5.0a1

6.2.9 sounds

Sound files used by the :class:sounds.File class, transferred to pilots when used in a task.

6.3 Networking

Note: Networking is a point of major future development, particularly how agents discover one another and how
ports are assigned. Getting networking to work is still a bit cumbersome, but you can track progress or contribute to
improving networking at issue #48

6.3.1 IP Addresses

Pilots connect to a terminal whose IP address is specified as TERMINALIP in prefs.json

The Pilot and Terminal devices must be on the same network and capable of reaching one another. You can get your
local IP with ifconfig -a or ip addr

Let’s say your Terminal is at 192.168.1.42 and your Pilot is at 192.168.1.200. Replace these values with whatever you
actually found before.

Then, you can test that each device can see the other with ping. On the Terminal, run::

ping 192.168.1.200

And on the Pilot, run::

ping 192.168.1.42

If that doesn’t work, there is something preventing the computers from communicating from one another, typically this
is the case if the computers are on university/etc. internet that makes it difficult for devices to connect to one another.
We recommend networking agents together using a local router or switch (though some have reported being able to use
their smartphone’s hotspot in a pinch.

6.3.2 Ports

Agents use two prefs to configure their ports

• MSGPORT is the port that the agent receives messages on

• PUSHPORT is the port of the ‘upstream’ agent that it connects to.

So, if connecting a Pilot to a Terminal, the PUSHPORT of the Pilot should match the MSGPORT of the Terminal.

Ports need to be “open,” but the central operation of a firewall is to “close” them. To open a port if, for example, you
are using ufw on ubuntu (replacing with whatever port you’re trying to open to whatever ip address)::

sudo ufw allow from 192.168.1.200 to any port 5560

26 Chapter 6. Configuration

https://github.com/auto-pi-lot/autopilot/issues/48
https://groups.google.com/g/autopilot-users/c/JvWIPpYY0TI/m/fzSBET8PAAAJ
https://groups.google.com/g/autopilot-users/c/JvWIPpYY0TI/m/fzSBET8PAAAJ

CHAPTER

SEVEN

TRAINING A SUBJECT

After you have set up a Terminal and a Pilot, launch the Terminal.

7.1 Connecting the Pilot

If the TERMINAL_IP and port information is correctly set in the prefs.json file of the Pilot, it should automatically
attempt to connect to the Terminal when it starts. It will send a handshake message that lets the Terminal know of its
existence, its IP address, and its state. Once the Terminal receives its initial message, it will refresh, adding an entry to
its pilot_db.json file and displaying a control panel for the pilot.

If the Pilot is not automatically detected, a pilot can be manually added with its name and IP using the “New Pilot”
command in the file menu.

7.2 Creating a Protocol

A Protocol is one or a collection of tasks which the subject can ‘graduate’ through based on configurable graduation
criteria. Protocols are stored as .json files in the protocols directory within prefs.BASEDIR.

27

Autopilot Documentation, Release 0.5.0a1

7.2.1 Using the Protocol Wizard

Warning: The Protocol Wizard does not currently support any Reward type except time, and the stimulus specifi-
cation widget is limited to specifying ‘L’(eft) and ‘R’(ight) sounds. This is related to the unification of the parameter
structure in Autopilot 0.3 (see To-Do). Protocols can be edited after creation in the Protocol Wizard using the format
examples in the manual protocol creation section below.

The Protocol Wizard allows you to build protocols using all the classes that inherit from Task in the Autopilot main
repository as well as any within your plugins directory. It extracts the PARAMS dictionary from each task class, adds
a few general parameters, and allows the user to fill them.

For this example, we will create a protocol for a freely-moving two-alternative forced choice task1 . This task has three
‘nosepokes,’ which consist of an IR break beam sensor, a solenoid, and an LED. The subject is supposed to poke in the
center port to present a stimulus and begin a trial, and then report the identity of that stimulus category by poking in
the nosepokes on either side. If the subject is correct, they are rewarded with water.

It is relatively challenging for an animal subject to learn this task without having a few beginning shaping steps that
introduce it to the nature of the arena and the structure of the task. In this example we will program a three-step shaping
regimen:

• Step 1 - Free Water: The subject will be rewarded for merely poking the IR sensor in order to let them know
that in this universe water comes out of these particular holes in the wall

• Step 2 - Request Rewards: The task will operate as normal (stimuli are presented, etc.), but the subject will be
rewarded for the initial center-poke as well as for a correct answer. This teaches them the temporal structure of
the task – center first, then side ports.

• Step 3 - Frequency Discrimination: The final step of the protocol, the mouse is taught to respond left to a
low-frequency tone and right to a high-frequency tone.

1. To start, select New Protocol from the ‘file’ menu.

2. Add a step from the list of tasks in the leftmost column by selecting it and pressing the ‘+’ button. Here we are
adding the Free Water step.

3. Specify the parameters for the task in the rightmost window – we give 20ms of water every time the subject poke,
etc.

4. Add the second “Request Rewards” step, the remaining options that are configured are: * list * of * options

5. Press ok, save and name the protocol file.

6. That leaves us with a protocol file:

[
{

"allow_repeat": false,
"graduation": {

"type": "n_trials",
"value": {

"current_trial": "0",
"n_trials": "100",
"type": "n_trials"

}
},

(continues on next page)

1 Yes we are aware that the “two-alternative forced choice” task described here is actually maybe called a “yes-no task” because there is only one
stimulus presented at a time. The literature appears stuck with this term, however.

28 Chapter 7. Training a Subject

Autopilot Documentation, Release 0.5.0a1

7.2. Creating a Protocol 29

Autopilot Documentation, Release 0.5.0a1

(continued from previous page)

"reward": "20",
"step_name": "Free Water",
"task_type": "Free Water"

},
{

"bias_mode": 0,
"correction": true,
"correction_pct": "10",
"graduation": {

"type": "n_trials",
"value": {

"current_trial": "0",
"n_trials": "200",
"type": "n_trials"

}
},
"punish_stim": false,
"req_reward": true,
"reward": "20",
"step_name": "request_rewards",
"stim": {

"sounds": {
"L": [

{
"amplitude": "0.01",
"duration": "100",
"frequency": "4000",

(continues on next page)

30 Chapter 7. Training a Subject

Autopilot Documentation, Release 0.5.0a1

7.2. Creating a Protocol 31

Autopilot Documentation, Release 0.5.0a1

(continued from previous page)

"type": "Tone"
}

],
"R": [

{
"amplitude": "0.01",
"duration": "100",
"frequency": "10000",
"type": "Tone"

}
]

},
"tag": "Sounds",
"type": "sounds"

},
"task_type": "2AFC"

},
{

"bias_mode": 0,
"correction": true,
"correction_pct": "10",
"graduation": {

"type": "accuracy",
"value": {

"threshold": "80",
"type": "accuracy",
"window": "1000"

}
},
"punish_stim": false,
"req_reward": false,
"reward": "20",
"step_name": "2AFC",
"stim": {

"sounds": {
"L": [

{
"amplitude": "0.01",
"duration": "25",
"frequency": "100",
"type": "Tone"

}
],
"R": [

{
"amplitude": "0.01",
"duration": "100",
"frequency": "100",
"type": "Tone"

}
]

},

(continues on next page)

32 Chapter 7. Training a Subject

Autopilot Documentation, Release 0.5.0a1

(continued from previous page)

"tag": "Sounds",
"type": "sounds"

},
"task_type": "2AFC"

}
]

7.2.2 Manual Protocol Creation

Protocols can be created manually by. . .

1. Extracting the task specific parameters, eg:

params = autopilot.tasks.Nafc.PARAMS
for example...
params['param_1'] = value_1

2. Adding general task parameters stim, reward, graduation, step_name, and task_type. These are just exam-
ples, the stim and reward fields can be any parameters consumed by a Reward_Manager or Stimulus_Manager.
The graduation field can be any parameters consumed by a Graduation object. The step_name and task_type
need to be strings, the task_type corresponding to a key in the TASK_LIST.:

params.update({
'stim': {

'type': 'sounds',
'sounds': {

'L':[...],
'R':[...]

}
},
'reward': {

'type': 'volume',
'value': 2.5

},
'graduation': {

'type': 'accuracy',
'value': {

'threshold': 0.8,
'window': 1000

}
},
'step_name': 'cool_new_step',
'task_type': 'NAFC'

})

An example for our speech task can be found in autopilot.tasks.protocol_scripts.

7.2. Creating a Protocol 33

Autopilot Documentation, Release 0.5.0a1

7.3 Creating a Subject

A Subject stores the data, protocol, and history of a subject. Each subject is implicitly assigned to a Pilot by virtue
of the structure of the pilot_db.json file, but they can be switched by editing that file.

1. Create a subject by clicking the + button in the control panel of a particular Pilot

2. Fill out the basic biographical information

3. Assign the subject to a protocol and step. Notice how the task we created earlier is here!

By creating one, we create an HDF5 file that stores a serialized version of the .json protocol file that was generated
above, as well as the basic directory and table structure to enable the subject to store data from running the task.

7.4 Running the Task

1. Select the subject’s name and press the start button! The Terminal will send a START message to the Pilot that
includes the parameter dictionary for the current step, and if the Pilot is configured with the hardware required
in the HARDWARE dictionary of the task, it should run.

2. The Terminal will initialize the Pilot’s plot using the parameters in the task’s PLOT dictionary and display data
as it is received.

7.5 Debugging a Task

If a Pilot doesn’t start the task appropriately, if you have installed the Pilot as a system daemon you can retrieve the logs
and see the stack trace by accessing the pilot via SSH:

ssh pi@your.pi.ip.address

Note: Because Raspberry Pis are common prey on the internet, we strongly advise changing the default password,
installing RSA keys to access the pi, and disabling password access via SSH.

and then printing the end of the logs with journalctl:

print the -end of the logs for system -unit autopilot
journalctl -u autopilot -e

34 Chapter 7. Training a Subject

Autopilot Documentation, Release 0.5.0a1

7.5. Debugging a Task 35

Autopilot Documentation, Release 0.5.0a1

36 Chapter 7. Training a Subject

Autopilot Documentation, Release 0.5.0a1

7.5. Debugging a Task 37

Autopilot Documentation, Release 0.5.0a1

38 Chapter 7. Training a Subject

CHAPTER

EIGHT

WRITING A TASK

Some concepts of task design are also discussed in section 3.1 of the whitepaper.

When you write your own task, you’ll want to do it within your own plugin (see Using Plugins), but until then we’ll
take a look at a task written within the main Autopilot Repository. This example is relatively advanced as it is intended
to show the full structure of a task. For a more basic example that shows just how to blink a light on and off within a
task context, see Blink

Note: For more examples, see the plugins on the wiki, two to get you started:

• Autopilot Paper Plugin - Network_Latency: for testing network latency between two pilots, demonstrates:

– using a single task for two pilots with different roles,

– Point-to-point networking with Net_Node s

– Using the Terminal_Station to connect pilots without knowing their IP/Port

• Wehrlab Plugin - Nafc_Gap , Nafc_Gap_Laser: Extensions of the Nafc class to do experiments with gaps in
continuous background noise, which demonstrate:

– Extending the __init__ and end methods of a task class to do additional things on initialization and
teardown – specifically starting and stopping background noise

– Adding additional PARAMS, HARDWARE objects, and TrialData fields

– Extending task methods without rewriting them – specifically adding optogentic stimulation to an existing
task!

The Nafc class serves as an example for new task designs.

To demonstrate the general structure of Autopilot tasks, let’s build it from scratch.

8.1 The Task class

We start by subclassing the Task class and initializing it.

from autopilot.tasks import Task

class Nafc(Task):

def __init__(self):
super(Nafc, self).__init__()

39

https://www.biorxiv.org/content/10.1101/807693v1
https://wiki.auto-pi-lot.com/index.php/Autopilot_Plugins
https://wiki.auto-pi-lot.com/index.php/Plugin:Autopilot_Paper
https://github.com/auto-pi-lot/plugin-paper/blob/main/plugin_paper/tasks/network.py
https://wiki.auto-pi-lot.com/index.php/Wehrlab
https://github.com/auto-pi-lot/autopilot-plugin-wehrlab/blob/29a7d04c7f0b6dc4234dc0f9e5f00d2edc102eb4/gap/nafc_gap.py#L13
https://github.com/auto-pi-lot/autopilot-plugin-wehrlab/blob/29a7d04c7f0b6dc4234dc0f9e5f00d2edc102eb4/gap/nafc_gap.py#L59

Autopilot Documentation, Release 0.5.0a1

This gives our new task some basic attributes and methods, including the init_hardware() method for initializing
the HARDWARE dictionary and the handle_trigger() method for handling GPIO triggers.

8.2 Four Task Attributes

We then add the four elements of a task description:

1. A PARAMS dictionary defines what parameters are needed to define the task

2. A Data (Table) descriptor describes what data will be returned from the task

3. A PLOT dictionary that maps the data output to graphical elements in the GUI.

4. A HARDWARE dictionary that describes what hardware will be needed to run the task.

8.2.1 PARAMS

Note: This will be made simpler in the full release of v0.5.0 by using the same data modeling tools as the rest of the
library!

Each parameter needs a human readable tag that will be used for GUI elements, and a type, currently one of:

• int: integers

• bool: boolean (checkboxes in GUI)

• list: list of possible values in {‘Name’:int} pairs

• sounds: a autopilot.core.gui.Sound_Widget to define sounds.

To maintain order when opened by the GUI we use a odict rather than a normal dictionary.

from collections import odict

PARAMS = odict()
PARAMS['reward'] = {'tag':'Reward Duration (ms)',

'type':'int'}
PARAMS['req_reward'] = {'tag':'Request Rewards',

'type':'bool'}
PARAMS['punish_stim'] = {'tag':'White Noise Punishment',

'type':'bool'}
PARAMS['punish_dur'] = {'tag':'Punishment Duration (ms)',

'type':'int'}
PARAMS['correction'] = {'tag':'Correction Trials',

'type':'bool'}
PARAMS['correction_pct'] = {'tag':'% Correction Trials',

'type':'int',
'depends':{'correction':True}}

PARAMS['bias_mode'] = {'tag':'Bias Correction Mode',
'type':'list',
'values':{'None':0,

'Proportional':1,
'Thresholded Proportional':2}}

PARAMS['bias_threshold'] = {'tag': 'Bias Correction Threshold (%)',
(continues on next page)

40 Chapter 8. Writing a Task

Autopilot Documentation, Release 0.5.0a1

(continued from previous page)

'type':'int',
'depends':{'bias_mode':2}}

PARAMS['stim'] = {'tag':'Sounds',
'type':'sounds'}

These will be taken as key-value pairs when the task is initialized. ie.:

PARAMS['correction'] = {'tag': 'Correction Trials',
'type': 'bool'}

will be used to initialize the task like:

Nafc(correction=True) # or False

8.2.2 Data

Note: Also see the autopilot.data module documentation

There are two types of data,

• TrialData - where a single value for several variables is returned per ‘trial’, and

• ContinuousData - where values and timestamps are taken continuously, with either a fixed or variable interval

TrialData is defined by subtypes of the models.protocol.Trial_Data class. Specify each variable that will be
returned and its type using python type hints and pydantic Field description!!:

from typing import Literal
from autopilot.data.models.protocol import Trial_Data
from pydantic import Field

class TrialData(Trial_Data):
"""
Trialwise Data for a Two-Alternative Forced Choice Task
"""
This class allows the Subject object to make a data table with the correct data␣

→˓types. You must update it for any new data you'd like to store
target: Literal['L', 'R'] = Field(...,

description="Which side is the correct side this trial")
response: Literal['L', 'R'] = Field(...,

description="The side that was poked")
correct: bool = Field(...,

description="Whether the subject's response matched the target")
correction: bool = Field(...,

description="Whether this trial was a correction trial or not")
RQ_timestamp: datetime.datetime = Field(...,

description="The time where the stimulus was presented and the trial was␣
→˓requested")

DC_timestamp: datetime.datetime = Field(...,
description="The time when the subject responded")

(continues on next page)

8.2. Four Task Attributes 41

Autopilot Documentation, Release 0.5.0a1

(continued from previous page)

bailed: bool = Field(...,
description="Whether the subject bailed the trial from a timeout or any other␣

→˓reason they did not finish")

Each field has some type (eg correct: bool) as well as an (optional) description inside the pydantic.Field()
descriptor. We use typing.Literal objects to describe when only a certain set of options are allowed (eg. the target
can only be ``L``eft or ``R``ight).

Autopilot’s data modeling tools then use an interface to pytables (data.interfaces.tables) to create a hdf5 table
description from the high-level description of Trial_Data.

8.2.3 PLOT

The PLOT dictionary maps the data returned from the task to graphical elements in the Terminal’s Plot. Specifically,
when the task is started, the Plot object creates the graphical element (eg. a Point) and then calls its update method
with any data that is received through its Net_Node.

Data-to-graphical mappings are defined in a data subdictionary, and additional parameters can be passed to the plot –
in the below example, for example, a chance_bar is drawn as a horizontal line across the plot. By default it is drawn at
0.5, but its height can be set with an additional parameter chance_level. Available graphical primitives are registered
in the PLOT_LIST, and additional parameters are documented in the Plot class.

Data is plotted either by trial (default) or by timestamp (if PLOT['continuous'] != True). Numerical data is plotted
(on the y-axis) as expected, but further mappings can be defined by extending the graphical element’s update method
– eg. ‘L’(eft) maps to 0 and ‘R’(ight) maps to 1 by default.

PLOT = {
'data': {

'target' : 'point',
'response' : 'segment',
'correct' : 'rollmean'

},
'chance_bar' : True, # Draw a red bar at 50%
'roll_window' : 50 # n trials to take rolling mean over

}

The above PLOT dictionary produces this pretty little plot:

42 Chapter 8. Writing a Task

Autopilot Documentation, Release 0.5.0a1

8.2.4 HARDWARE

The HARDWARE dictionary maps a hardware type (eg. POKES) and identifier (eg. 'L') to a Hardware object. The task
uses the hardware parameterization in the prefs file (also see setup_pilot) to instantiate each of the hardware objects,
so their naming system must match (ie. there must be a prefs.PINS['POKES']['L'] entry in prefs for a task that
has a task.HARDWARE['POKES']['L'] object) – see the Configuration docs for more detail!

from autopilot.hardware import gpio

HARDWARE = {
'POKES':{

'L': gpio.Digital_In,
'C': gpio.Digital_In,
'R': gpio.Digital_In

},
'LEDS':{

'L': gpio.LED_RGB,
'C': gpio.LED_RGB,
'R': gpio.LED_RGB

},
'PORTS':{

'L': gpio.Solenoid,
'C': gpio.Solenoid,
'R': gpio.Solenoid

}
}

8.3 Initialization

First, the parameters that are given to the task when it is initialized are stored as attributes, either by unpacking
**kwargs. . .

class Nafc(Task):

def __init__(**kwargs):
for key, value in kwargs.items():

setattr(self, key, value)

Or explicitly, which is recommended as it is more transparent:

class Nafc(Task):

def __init__(self, stage_block=None, stim=None, reward=50, req_reward=False,
punish_stim=False, punish_dur=100, correction=False, correction_pct=50.,
bias_mode=False, bias_threshold=20, current_trial=0, **kwargs):

self.req_reward = bool(req_reward)
self.punish_stim = bool(punish_stim)
self.punish_dur = float(punish_dur)
self.correction = bool(correction)
self.correction_pct = float(correction_pct)/100
self.bias_mode = bias_mode

(continues on next page)

8.3. Initialization 43

Autopilot Documentation, Release 0.5.0a1

(continued from previous page)

self.bias_threshold = float(bias_threshold)/100

etc...

Then the hardware is instantiated using a method inherited from the Task class:

self.init_hardware()

Stimulus managers need to be instantiated separately. Currently, stimulus management details like correction trial
percentage or bias correction are given as separate parameters, but will be included in the stim parameter in the future:

use the init_manager wrapper to choose the correct stimulus manager
self.stim_manager = init_manager(stim)

give the sounds a function to call when they end
self.stim_manager.set_triggers(self.stim_end)

if self.correction:
self.stim_manager.do_correction(self.correction_pct)

if self.bias_mode:
self.stim_manager.do_bias(mode=self.bias_mode,

thresh=self.bias_threshold)

There are a few attributes that can be set at initialization that are unique:

• stage_block - if the task is structured such that the Pilot calls each stage method and returns the resulting data,
this threading.Event is used to wait between stages – an example will be shown below.

• stages - an iterator or generator that yields stage methods.

In this example we have structured the task such that its stages (described below) are called in an endless cycle:

This allows us to cycle through the task by just repeatedly calling self.stages.next()
stage_list = [self.request, self.discrim, self.reinforcement]
self.stages = itertools.cycle(stage_list)

8.4 Stage Methods

The logic of a task is implemented in one or several stages. This example Nafc class uses three:

1. request - precomputes the target and distractor ports, caches the stimulus, and sets the stimulus to play when
the center port is entered

2. discrim - sets the reward and punishment triggers for the target and distractor ports

3. reinforcement - computes the trial result and readies the task for the next trial.

This task does not call its own stage methods, as we will see in the Wheel task example, but allows the Pilot to control
them, and advances through stages using a stage_block that allows passage whenever a GPIO trigger is activated.
Data is returned from each of the stage methods and is then returned to the Terminal by the Pilot.

44 Chapter 8. Writing a Task

https://docs.python.org/3/library/threading.html#threading.Event

Autopilot Documentation, Release 0.5.0a1

8.4.1 Request

First, the stage_block is cleared so that the task will not advance until one of the triggers is called. The target and
distractor ports are yielded by the stim_manager along with the stimulus object.

def request(self, *args, **kwargs):
Set the event block
self.stage_block.clear()

get next stim
self.target, self.distractor, self.stim = self.stim_manager.next_stim()
buffer it
self.stim.buffer()

Then triggers are stored under the name of the trigger (eg. ‘C’ for a trigger that comes from the center poke). All
triggers need to be callable, and can be set either individually or as a series, as in this example. A lambda function is
used to set a trigger with arguments – the center LED is set from green to blue when the stimulus starts playing.

A single task class can support multiple operating modes depending on its parameters. If the task has been asked to
give request rewards (see Training a Subject), it adds an additional trigger to open the center solenoid.

set the center light to green before the stimulus is played.
self.set_leds({'C': [0, 255, 0]})

Set sound trigger and LEDs
We make two triggers to play the sound and change the light color
change_to_blue = lambda: self.pins['LEDS']['C'].set_color([0,0,255])

set triggers
if self.req_reward is True:

self.triggers['C'] = [self.stim.play,
self.stim_start,
change_to_blue,
self.pins['PORTS']['C'].open]

else:
self.triggers['C'] = [self.stim.play,

self.stim_start,
change_to_blue]

Finally, the data for this stage of the trial is gathered and returned to the Pilot. Since stimuli have variable numbers
and names of parameters, both the table set up by the Subject and the data returning routine here extract stimulus
parameters programmatically.

self.current_trial = self.trial_counter.next()
data = {

'target' : self.target,
'trial_num' : self.current_trial,
'correction' : self.correction_trial

}
get stim info and add to data dict
sound_info = {k:getattr(self.stim, k) for k in self.stim.PARAMS}
data.update(sound_info)
data.update({'type':self.stim.type})

return data

8.4. Stage Methods 45

Autopilot Documentation, Release 0.5.0a1

At the end of this function, the center LED is green, and if the subject pokes the center port the stimulus will play and
then the next stage method will be called.

The center LED also turns from green to blue when the stimulus begins to play and then turns off when it is finished.
This relies on additional methods that will be explained below.

8.4.2 Discrim

The discrim method simply sets the next round of triggers and returns the request timestamp from the current trial.
If either the target or distractor ports are triggered, the appropriate solenoid is opened or the punish method is
called.

The trial_num is returned each stage for an additional layer of redundancy in data alignment.

def discrim(self,*args,**kwargs):
clear stage block to wait for triggers
self.stage_block.clear()

set triggers
self.triggers[self.target] = [lambda: self.respond(self.target),

self.pins['PORTS'][self.target].open]
self.triggers[self.distractor] = [lambda: self.respond(self.distractor),

self.punish]

Only data is the timestamp
data = {'RQ_timestamp' : datetime.datetime.now().isoformat(),

'trial_num' : self.current_trial}
return data

Todo: pigpio can give us 5 microsecond measurement precision for triggers, currently we just use datetime.
datetime.now() for timestamps, but highly accurate timestamps can be had by stashing the ticks argument given
by pigpio to the handle_trigger() method. We will implement this if you don’t first :)

8.4.3 Reinforcement

This method computes the results of the tasks and returns them with another timestamp. This stage doesn’t clear the
stage_block because we want the next trial to be started immediately after this stage completes.

The results of the current trial are given to the stimulus manager’s update() method so that it can keep track of trial
history and do things like bias correction, etc.

The TRIAL_END flag in the data signals to the Subject class that the trial is finished and its row of data should be
written to disk. This, along with providing the trial_num on each stage, ensure that data is not misaligned between
trials.

def reinforcement(self,*args,**kwargs):

if self.response == self.target:
self.correct = 1

else:
self.correct = 0

(continues on next page)

46 Chapter 8. Writing a Task

https://docs.python.org/3/library/datetime.html#datetime.datetime.now
https://docs.python.org/3/library/datetime.html#datetime.datetime.now

Autopilot Documentation, Release 0.5.0a1

(continued from previous page)

update stim manager
self.stim_manager.update(self.response, self.correct)

data = {
'DC_timestamp' : datetime.datetime.now().isoformat(),
'response' : self.response,
'correct' : self.correct,
'trial_num' : self.current_trial,
'TRIAL_END' : True

}
return data

8.5 Additional Methods

Autopilot doesn’t confine the logic of a task to its stage methods, instead users can use additional methods to give their
task additional functionality.

These can range from trivial methods that just store values, such as the respond and stim_start methods:

def respond(self, pin):
self.response = pin

def stim_start(self):
self.discrim_playing = True

To more complex methods that operate effectively like stages, like the punish method, which flashes the LEDs and
plays a punishment stimulus like white noise if it has been configured to do so:

def punish(self):
clear the punish block to the task doesn't advance while
punishment is delivered
self.punish_block.clear()

if there is some punishment stimulus, play it
if self.punish_stim:

self.stim_manager.play_punishment()

flash LEDs and then clear the block once they are finished.
self.flash_leds()
threading.Timer(self.punish_dur / 1000.,

self.punish_block.set).start()

Additionally, since we gave the stimulus manager a trigger method that is called when the stimulus ends, we can turn
the light blue when a stimulus is playing, and turn it off when it finishes

def stim_end(self):
"""
called by stimulus callback

set outside lights blue
"""

(continues on next page)

8.5. Additional Methods 47

Autopilot Documentation, Release 0.5.0a1

(continued from previous page)

Called by the discrim sound's table trigger when playback is finished
Used in punishing leaving early
self.discrim_playing = False
#if not self.bailed and self.current_stage == 1:
self.set_leds({'L':[0,255,0], 'R':[0,255,0]})

48 Chapter 8. Writing a Task

CHAPTER

NINE

PLUGINS & THE WIKI

Autopilot is integrated with a semantic wiki, a powerful tool that merges human-readable text with computer-readable
structured information, and blurs the lines between the two in the empowering interface of a wiki that allows anyone to
edit it. The autopilot wiki is available at:

https://wiki.auto-pi-lot.com

In addition to a system for storing, discussing, and knitting together a library of technical knowledge, the wiki is used
to manage Autopilot’s plugin system. The integrated plugin/wiki system is designed to

• make it easier to extend and hack existing autopilot classes, particularly Hardware and Task classes, without
needing to modify any of the core library code

• make it easier to share code across multiple rigs-in-use by allowing you to specify the name of the plugin on the
autopilot wiki so you don’t need to manually keep the code updated on all computers it’s used on

• make a gentler scaffold between using and contributing to the library – by developing in a plugin folder,
your code is likely very close, if it isn’t already, ready to integrate back into the main autopilot library. In the
meantime, anyone that is curious

• make it possible to encode semantic metadata about the plugin so that others can discover, modify, and
improve on it. eg. your plugin might control an array of stepper motors, and from that someone can cherrypick
code to run a single one, even if it wasn’t designed to do that.

• decentralize the development of autopilot, allowing anyone to extend it in arbitrary ways without needing
to go through a fork/merge process that is ultimately subject to the whims of the maintainer(s) (me), or even
an approval process to submit or categorize plugins. Autopilot seeks to be as noncoercive as possible while
embracing and giving tools to support the heterogeneity of its use.

• make it trivial for users to not only contribute plugins but design new types of plugin-like public interfaces. For
example, if you wanted to design an interface where users can submit the parameters they use for different tasks,
one would only need to build the relevant semantic mediawiki template and form, and then program the API calls
to the wiki to index them.

• todo — fully realize the vision of decentralized development by allowing plugins to replace existing core au-
topilot modules. . .

49

https://www.semantic-mediawiki.org/wiki/Semantic_MediaWiki
https://wiki.auto-pi-lot.com

Autopilot Documentation, Release 0.5.0a1

9.1 Plugins

Plugins are now the recommended way to use Autopilot! They make very few assumptions about the structure of your
code, so they can be used like familiar script-based experimental tools, but they also encourage the development of
modular code that can easily be used by others and cumulatively contribute to a shared body of tools.

Using plugins is simple! Anything inside of the directory indicated by prefs.get('PLUGINDIR') is a plugin! Plugins
provide objects that inherit from Autopilot classes supported by an entry in registry.REGISTRIES .

For example, we want to write a task that uses some special hardware that we need. We could start by making a directory
within 'PLUGINDIR' like this:

plugins
my-autopilot-plugin

README.md
test_hardware.py
test_task.py

Where within test_hardware.py you define some custom hardware class that inherits from gpio.Digital_Out

from autopilot.hardware.gpio import Digital_Out

class Only_On_Pin(Digital_Out):
"""
you can only turn this GPIO pin on
"""
def __init__(self, pin, *args, **kwargs):

super(Only_On_Pin, self).__init__(pin=pin, *args, **kwargs)
self.set(1)

def set(self, val):
"""override base class"""
if val not in (1, True, 'on'):

raise ValueError('This pin only turns on')
else:

super(Only_On_Pin, self).set(val)

def release(self):
print('I release nothing. the pin stays on.')

You can then use it in some task! Autopilot will use its registry autopilot.get() methods to find it after importing
all your plugins. For example, we can refer to it as a string in our HARDWARE dictionary in our special task:

from datetime import datetime
import threading
import numpy as np
from autopilot.tasks import Task
from tables import IsDescription, StringCol

class My_Task(Task):
"""
I will personally subject myself to the labor of science and through careful hours␣

→˓spent meditating on an LED powered by an unsecured Raspberry Pi with the default␣
→˓password i will become attuned to the dance of static pixels fluctuating on the␣
→˓fundamentalfrequencies of ransomware and ssh bombardment to harnessthe power of both␣
→˓god and anime

(continues on next page)

50 Chapter 9. Plugins & The Wiki

Autopilot Documentation, Release 0.5.0a1

(continued from previous page)

"""

PARAMS = {'infinite_light': {
'tag': 'leave the light on indefinitely? are you sure you want to leave␣

→˓the rest of the world behind and never cease your pursuit of this angelic orb?',
'type': 'bool'}}

HARDWARE = {'esoterica': {'the_light': 'Only_On_Pin'}}

class TrialData(IsDescription):
ontime = StringCol(26)

def __init__(self, infinite_light:bool=True, *args, **kwargs):
super(My_Task, self).__init__(*args, **kwargs)
self.init_hardware()
self.hardware['esoterica']['the_light'].set(True)

if not infinite_light:
infinite_light = True

self.infinite_light = infinite_light

self.stages = [self.only_on]

def only_on(self):
self.stage_block.clear()

if not self.infinite_light:
threading.Timer(np.random.rand()*10e100, self.cease_your_quest).start()

return {'ontime': datetime.now().isoformat()}

def cease_your_quest(self):
self.stage_block.set()
self.hardware['esoterica']['the_light'].release()

Both your hardware object and task will be available to the rest of Autopilot, including in the GUI elements that let you
easily parameterize and assign it to your experimental subjects.

Todo: We are still working on formalizing the rest of a plugin architecture, specifically dependency resolution among
python packages, autopilot scripts, and dependencies on other plugins. All this in time! For now the wiki asks for a
specific autopilot version that a plugin supports when they are submitted, so we will be able to track plugins that need
to be updated for changes in the plugin API as it is developed.

9.1. Plugins 51

Autopilot Documentation, Release 0.5.0a1

9.2 Registries

Plugins are supported by the functions in the utils.registry module. Registries allow us to make definite but
abstract references to classes of objects that can therefore be extended with plugins.

Since for now Autopilot objects are not guaranteed to have a well-defined inheritance structure, registries are available
to the classes of objects listed in the registry.REGISTRIES enum. Currently they are:

class REGISTRIES(str, Enum):
"""
Types of registries that are currently supported,
ie. the possible values of the first argument of :func:`.registry.get`

Values are the names of the autopilot classes that are searched for
inheriting classes, eg. ``HARDWARE == "autopilot.hardware.Hardware"`` for␣

→˓:class:`autopilot.Hardware`
"""
HARDWARE = "autopilot.hardware.Hardware"
TASK = "autopilot.tasks.Task"
GRADUATION = "autopilot.tasks.graduation.Graduation"
TRANSFORM = "autopilot.transform.transforms.Transform"
CHILDREN = "autopilot.tasks.children.Child"
SOUND = "autopilot.stim.sound.sounds.BASE_CLASS"

Each entry in the enum refers to the absolute package.module.class name of the topmost metaclass that is to be searched.

The autopilot.get() method first gets the base class with find_class(), ensures that plugins have been imported
with import_plugins() , and searches for a subclass with a matching name with recurse_subclasses() . If none
is found in the currently imported files, it parses the ast of any files below the base class in the path hierarchy. The
distinction is because while we do assume that we can import anything we have made/put in our plugins directory, we
currently don’t make that assumption of the core library of autopilot – we want to be able to offer the code for tasks and
hardware that have diverse dependencies while giving ourselves some protection against writing squirrelly edge cases
everywhere.

In practice, anywhere you go to make an explicit import of an autopilot class that is suported by a registry, it is good
practice to use autopilot.get instead. It is called like:

autopilot.get('registry_name', 'object_name')
eg.
autopilot.get('hardware', 'Digital_Out')

Note how the registry name is not case sensitive but the object name is. There are a few convenience methods/calling
patterns here too. Eg. to list all available objects in a registry:

autopilot.get('hardware')

or to list just a list of strings instead of the objects themselves:

autopilot.get_names('hardware')

or you can pass an object itself as the registry type in order to only find subclasses of that class:

GPIO = autopilot.get('hardware', 'GPIO')
autopilot.get(GPIO)

52 Chapter 9. Plugins & The Wiki

https://docs.python.org/3/library/ast.html

Autopilot Documentation, Release 0.5.0a1

Todo: In the future, we will extend registries to all autopilot objects by implementing a unitary inheritance structure.
This will also clean up a lot of the awkward parts of the library and pave the way to rebuilding eg. the networking
modules to be much simpler to use.

That work will be the defining feature of v0.6.0, you can track progress and contribute by seeing the relevant issue:
https://github.com/auto-pi-lot/autopilot/issues/31

as well as the issues in the v0.6.0 milestone: https://github.com/auto-pi-lot/autopilot/milestone/2

9.3 The Wiki API

The wiki’s semantic information can be accessed with the functions in the utils.wiki module.

Specifically, we make a function that wraps the Semantic Mediawiki Ask API that consists of a

• query or a set of filters that select relevant pages using their categories and properties, and then

• the properties to retrieve from those pages.

You can see a list of the categories and properties that can be used on the wiki.

For Filters:
• Both types of filters are specified with the [[Double Brackets]] of mediawiki

• Categories are specified with a single colon1 like [[Category:Hardware]]

• Properties are specified with double colons, and take a property and a value like [[Created By::Jonny
Saunders]]

The queried properties are specified with a list of strings like ['Has Datasheet', 'Has STL']

So, for example, one could query the manufacturer, price, and url of the audio hardware documented in the wiki like:

from autopilot.utils import wiki

wiki.ask(
filters=[

"[[Category:Hardware]]",
"[[Modality::Audio]]"

],
properties=[

"Manufactured By",
"Has Product Page",
"Has USD Price"

]
)

which would return a list of dictionaries like:

[{
'Has Product Page': 'https://www.hifiberry.com/shop/boards/hifiberry-amp2/',
'Has USD Price': 49.9,
'Manufactured By': 'HiFiBerry',

(continues on next page)

1 This is because categories are a part of mediawiki itself, but properties are implemented by semantic mediawiki. The two have slightly different
meanings – categories denote the “type of something that a page is” and properties denote “the attributes that a page has”

9.3. The Wiki API 53

https://github.com/auto-pi-lot/autopilot/issues/31
https://github.com/auto-pi-lot/autopilot/milestone/2
https://www.semantic-mediawiki.org/wiki/Help:API:ask
https://wiki.auto-pi-lot.com/index.php/Special:Categories
https://wiki.auto-pi-lot.com/index.php/Special:Properties

Autopilot Documentation, Release 0.5.0a1

(continued from previous page)

'name': 'HiFiBerry Amp2',
'url': 'https://wiki.auto-pi-lot.com/index.php/HiFiBerry_Amp2'

},
{

'Has Datasheet': 'https://wiki.auto-pi-lot.com/index.php/File:HiVi-RT13WE-spec-sheet.
→˓pdf',
'Has Product Page': 'https://www.parts-express.com/HiVi-RT1.3WE-Isodynamic-Tweeter-

→˓297-421',
'Has USD Price': 37.98,
'Is Part Type': 'Speakers',
'Manufactured By': 'HiVi',
'name': 'HiVi RT1.3WE',
'url': 'https://wiki.auto-pi-lot.com/index.php/HiVi_RT1.3WE'

}]

These functions can be used on their own to provide interactive, programmatic access to the wiki, but maybe more
importantly it serves as a bridge between the wiki and Autopilot’s software. By building API calls into the various
modules of autopilot that can query structured information from the wiki, the software can be made to take advantage
of communally curated experimental and technical knowledge.

Additionally, since it is relatively simple to create new templates and forms (see the Page Forms and Page Schemas
extensions that are used to create and manage them)t o accept different kinds of submissions and link them to the rest
of the wiki, and the plugin and registry system allow anyone to build the classes needed to take advantage of them,
it becomes possible for anyone to create new kinds of public knowledge interfaces to autopilot. For example, if
there was desire to share and describe parameterizations of a particular Task along with summaries of the data, then
it would be possible to make a form and template on the wiki to accept them, and provide a GUI plugin to select
empirically optimal parameters for a given outcome measurement , which would make all the hard-won rules of thumb
and superstition that guides a lot of the fine decisions in behavioral research obsolete in an afternoon.

The use of the wiki to have communal control over plugins and interfaces makes it possible for us to move autopilot
to a model of decentralized governance where the “official” repository becomes one version among many, but the
plugins remain integrated with the system rather than live on as unrelated forks.

9.4 Plugins on the Wiki

Autopilot plugins can be found on the wiki here: https://wiki.auto-pi-lot.com/index.php/Autopilot_Plugins

(at the moment the cupboard is relatively bare, but it always starts that way.)

Within Autopilot, you can use the utils.plugins.list_wiki_plugins() function to list the available functions
and return their basic metadata, which is a very thin wrapper around utils.wiki.ask()

To submit new plugin, one would use the relevant form: https://wiki.auto-pi-lot.com/index.php/Form:Autopilot_Plugin

So we might submit our plugin “Fancy New Plugin” (by entering that on the form entry page), and filling in the fields
in the form as requested:

Where we provide a description and other metadata – most important some git repository url – that describes the plugin.
There are free text fields where appropriate, but also autocompleting token fields that let us keep some semblance of
consistency in the semantic links we create. At the end you are then given a free-text field that accepts all common
wiki markup as well as free declaration of any semantic links that aren’t asked for in the form.

After you submit, it’s immediately available in the gui.Plugins manager!

Each plugin has one or multiple Plugin Type(s) that corresponds to a particular entry in REGISTRIES for filtering
plugins that provide different types of objects.

54 Chapter 9. Plugins & The Wiki

https://www.mediawiki.org/wiki/Extension:Page_Forms
https://www.mediawiki.org/wiki/Extension:Page_Schemas
https://wiki.auto-pi-lot.com/index.php/Autopilot_Plugins
https://wiki.auto-pi-lot.com/index.php/Form:Autopilot_Plugin
https://www.mediawiki.org/wiki/Help:Formatting

Autopilot Documentation, Release 0.5.0a1

9.4. Plugins on the Wiki 55

Autopilot Documentation, Release 0.5.0a1

56 Chapter 9. Plugins & The Wiki

Autopilot Documentation, Release 0.5.0a1

Todo: Currently the plugin manager is just a proof of concept, though it would require relatively little to add a
routine to clone the git repo into the plugins directory, as mentioned above, we are working on integrating dependency
management in a way that’s unified throughout the package (instead of, say, needing to manually run python -m
autopilot.setup.run_script picamera to enable the camera, objects are able to specify and request that their
dependencies be met automatically).

For now just git clone <plugin_url> ~/autopilot/plugins or wherever your PLUGINDIR is!

9.4. Plugins on the Wiki 57

Autopilot Documentation, Release 0.5.0a1

58 Chapter 9. Plugins & The Wiki

CHAPTER

TEN

EXAMPLES

We’re working on writing more examples! Please let us know in the discussion board what you’d like to see :)

Also see the examples folder in the repository for jupyter notebooks we haven’t set up Sphinx rendering for yet ;)

10.1 Blink

A very simple task: Blink an LED

Written by @mikewehr in the mike branch: https://github.com/auto-pi-lot/autopilot/blob/mike/autopilot/tasks/blink.
py

Demonstrates the basic structure of a task with one stage, described in the comments throughout the task.

This page is rendered in the docs here in order to provide links to the mentioned objects/classes/etc., but it was written
as source code initially and translated to .rst, so the narrative flow is often inverted: text follows code as comments,
rather than text introducing and narrating code.

Note: This example was written for versions of autopilot <0.5.0

10.1.1 Preamble

import itertools
import tables
import time
from datetime import datetime

from autopilot.hardware import gpio
from autopilot.tasks import Task
from collections import OrderedDict as odict

class Blink(Task):
"""
Blink an LED.

Args:
pulse_duration (int, float): Duration the LED should be on, in ms
pulse_interval (int, float): Duration the LED should be off, in ms

(continues on next page)

59

https://github.com/auto-pi-lot/autopilot/blob/mike/autopilot/tasks/blink.py
https://github.com/auto-pi-lot/autopilot/blob/mike/autopilot/tasks/blink.py

Autopilot Documentation, Release 0.5.0a1

(continued from previous page)

"""

Note that we subclass the Task class (Blink(Task)) to provide us with some methods useful for all Tasks, and to
make it available to the task registry (see Plugins & The Wiki).

Tasks need to have a few class attributes defined to be integrated into the rest of the system See here for more about
class vs. instance attributes https://www.toptal.com/python/python-class-attributes-an-overly-thorough-guide

Params

STAGE_NAMES = ["pulse"] # type: list
"""
An (optional) list or tuple of names of methods that will be used as stages for the task.

See ``stages`` for more information
"""

PARAMS = odict()
PARAMS['pulse_duration'] = {'tag': 'LED Pulse Duration (ms)', 'type': 'int'}
PARAMS['pulse_interval'] = {'tag': 'LED Pulse Interval (ms)', 'type': 'int'}

PARAMS - A dictionary that specifies the parameters that control the operation of the task – each task presumably has
some range of options that allow slight variations (eg. different stimuli, etc.) on a shared task structure. This dictionary
specifies each PARAM as a human-readable tag and a type that is used by the gui to create an appropriate input object.
For example:

PARAMS['pulse_duration'] = {'tag': 'LED Pulse Duration (ms)', 'type': 'int'}

When instantiated, these params are passed to the __init__ method.

A collections.OrderedDict is used so that parameters can be presented in a predictable way to users.

TrialData

class TrialData(tables.IsDescription):
trial_num = tables.Int32Col()
timestamp_on = tables.StringCol(26)
timestamp_off = tables.StringCol(26)

TrialData declares the data that will be returned for each “trial” – or complete set of executed task stages. It is used by
the Subject object to make a data table with the correct data types. Declare each piece of data using a pytables Column
descriptor (see https://www.pytables.org/usersguide/libref/declarative_classes.html#col-sub-classes for available data
types, and the pytables guide: https://www.pytables.org/usersguide/tutorials.html for more information)

For each trial, we’ll return two timestamps, the time we turned the LED on, the time we turned it off, and the trial
number. Note that we use a 26-character tables.StringCol for the timestamps,

60 Chapter 10. Examples

https://www.toptal.com/python/python-class-attributes-an-overly-thorough-guide
https://docs.python.org/3/library/collections.html#collections.OrderedDict
https://www.pytables.org/usersguide/libref/declarative_classes.html#col-sub-classes
https://www.pytables.org/usersguide/tutorials.html

Autopilot Documentation, Release 0.5.0a1

Hardware

HARDWARE = {
'LEDS': {

'dLED': gpio.Digital_Out
}

}

Declare the hardware that will be used in the task. Each hardware object is specified with a group and an id as nested
dictionaries. These descriptions require a set of hardware parameters in the autopilot prefs.json (typically generated
by autopilot.setup.setup_autopilot) with a matching group and id structure. For example, an LED declared
like this in the HARDWARE attribute:

HARDWARE = {'LEDS': {'dLED': gpio.Digital_Out}}

requires an entry in prefs.json like this:

"HARDWARE": {"LEDS": {"dLED": {
"pin": 1,
"polarity": 1

}}}

that will be used to instantiate the hardware.gpio.Digital_Out object, which is then available for use in the task
like:

self.hardware['LEDS']['dLED'].set(1)

10.1.2 Initialization

first we call the superclass (‘Task’)’s initialization method. All tasks should accept *args and **kwargs to pass
parameters not explicitly specified by subclass up to the superclass.:

def __init__(self, stage_block=None, pulse_duration=100, pulse_interval=500, *args,␣
→˓**kwargs):

super(Blink, self).__init__(*args, **kwargs)

store parameters given on instantiation as instance attributes
self.pulse_duration = int(pulse_duration)
self.pulse_interval = int(pulse_interval)
self.stage_block = stage_block # type: "threading.Event"

This allows us to cycle through the task by just repeatedly calling self.stages.
→˓next()

self.stages = itertools.cycle([self.pulse])

Some generator that returns the stage methods that define the operation of the task.

To run a task, the pilot.Pilot object will call each stage function, which can return some dictionary of data (see
pulse()) and wait until some flag (stage_block) is set to compute the next stage. Since in this case we want
to call the same method (pulse()) over and over again, we use an itertools.cycle object (if we have more
than one stage to call in a cycle, we could provide them like itertools.cycle([self.stage_method_1, self.
stage_method_2]) . More complex tasks can define a custom generator for finer control over stage progression.:

10.1. Blink 61

Autopilot Documentation, Release 0.5.0a1

self.trial_counter = itertools.count()
"""
Some counter to keep track of the trial number
"""

Hardware is initialized by the superclass’s Task.init_hardware() method, which creates all the hardware objects
defined in HARDWARE according to their parameterization in prefs.json , and makes them available in the hardware
dictionary.:

self.init_hardware()
self.logger.debug('Hardware initialized')

All task subclass objects have an logger – a logging.Logger that allows users to easily debug their tasks and see
feedback about their operation. To prevent stdout from getting clogged, logging messages are printed and stored ac-
cording to the LOGLEVEL pref – so this message would only appear if LOGLEVEL == "DEBUG":

self.stage_block.set()

We set the stage block and never clear it so that the Pilot doesn’t wait for a trigger to call the next stage – it just does
it as soon as the previous one completes.

See run_task() for more detail on this loop.

10.1.3 Stage Methods

def pulse(self, *args, **kwargs):
"""
Turn an LED on and off according to :attr:`~examples.tasks.Blink.pulse_duration` and␣

→˓:attr:`~examples.tasks.Blink.pulse_interval`

Returns:
dict: A dictionary containing the trial number and two timestamps.

"""

turn light on

use :meth:`.hardware.gpio.Digital_Out.set` method to turn the LED on
self.hardware['LEDS']['dLED'].set(1)
store the timestamp
timestamp_on = datetime.now().isoformat()
log status as a debug message
self.logger.debug('light on')
sleep for the pulse_duration
time.sleep(self.pulse_duration / 1000)

turn light off, same as turning it on.

self.hardware['LEDS']['dLED'].set(0)
timestamp_off = datetime.now().isoformat()
self.logger.debug('light off')
time.sleep(self.pulse_interval / 1000)

(continues on next page)

62 Chapter 10. Examples

https://docs.python.org/3/library/logging.html#logging.Logger

Autopilot Documentation, Release 0.5.0a1

(continued from previous page)

count and store the number of the current trial
self.current_trial = next(self.trial_counter)

data = {
'trial_num': self.current_trial,
'timestamp_on': timestamp_on,
'timestamp_off': timestamp_off

}
return data

Create the data dictionary to be returned from the stage. Note that each of the keys in the dictionary must correspond
to the names of the columns declared in the TrialData descriptor.

At the conclusion of running the task, we will be able to access the data from the run with Subject.
get_trial_data(), which will be a pandas.DataFrame with a row for each trial, and a column for each of the
fields here.

10.1.4 Full Source

1 """
2 A very simple task: Blink an LED
3

4 Written by @mikewehr in the ``mike`` branch: https://github.com/auto-pi-lot/autopilot/
→˓blob/mike/autopilot/tasks/blink.py

5

6 Demonstrates the basic structure of a task with one stage,
7 described in the comments throughout the task.
8

9 See the main tutorial for more detail: https://docs.auto-pi-lot.com/en/latest/guide.task.
→˓html#

10

11 This page is rendered in the docs here in order to provide links to the mentioned␣
→˓objects/classes/etc., but

12 this example was intended to be read as source code, as some comments will only be␣
→˓visible there.

13 """
14 import itertools
15 import tables
16 import time
17 from datetime import datetime
18

19 from autopilot.hardware import gpio
20 from autopilot.tasks import Task
21 from collections import OrderedDict as odict
22

23 class Blink(Task):
24 """
25 Blink an LED.
26

(continues on next page)

10.1. Blink 63

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame

Autopilot Documentation, Release 0.5.0a1

(continued from previous page)

27 Note that we subclass the :class:`~autopilot.tasks.Task` class (``Blink(Task)``) to␣
→˓provide us with some methods

28 useful for all Tasks.
29

30 Args:
31 pulse_duration (int, float): Duration the LED should be on, in ms
32 pulse_interval (int, float): Duration the LED should be off, in ms
33

34 """
35 # Tasks need to have a few class attributes defined to be integrated into the rest␣

→˓of the system
36 # See here for more about class vs. instance attributes https://www.toptal.com/

→˓python/python-class-attributes-an-overly-thorough-guide
37

38 STAGE_NAMES = ["pulse"] # type: list
39 """
40 An (optional) list or tuple of names of methods that will be used as stages for the␣

→˓task.
41

42 See :attr:`~examples.tasks.Blink.stages` for more information
43 """
44

45 PARAMS = odict()
46 """
47 A dictionary that specifies the parameters that control the operation of the task --␣

→˓each task presumably has some
48 range of options that allow slight variations (eg. different stimuli, etc.) on a␣

→˓shared task structure. This
49 dictionary specifies each ``PARAM`` as a human-readable ``tag`` and a ``type`` that is␣

→˓used by the gui to
50 create an appropriate input object. For example::
51

52 PARAMS['pulse_duration'] = {'tag': 'LED Pulse Duration (ms)', 'type': 'int'}
53

54 When instantiated, these params are passed to the ``__init__`` method.
55

56 A :class:`collections.OrderedDict` is used so that parameters can be presented in a␣
→˓predictable way to users.

57 """
58 PARAMS['pulse_duration'] = {'tag': 'LED Pulse Duration (ms)', 'type': 'int'}
59 PARAMS['pulse_interval'] = {'tag': 'LED Pulse Interval (ms)', 'type': 'int'}
60

61 class TrialData(tables.IsDescription):
62 """
63 This class declares the data that will be returned for each "trial" -- or␣

→˓complete set of executed task
64 stages. It is used by the :class:`~autopilot.data.subject.Subject` object to make␣

→˓a data table with the
65 correct data types. Declare each piece of data using a pytables Column descriptor
66 (see https://www.pytables.org/usersguide/libref/declarative_classes.html#col-sub-

→˓classes for available
67 data types, and the pytables guide: https://www.pytables.org/usersguide/

→˓tutorials.html for more information) (continues on next page)

64 Chapter 10. Examples

Autopilot Documentation, Release 0.5.0a1

(continued from previous page)

68

69 For each trial, we'll return two timestamps, the time we turned the LED on, the␣
→˓time we turned it off,

70 and the trial number. Note that we use a 26-character :class:`tables.StringCol`␣
→˓for the timestamps,

71 which are given as an isoformatted string like ``'2021-02-16T18:11:35.752110'``
72 """
73 trial_num = tables.Int32Col()
74 timestamp_on = tables.StringCol(26)
75 timestamp_off = tables.StringCol(26)
76

77

78 HARDWARE = {
79 'LEDS': {
80 'dLED': gpio.Digital_Out
81 }
82 }
83 """
84 Declare the hardware that will be used in the task. Each hardware object is␣

→˓specified with a ``group`` and
85 an ``id`` as nested dictionaries. These descriptions require a set of hardware␣

→˓parameters in the autopilot
86 ``prefs.json`` (typically generated by :mod:`autopilot.setup.setup_autopilot`) with a␣

→˓matching ``group`` and
87 ``id`` structure. For example, an LED declared like this in the :attr:`~examples.tasks.

→˓Blink.HARDWARE` attribute::
88

89 HARDWARE = {'LEDS': {'dLED': gpio.Digital_Out}}
90

91 requires an entry in ``prefs.json`` like this::
92

93 "HARDWARE": {"LEDS": {"dLED": {
94 "pin": 1,
95 "polarity": 1
96 }}}
97

98 that will be used to instantiate the :class:`.hardware.gpio.Digital_Out` object,␣
→˓which is then available for use

99 in the task like::
100

101 self.hardware['LEDS']['dLED'].set(1)
102 """
103

104 def __init__(self, stage_block=None, pulse_duration=100, pulse_interval=500, *args,␣
→˓**kwargs):

105 # first we call the superclass ('Task')'s initialization method. All tasks should␣
→˓accept ``*args``

106 # and ``**kwargs`` to pass parameters not explicitly specified by subclass up to␣
→˓the superclass.

107 super(Blink, self).__init__(*args, **kwargs)
108

109 # store parameters given on instantiation as instance attributes

(continues on next page)

10.1. Blink 65

Autopilot Documentation, Release 0.5.0a1

(continued from previous page)

110 self.pulse_duration = int(pulse_duration)
111 self.pulse_interval = int(pulse_interval)
112 self.stage_block = stage_block # type: "threading.Event"
113

114 # This allows us to cycle through the task by just repeatedly calling self.
→˓stages.next()

115 self.stages = itertools.cycle([self.pulse])
116 """
117 Some generator that returns the stage methods that define the operation of the␣

→˓task.
118

119 To run a task, the :class:`.pilot.Pilot` object will call each stage function,␣
→˓which can return some dictionary

120 of data (see :meth:`~examples.tasks.Blink.pulse`) and wait until some flag␣
→˓(:attr:`~examples.tasks.Blink.stage_block`) is set to compute the

121 next stage. Since in this case we want to call the same method (:meth:`~examples.
→˓tasks.Blink.pulse`) over and over again,

122 we use an :class:`itertools.cycle` object (if we have more than one stage to call␣
→˓in a cycle, we could provide

123 them like ``itertools.cycle([self.stage_method_1, self.stage_method_2])`` . More␣
→˓complex tasks can define a custom

124 generator for finer control over stage progression.
125 """
126

127 self.trial_counter = itertools.count()
128 """
129 Some counter to keep track of the trial number
130 """
131

132

133 self.init_hardware()
134

135 """
136 Hardware is initialized by the superclass's :meth:`.Task.init_hardware` method,␣

→˓which creates all the
137 hardware objects defined in :attr:`~examples.tasks.Blink.HARDWARE` according to␣

→˓their parameterization in
138 ``prefs.json`` , and makes them available in the :attr:`~examples.tasks.Blink.

→˓hardware` dictionary.
139 """
140

141 self.logger.debug('Hardware initialized')
142

143 """
144 All task subclass objects have an :attr:`~autopilot.tasks.Task.logger` -- a␣

→˓:class:`logging.Logger` that allows
145 users to easily debug their tasks and see feedback about their operation. To␣

→˓prevent stdout from
146 getting clogged, logging messages are printed and stored according to the␣

→˓``LOGLEVEL`` pref -- so this
147 message would only appear if ``LOGLEVEL == "DEBUG"``
148 """

(continues on next page)

66 Chapter 10. Examples

Autopilot Documentation, Release 0.5.0a1

(continued from previous page)

149

150 self.stage_block.set()
151

152 """
153 We set the stage block and never clear it so that the :class:`.Pilot` doesn't␣

→˓wait for a trigger
154 to call the next stage -- it just does it as soon as the previous one completes.
155

156 See :meth:`~autopilot.agents.pilot.Pilot.run_task` for more detail on this loop.
157 """
158

159

160 ##
161 # Stage Functions
162 ##
163 def pulse(self, *args, **kwargs):
164 """
165 Turn an LED on and off according to :attr:`~examples.tasks.Blink.pulse_duration`␣

→˓and :attr:`~examples.tasks.Blink.pulse_interval`
166

167 Returns:
168 dict: A dictionary containing the trial number and two timestamps.
169 """
170 # -------------
171 # turn light on
172

173 # use :meth:`.hardware.gpio.Digital_Out.set` method to turn the LED on
174 self.hardware['LEDS']['dLED'].set(1)
175 # store the timestamp
176 timestamp_on = datetime.now().isoformat()
177 # log status as a debug message
178 self.logger.debug('light on')
179 # sleep for the pulse_duration
180 time.sleep(self.pulse_duration / 1000)
181

182 # ------------
183 # turn light off, same as turning it on.
184

185 self.hardware['LEDS']['dLED'].set(0)
186 timestamp_off = datetime.now().isoformat()
187 self.logger.debug('light off')
188 time.sleep(self.pulse_interval / 1000)
189

190 # count and store the number of the current trial
191 self.current_trial = next(self.trial_counter)
192

193

194 data = {
195 'trial_num': self.current_trial,
196 'timestamp_on': timestamp_on,
197 'timestamp_off': timestamp_off
198 }

(continues on next page)

10.1. Blink 67

Autopilot Documentation, Release 0.5.0a1

(continued from previous page)

199

200 """
201 Create the data dictionary to be returned from the stage. Note that each of the␣

→˓keys in the dictionary
202 must correspond to the names of the columns declared in the :attr:`~examples.

→˓tasks.Blink.TrialData` descriptor.
203

204 At the conclusion of running the task, we will be able to access the data from␣
→˓the run with

205 :meth:`.Subject.get_trial_data`, which will be a :class:`pandas.DataFrame` with a␣
→˓row for each trial, and

206 a column for each of the fields here.
207 """
208

209 # return the data dictionary from the stage method and yr done :)
210 return data

10.2 Distributed Go/No-Go

Note: This example was written for a very early version of Autopilot, v0.1.0, and much has changed since then!

This example is being preserved as an example of some basic approaches to networked behavior problems, as much of
that is still useful, even if the precise syntax of how to use Autopilot has changed.

To demonstrate the use of Child agents, we’ll build the distributed Go/No-Go task de-
scribed in section 4.3 of the Autopilot whitepaper.

In short, a subject runs on a circular running wheel whose velocity is measured by a laser
computer mouse. When the subject ‘fixates’ by slowing below a threshold velocity, an
drifting Gabor grating is presented. If the grating changes angles, the subject is rewarded
if they lick in an IR beambreak sensor. If the grating doesn’t change angles, the subject
is rewarded if they refrain from licking until the stimulus has ended.

10.2.1 Additional Prefs

To use a Child with this task, we will need to have a second Raspberry Pi setup with the
same routine as a Pilot, except it needs the following values in its prefs.json file:

Child Prefs

{
"NAME" : "wheel_child",
"LINEAGE" : "CHILD",
"PARENTID" : "parent_pilot",
"PARENTIP" : "ip.of.parent.pilot",
"PARENTPORT": "<MSGPORT of parent>",

}

And the parent pilot needs to have

Parent Prefs

68 Chapter 10. Examples

Autopilot Documentation, Release 0.5.0a1

{
"NAME": "parent_pilot",
"CHILDID": "wheel_child",
"LINEAGE": "PARENT"

}

10.2.2 Go/No-Go Parameterization

The parameterization for this task is similar to that of the Nafc task above with a few
extensions. . .

from autopilot.tasks import Task

class GoNoGo(Task):

Task parameterization
PARAMS = odict()
PARAMS['reward'] = {'tag': 'Reward Duration (ms)',

'type': 'int'}
PARAMS['timeout'] = {'tag':'Delay Timeout (ms)',

'type':'int'}
PARAMS['stim'] = {'tag': 'Visuals',

'type': 'visuals'}

Plot parameterization
PLOT = {

'data': {
'x': 'shaded',
'target': 'point',
'response': 'segment'

},
our plot will use time as its x-axis rather than the␣

→˓trial number
'continuous': True

}

TrialData descriptor
class TrialData(tables.IsDescription):

trial_num = tables.Int32Col()
target = tables.BoolCol()
response = tables.StringCol(1)
correct = tables.Int32Col()
RQ_timestamp = tables.StringCol(26)
DC_timestamp = tables.StringCol(26)
shift = tables.Float32Col()
angle = tables.Float32Col()
delay = tables.Float32Col()

We add one additional data descriptor that describes the continuous data that will be
sent from the Wheel object:

10.2. Distributed Go/No-Go 69

Autopilot Documentation, Release 0.5.0a1

class ContinuousData(tables.IsDescription):
x = tables.Float64Col()
y = tables.Float64Col()
t = tables.Float64Col()

The hardware specification is also similar, with one additional Flag object which behaves identically to the Beambreak
object with reversed logic (triggered by 0->1 rather than 1->0).

HARDWARE = {
'POKES': {

'C': hardware.Beambreak,
},
'LEDS': {

'C': hardware.LED_RGB,
},
'PORTS': {

'C': hardware.Solenoid,
},
'FLAGS': {

'F': hardware.Flag
}

}

Finally, we add an additional CHILDREN dictionary to specify the type of Child that we need to run the task, as well as
any additional parameters needed to configure it.

The task_type must refer to some key in the autopilot.tasks.CHILDREN_LIST.

Note: The Child agent is a subconfiguration of the Pilot agent, they will be delineated more explicitly as the agent
framework is solidified.

CHILDREN = {
'WHEEL': {

'task_type': "Wheel Child",
}

}

10.2.3 Initialization

When initializing this task, we need to make our own Net_Node object as well as initialize our child. Assuming that
the child is connected to the parent and appropriately configured (see the additional params above), then things should
go smoothly.

Warning: Some of the parameters – most egregiously the Grating stimulus – are hardcoded in the initialization
routine. This is bad practice but an unfortunately necessary evil because the visual stimulus infrastructure is not
well developed yet.

from autopilot.stim.visual.visuals import Grating

(continues on next page)

70 Chapter 10. Examples

Autopilot Documentation, Release 0.5.0a1

(continued from previous page)

def __init__(self, stim=None, reward = 50., timeout = 1000., stage_block = None,
punish_dur = 500., **kwargs):

super(GoNoGo, self).__init__()

we receive a stage_block from the pilot as usual, we won't use it
for task operation though.
self.stage_block = stage_block
self.trial_counter = itertools.count()

save parameters passed to us as arguments
self.punish_dur = punish_dur
self.reward = reward
self.timeout = timeout
self.subject = kwargs['subject']

init hardware and set reward as before
self.init_hardware()
self.set_reward(self.reward)

hardcoding stimulus while visual stim still immature
self.stim = Grating(angle=0, freq=(4,0), rate=1, size=(1,1), debug=True)

self.stages = itertools.cycle([self.request, self.discrim, self.reinforce])

Initializing the Net Node.
The Net_Node gets the following arguments:

• id: The name that is used to identify the task’s networking object so other networking objects can send it mes-
sages. We prefix the pilot’s prefs.NAME with T_ because it is a task, though this is not required.

• upstream: The name of the network node that is directly upstream from us, we will be sending our messages to
the Pilot that is running us – and thus address it by its name

• port: The port of our upstream mode, most commonly the prefs.MSGPORT

• listens: A dictionary that maps messages with different ``KEY``s to specific handling methods. Since we
don’t need to receive any data for this task, this is blank,

• instance: Optional, denotes whether this node shouldn’t be the only node that exists within the Agent – ie. it
uses the same instance of the tornado IOLoop as other nodes.

self.node = Net_Node(id="T_{}".format(prefs.NAME),
upstream=prefs.NAME,
port=prefs.MSGPORT,
listens={},
instance=True)

And then to initialize our Child we construct a message to send along to it.

Note that we send the message to prefs.NAME – we don’t want to have to know the IP address/etc. for our child because
it connects to us – so the Station object handles sending it along with its Pilot_Station.l_child() listen.

construct a message to send to the child
value = {

(continues on next page)

10.2. Distributed Go/No-Go 71

Autopilot Documentation, Release 0.5.0a1

(continued from previous page)

'child': {'parent': prefs.NAME, 'subject': self.subject},
'task_type': self.CHILDREN['WHEEL']['task_type'],
'subject': self.subject

}

send to the station object with a 'CHILD' key
self.node.send(to=prefs.NAME, key='CHILD', value=value)

10.2.4 The Child Task

The Wheel_Child task is a very thin wrapper around a Wheel object, which does most of the work.

It creates a stages iterator with a function that returns nothing to fit in with the general task structure.

class Wheel_Child(object):
STAGE_NAMES = ['collect']

PARAMS = odict()
PARAMS['fs'] = {'tag': 'Velocity Reporting Rate (Hz)',

'type': 'int'}
PARAMS['thresh'] = {'tag': 'Distance Threshold',

'type': 'int'}

HARDWARE = {
"OUTPUT": Digital_Out,
"WHEEL": Wheel

}

def __init__(self, stage_block=None, fs=10, thresh=100, **kwargs):
self.fs = fs
self.thresh = thresh

self.hardware = {}
self.hardware['OUTPUT'] = Digital_Out(prefs.PINS['OUTPUT'])
self.hardware['WHEEL'] = Wheel(digi_out = self.hardware['OUTPUT'],

fs = self.fs,
thresh = self.thresh,
mode = "steady")

self.stages = cycle([self.noop])
self.stage_block = stage_block

def noop(self):
just fitting in with the task structure.
self.stage_block.clear()
return {}

def end(self):
self.hardware['WHEEL'].release()
self.stage_block.set()

72 Chapter 10. Examples

Autopilot Documentation, Release 0.5.0a1

10.2.5 A Very Smart Wheel

Most of the Child’s contribution to the task is performed by the Wheel object.

The Wheel accesses a USB mouse connected to the Pilot, continuously collects its movements, and reports them back
to the Terminal with a specified frequency (fs) with an internal Net_Node

An abbreviated version. . .

from inputs import devices

class Wheel(Hardware):

def __init__(self, mouse_idx=0, fs=10, thresh=100, thresh_type='dist', start=True,
digi_out = False, mode='vel_total', integrate_dur=5):

self.mouse = devices.mice[mouse_idx]
self.fs = fs
self.thresh = thresh
time between updates
self.update_dur = 1./float(self.fs)

The Wheel has three message types,

• 'MEASURE' - the main task is telling us to monitor for a threshold crossing, ie. previous trial is over and it’s
ready for another one.

• 'CLEAR' - stop measuring for a threshold crossing event!

• 'STOP' - the task is over, clear resources and shut down.

initialize networking
self.listens = {'MEASURE': self.l_measure,

'CLEAR' : self.l_clear,
'STOP' : self.l_stop}

self.node = Net_Node('wheel_{}'.format(mouse_idx),
upstream=prefs.NAME,
port=prefs.MSGPORT,
listens=self.listens,
)

if we are being used in a child object,
we send our trigger via a GPIO pin
self.digi_out = digi_out

self.thread = None

if start:
self.start()

def start(self):
self.thread = threading.Thread(target=self._record)
self.thread.daemon = True
self.thread.start()

10.2. Distributed Go/No-Go 73

Autopilot Documentation, Release 0.5.0a1

The wheel starts two threads, one that captures mouse movement events and puts them in a queue, and another that
processes movements, transmits them to the Terminal, and handles the threshold triggers when the subject falls below
a certain velocity.

def _mouse(self):
read mouse movements and put them in a queue
while self.quit_evt:

events = self.mouse.read()
self.q.put(events)

def _record(self):

threading.Thread(target=self._mouse).start()

a threading.Event is used to terminate the wheel's operation
while not self.quit_evt.is_set():

... mouse movements are collected into a 2d numpy array ...

if the main task has told us to measure for a velocity threshold
we check if our recent movements (move) trigger the threshold
if self.measure_evt.is_set():

do_trigger = self.check_thresh(move)
if do_trigger:

self.thresh_trig()
self.measure_evt.clear()

and we report recent movements back to the Terminal
the recent velocities and timestamp have been calculated as
x_vel, y_vel, and nowtime
self.node.send(key='CONTINUOUS',

value={
'x':x_vel,
'y':y_vel,
't':nowtime

})

If the threshold is triggered, a method (. . . ``thresh_trig``. . .) is called that sends a voltage pulse through the
Digital_Out given to it by the Child task.

def thresh_trig(self):
if self.digi_out:

self.digi_out.pulse()

74 Chapter 10. Examples

Autopilot Documentation, Release 0.5.0a1

10.2.6 Go/No-Go Stage Methods

After the child is initialized, the Parent pilot begins to call the three stage functions for the task in a cycle

Very similar to the Nafc task above. . .

• request - Tell the Child to begin measuring for a velocity threshold crossing, prepare the stimulus for delivery

• discrim - Present the stimulus

• reinforce - Reward the subject if they were correct

The code here has been abbreviated for the purpose of the example:

def request(self):
Set the event lock
self.stage_block.clear()
wait on any ongoing punishment stimulus
self.punish_block.wait()

set triggers
self.triggers['F'] = [

lambda: self.stim.play('shift', self.shift)
]

tell our wheel to start measuring
self.node.send(to=[prefs.NAME, prefs.CHILDID, 'wheel_0'],

key="MEASURE",
value={'mode':'steady',

'thresh':100})

return data from current stage
self.current_trial = self.trial_counter.next()
data = {

'target': self.target, # whether to 'go' or 'not go'
'shift': self.shift, # how much to shift the

angle of the stimulus
'trial_num': self.current_trial

}

return data

def discrim(self):
if the subject licks on a good trial, reward.
set a trigger to respond false if delay time elapses
if self.target:

self.triggers['C'] = [lambda: self.respond(True), self.pins['PORTS']['C'].open]
self.triggers['T'] = [lambda: self.respond(False), self.punish]

otherwise punish
else:

self.triggers['C'] = [lambda: self.respond(True), self.punish]
self.triggers['T'] = [lambda: self.respond(False), self.pins['PORTS']['C'].open]

(continues on next page)

10.2. Distributed Go/No-Go 75

Autopilot Documentation, Release 0.5.0a1

(continued from previous page)

the stimulus has just started playing, wait a bit and then shift it (if we're gonna
choose a random delay
delay = 0.0
if self.shift != 0:

delay = (random()*3000.0)+1000.0
a delay timer is set that shifts the stimulus after
<delay> milliseconds
self.delayed_set(delay, 'shift', self.shift)

trigger the timeout in 5 seconds
self.timer = threading.Timer(5.0, self.handle_trigger, args=('T', True, None)).

→˓start()

return data to the pilot
data = {

'delay': delay,
'RQ_timestamp': datetime.datetime.now().isoformat(),
'trial_num': self.current_trial

}

return data

def reinforce(self):

stop timer if it's still going
try:

self.timer.cancel()
except AttributeError:

pass
self.timer = None

data = {
'DC_timestamp': datetime.datetime.now().isoformat(),
'response': self.response,
'correct': self.correct,
'trial_num': self.current_trial,
'TRIAL_END': True

}
return data

Viola.

Note: For more examples, see the plugins on the wiki, two to get you started:

• Autopilot Paper Plugin - Network_Latency : for testing network latency between two pilots, demonstrates:

– using a single task for two pilots with different roles,

– Point-to-point networking with Net_Node s

– Using the Terminal_Station to connect pilots without knowing their IP/Port

• Wehrlab Plugin - Nafc_Gap , Nafc_Gap_Laser: Extensions of the Nafc class to do experiments with gaps in
continuous background noise, which demonstrate:

76 Chapter 10. Examples

https://wiki.auto-pi-lot.com/index.php/Autopilot_Plugins
https://wiki.auto-pi-lot.com/index.php/Plugin:Autopilot_Paper
https://github.com/auto-pi-lot/plugin-paper/blob/main/plugin_paper/tasks/network.py
https://wiki.auto-pi-lot.com/index.php/Wehrlab
https://github.com/auto-pi-lot/autopilot-plugin-wehrlab/blob/29a7d04c7f0b6dc4234dc0f9e5f00d2edc102eb4/gap/nafc_gap.py#L13
https://github.com/auto-pi-lot/autopilot-plugin-wehrlab/blob/29a7d04c7f0b6dc4234dc0f9e5f00d2edc102eb4/gap/nafc_gap.py#L59

Autopilot Documentation, Release 0.5.0a1

– Extending the __init__ and end methods of a task class to do additional things on initialization and
teardown – specifically starting and stopping background noise

– Adding additional PARAMS, HARDWARE objects, and TrialData fields

– Extending task methods without rewriting them – specifically adding optogentic stimulation to an existing
task!

10.2. Distributed Go/No-Go 77

Autopilot Documentation, Release 0.5.0a1

78 Chapter 10. Examples

CHAPTER

ELEVEN

FAQ

Note: This page is a stub! You can recommend things to be added to it on this issue: #32: Documentation Requests

11.1 Getting Help

• wiki

• discussion board

• raise an issue!

11.2 Networking

11.3 Contributing

11.4 Using Python

11.4.1 Using Virtual Environments

See the guide_venvs page

79

https://github.com/auto-pi-lot/autopilot/issues/32

Autopilot Documentation, Release 0.5.0a1

80 Chapter 11. FAQ

CHAPTER

TWELVE

AGENTS

Agents are the basic runtime elements of Autopilot. At the moment we only have two built into base autopilot,
Terminal - which hosts the GUI and user-facing parts of Autopilot, and Pilot that runs experiments from a Raspberry
Pi!

The Agent structure is, at the moment, a draft, but see the Agent class for more information about its future develop-
ment.

12.1 base

Base Agent class.

Currently a stub just to get them in the object hierarchy

Classes:

Agent([id]) Metaclass for agent types.

class Agent(id: Optional[str] = None)
Bases: autopilot.root.Autopilot_Object

Metaclass for agent types.

Currently a stub, but will provide hooks for basic lifecycle methods of agents:

• pre_init - to be run before any other standard initialization

• init - main initialization hook

• init_external - initialize external processes

• post_init - to be run after other initialization

• . . . to be continued

And core class and instance attributes:

• prefs - prefs that are needed to configure this agent

• processes - processes spawned by this agent

• listens - methods to handle messages sent to this agent

• dependencies - additional optional python packages or system configurations that this agent depends on.

81

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str

Autopilot Documentation, Release 0.5.0a1

12.2 pilot

Classes:

Pilot([splash, warn_defaults]) Drives the Raspberry Pi

class Pilot(splash=True, warn_defaults=True)
Bases: autopilot.agents.base.Agent

Drives the Raspberry Pi

Coordinates the hardware and networking objects to run tasks.

Typically used with a connection to a Terminal object to coordinate multiple subjects and tasks, but a high
priority for future releases is to do the (trivial amount of) work to make this class optionally standalone.

Called as a module with the -f flag to give the location of a prefs file, eg:

python pilot.py -f prefs_file.json

if the -f flag is not passed, looks in the default location for prefs (ie. /usr/autopilot/prefs.json)

Needs the following prefs (typically established by setup.setup_pilot):

• NAME - The name used by networking objects to address this Pilot

• BASEDIR - The base directory for autopilot files (/usr/autopilot)

• PUSHPORT - Router port used by the Terminal we connect to.

• TERMINALIP - IP Address of our upstream Terminal.

• MSGPORT - Port used by our own networking object

• HARDWARE - Any hardware and its mapping to GPIO pins. No pins are required to be set, instead each
task defines which pins it needs. Currently the default configuration asks for

– POKES - hardware.Beambreak

– LEDS - hardware.LED_RGB

– PORTS - hardware.Solenoid

• AUDIOSERVER - Which type, if any, audio server to use (‘jack’, ‘pyo’, or ‘none’)

• NCHANNELS - Number of audio channels

• FS - Sampling rate of audio output

• JACKDSTRING - string used to start the jackd server, see the jack manpages eg:

jackd -P75 -p16 -t2000 -dalsa -dhw:sndrpihifiberry -P -rfs -n3 -s &

• PIGPIOMASK - Binary mask of pins for pigpio to control, see the pigpio docs , eg:

1111110000111111111111110000

• PULLUPS - Pin (board) numbers to pull up on boot

• PULLDOWNS - Pin (board) numbers to pull down on boot.

Variables

82 Chapter 12. Agents

https://linux.die.net/man/1/jackd
http://abyz.me.uk/rpi/pigpio/pigpiod.html

Autopilot Documentation, Release 0.5.0a1

• name (str) – The name used to identify ourselves in networking

• task (tasks.Task) – The currently instantiated task

• running (threading.Event) – Flag used to control task running state

• stage_block (threading.Event) – Flag given to a task to signal when task stages finish

• file_block (threading.Event) – Flag used to wait for file transfers

• state (str) – ‘RUNNING’, ‘STOPPING’, ‘IDLE’ - signals what this pilot is up to

• pulls (list) – list of Pull objects to keep pins pulled up or down

• server – Either a pyo_server() or JackClient , sound server.

• node (networking.Net_Node) – Our Net_Node we use to communicate with our main
networking object

• networking (networking.Pilot_Station) – Our networking object to communicate
with the outside world

• ip (str) – Our IPv4 address

• listens (dict) – Dictionary mapping message keys to methods used to process them.

• logger (logging.Logger) – Used to log messages and network events.

Attributes:

server

logger

running

stage_block

file_block

quitting mp.Event to signal when process is quitting
networking

node

Methods:

12.2. pilot 83

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/threading.html#threading.Event
https://docs.python.org/3/library/threading.html#threading.Event
https://docs.python.org/3/library/threading.html#threading.Event
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/logging.html#logging.Logger

Autopilot Documentation, Release 0.5.0a1

get_ip() Get our IP
handshake() Send the terminal our name and IP to signal that we

are alive
update_state() Send our current state to the Terminal, our Station

object will cache this and will handle any future re-
quests.

l_start(value) Start running a task.
l_stop(value) Stop the task.
l_param(value) Change a task parameter mid-run
l_cal_port(value) Initiate the calibrate_port() routine.
calibrate_port(port_name, n_clicks, ...) Run port calibration routine
l_cal_result(value) Save the results of a port calibration
l_bandwidth (value) Send messages with a poissonian process according

to the settings in value
l_stream_video(value) Start or stop video streaming
calibration_curve([path, calibration]) # compute curve to compute duration from desired

volume
init_pigpio()

init_audio() Initialize an audio server depending on the value of
prefs.get('AUDIOSERVER')

blank_LEDs() If any 'LEDS' are defined in prefs.get('HARDWARE')
, instantiate them, set their color to [0,0,0], and then
release them.

open_file() Setup a table to store data locally.
run_task(task_class, task_params) Called in a new thread, run the task.

server = None

logger = None

running = None

stage_block = None

file_block = None

quitting = None

mp.Event to signal when process is quitting

networking = None

node = None

task: Optional[Task]

get_ip()

Get our IP

handshake()

Send the terminal our name and IP to signal that we are alive

update_state()

Send our current state to the Terminal, our Station object will cache this and will handle any future requests.

84 Chapter 12. Agents

https://docs.python.org/3/library/typing.html#typing.Optional

Autopilot Documentation, Release 0.5.0a1

l_start(value)
Start running a task.

Get the task object by using value[‘task_type’] to select from autopilot.get_task() , then feed the rest
of value as kwargs into the task object.

Calls autopilot.run_task() in a new thread

Parameters value (dict) – A dictionary of task parameters

l_stop(value)
Stop the task.

Clear the running event, set the stage block.

Todo: Do a coherence check between our local file and the Terminal’s data.

Parameters value – ignored

l_param(value)
Change a task parameter mid-run

Warning: Not Implemented

Parameters value

l_cal_port(value)
Initiate the calibrate_port() routine.

Parameters value (dict) – Dictionary of values defining the port calibration to be run, including
- port - which port to calibrate - n_clicks - how many openings should be performed -
open_dur - how long the valve should be open - iti - ‘inter-trial interval`, or how long
should we wait between valve openings.

calibrate_port(port_name, n_clicks, open_dur, iti)
Run port calibration routine

Open a hardware.gpio.Solenoid repeatedly, measure volume of water dispersed, compute lookup table
mapping valve open times to volume.

Continuously sends progress of test with CAL_PROGRESS messages

Parameters
• port_name (str) – Port name as specified in prefs

• n_clicks (int) – number of times the valve should be opened

• open_dur (int, float) – how long the valve should be opened for in ms

• iti (int, float) – how long we should sleep() between openings

l_cal_result(value)
Save the results of a port calibration

l_bandwidth(value)
Send messages with a poissonian process according to the settings in value

12.2. pilot 85

https://docs.python.org/3/library/time.html#time.sleep

Autopilot Documentation, Release 0.5.0a1

l_stream_video(value)
Start or stop video streaming

Parameters value (dict) –

a dictionary of the form:

{
'starting': bool, # whether we're starting (True) or stopping
'camera': str, # the camera to start/stop, of form 'group.camera_

→˓id'
'stream_to': node id that the camera should send to

}

calibration_curve(path=None, calibration=None)
compute curve to compute duration from desired volume

Parameters
• calibration
• path – If present, use calibration file specified, otherwise use default.

init_pigpio()

init_audio()

Initialize an audio server depending on the value of prefs.get(‘AUDIOSERVER’)

• ‘pyo’ = pyoserver.pyo_server()

• ‘jack’ = jackclient.JackClient

blank_LEDs()

If any ‘LEDS’ are defined in prefs.get(‘HARDWARE’) , instantiate them, set their color to [0,0,0], and then
release them.

open_file()

Setup a table to store data locally.

Opens prefs.get(‘DATADIR’)/local.h5, creates a group for the current subject, a new table for the current
day.

Todo: This needs to be unified with a general file constructor abstracted from Subject so it doesn’t
reimplement file creation!!

Returns (tables.File, tables.Table, tables.tableextension.Row): The file, table, and
row for the local data table

run_task(task_class, task_params)
Called in a new thread, run the task.

Opens a file with open_file() , then continually calls task.stages.next to process stages.

Sends data back to the terminal between every stage.

Waits for the task to clear stage_block between stages.

86 Chapter 12. Agents

Autopilot Documentation, Release 0.5.0a1

12.3 terminal

Methods for running the Terminal GUI

Classes:

Terminal([warn_defaults]) Central host to a swarm of Pilot s and user-facing gui
objects.

class Terminal(warn_defaults=True)
Bases: PySide2.QtWidgets.QMainWindow

Central host to a swarm of Pilot s and user-facing gui objects.

Called as a module with the -f flag to give the location of a prefs file, eg:

python terminal.py -f prefs_file.json

if the -f flag is not passed, looks in the default location for prefs (ie. /usr/autopilot/prefs.json)

**Listens used by the internal Net_Node **

Key Method Description
‘STATE’ l_state() A Pi has changed state
‘PING’ l_ping() Someone wants to know if we’re alive
‘DATA’ l_data() Receiving data to store
‘HANDSHAKE’ l_handshake() Pilot first contact, telling us it’s alive and its IP

Note: See autopilot.prefs for full list of prefs needed by terminal!

Note: The Terminal class is currently a subclass of PySide2.QtWidgets.QMainWindow – it will be refactored
to inherit from Agent as the agent system is formalized.

Variables
• node (Net_Node) – Our Net_Node we use to communicate with our main networking object

• networking (Terminal_Station) – Our networking object to communicate with the out-
side world

• subjects (dict) – A dictionary mapping subject ID to Subject object.

• layout (QtWidgets.QGridLayout) – Layout used to organize widgets

• control_panel (Control_Panel) – Control Panel to manage pilots and subjects

• data_panel (Plot_Widget) – Plots for each pilot and subject.

• logo (QtWidgets.QLabel) – Label holding our beautiful logo ;X

• logger (logging.Logger) – Used to log messages and network events.

• settings (PySide2.QtCore.QSettings) – QSettings used to store pyside configuration
like window size, stored in prefs.get("TERMINAL_SETTINGS_FN")

12.3. terminal 87

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/logging.html#logging.Logger

Autopilot Documentation, Release 0.5.0a1

Methods:

initUI() Initializes graphical elements of Terminal.
reset_ui() Clear Layout and call initUI() again
ping_pilot(pilot)

heartbeat([once]) Perioducally send an INIT message that checks the
status of connected pilots

toggle_start(starting, pilot[, subject]) Start or Stop running the currently selected subject's
task.

l_data(value) A Pilot has sent us data.
l_ping(value)

Todo: Reminder to implement heartbeating.

l_state(value) A Pilot has changed state, keep track of it.
l_handshake(value) Pilot is sending its IP and state on startup.
new_pilot([name, ip, pilot_prefs]) Make a new entry in Terminal.pilots and make

appropriate GUI elements.
new_protocol() Open a gui.Protocol_Wizard to create a new pro-

tocol.
new_subject()

subject_weights() Gets recent weights from all subjects and open a
gui.Weights window to view or set weights.

update_protocols() If we change the protocol file, update the stored ver-
sion in subject files

reassign_protocols() Batch reassign protocols and steps.
calibrate_ports() Calibrate hardware.gpio.Solenoid objects.
test_bandwidth () Test bandwidth of Pilot connection with variable

sized arrays as paylods
plot_psychometric() Select subject, step, and variables to plot a psycho-

metric curve
manage_plugins()

stream_video() Open a window to stream videos from a connected
pilot.

closeEvent(event) When Closing the Terminal Window, close any run-
ning subject objects, 'KILL' our networking object.

Attributes:

pilots A dictionary mapping pilot ID to its attributes, in-
cluding a list of its subjects assigned to it, its IP, etc.

protocols List of protocol names available in PROTOCOLDIR
subject_protocols Returns: subject_protocols (dict): a dictionary of

subjects: [protocol, step]
subject_list Get a list of all subject IDs
staticMetaObject

88 Chapter 12. Agents

Autopilot Documentation, Release 0.5.0a1

initUI()

Initializes graphical elements of Terminal.

Including. . .

• Toolbar

• gui.Control_Panel

• plots.Plot_Widget

reset_ui()

Clear Layout and call initUI() again

property pilots: collections.OrderedDict

A dictionary mapping pilot ID to its attributes, including a list of its subjects assigned to it, its IP, etc.

Returns like self.pilots['pilot_id'] = {'subjects': ['subject_0',
'subject_1'], 'ip': '192.168.0.101'}

Return type dict

property protocols: list

List of protocol names available in PROTOCOLDIR

Returns list of protocol names in prefs.get('PROTOCOLDIR')

Return type list

property subject_protocols: dict

Returns: subject_protocols (dict): a dictionary of subjects: [protocol, step]

property subject_list: list

Get a list of all subject IDs

Returns list of all subject IDs present in Terminal.pilots

Return type list

ping_pilot(pilot)

heartbeat(once=False)
Perioducally send an INIT message that checks the status of connected pilots

sent with frequency according to Terminal.heartbeat_dur

Parameters once (bool) – if True, do a single heartbeat but don’t start a thread to do more.

toggle_start(starting, pilot, subject=None)
Start or Stop running the currently selected subject’s task. Sends a message containing the task information
to the concerned pilot.

Each Pilot_Panel is given a lambda function that calls this one with the arguments specified See
Pilot_Button, as it is what calls this function.

Parameters
• starting (bool) – Does this button press mean we are starting (True) or stopping (False)

the task?

• pilot – Which Pilot is starting or stopping?

• subject – Which Subject is currently selected?

12.3. terminal 89

https://docs.python.org/3/library/collections.html#collections.OrderedDict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list

Autopilot Documentation, Release 0.5.0a1

l_data(value)
A Pilot has sent us data.

value field of message should have subject and pilot added to dictionary for identification.

Any key in value that matches a column in the subject’s trial data table will be saved.

If the subject graduates after receiving this piece of data, stop the current task running on the Pilot and send
the new one.

Parameters value (dict) – A dict of field-value pairs to save

l_ping(value)

Todo: Reminder to implement heartbeating.

Note: Currently unused, as Terminal Net_Node stability hasn’t been a problem and no universal system
of heartbeating has been established (global stability has not been an issue).

Parameters value – (unused)

l_state(value)
A Pilot has changed state, keep track of it.

Parameters value (dict) – dict containing state .

l_handshake(value)
Pilot is sending its IP and state on startup.

If we haven’t heard of this pilot before, make a new entry in pilots and gui.Control_Panel.
update_db() .

Parameters value (dict) – dict containing ip and state

new_pilot(name: Optional[str] = None, ip: str = '', pilot_prefs: Optional[dict] = None)
Make a new entry in Terminal.pilots and make appropriate GUI elements.

Parameters
• ip (str) – Optional. if given, stored in db.

• name (str) – If None, prompted for a name, otherwise used for entry in pilot DB.

new_protocol()

Open a gui.Protocol_Wizard to create a new protocol.

Prompts for name of protocol, then saves in prefs.get(‘PROTOCOLDIR’)

new_subject()

subject_weights()

Gets recent weights from all subjects and open a gui.Weights window to view or set weights.

update_protocols()

If we change the protocol file, update the stored version in subject files

90 Chapter 12. Agents

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#dict

Autopilot Documentation, Release 0.5.0a1

reassign_protocols()

Batch reassign protocols and steps.

Opens a gui.Reassign window after getting protocol data, and applies any changes made in the window.

calibrate_ports()

Calibrate hardware.gpio.Solenoid objects.

See gui.Calibrate_Water.

After calibration routine, send results to pilot for storage.

test_bandwidth()

Test bandwidth of Pilot connection with variable sized arrays as paylods

See gui.Bandwidth_Test

plot_psychometric()

Select subject, step, and variables to plot a psychometric curve

manage_plugins()

staticMetaObject = <PySide2.QtCore.QMetaObject object at 0x7f41799d7b80>

stream_video()

Open a window to stream videos from a connected pilot.

Choose from connected pilots and configured Camera objects (prefs.json sent by Pilots in Pilot.
handshake()). Stream video, save to file.

Todo: Configure camera parameters!!!

closeEvent(event)
When Closing the Terminal Window, close any running subject objects, ‘KILL’ our networking object.

12.3. terminal 91

Autopilot Documentation, Release 0.5.0a1

92 Chapter 12. Agents

CHAPTER

THIRTEEN

DATA

Autopilot’s data handling system was revamped as of v0.5.0, and now is based on pydantic models and a series of
interfaces that allow us to write data from the same abstract structures to several formats, initially pytables and hdf5,
but we have laid the groundwork for exporting to nwb and datajoint natively.

A brief narrative overview here, and more detailed documentations within the relevant module documentation.

13.1 modeling - Basic Data Types

abc.ABC

autopilot.root.Autopilot_Type

autopilot.data.modeling.base.Attributes

autopilot.data.modeling.base.Data

autopilot.data.modeling.base.Table

autopilot.data.modeling.base.Group

autopilot.data.modeling.base.Node

autopilot.data.modeling.base.Schema

pydantic.main.BaseModelpydantic.utils.Representation

Autopilot’s models are built from pydantic models.

The autopilot.root module defines some of Autopilot’s basic metaclasses, one of which is Autopilot_Type. The
data.modeling module extends Autopilot_Type into several abstract modeling classes used for different types of
data:

• modeling.base.Data - Containers for data, generally these are used as containers for data, or else used to
specify how data should be handled and typed. Its subtypes indicate different classes of data that have different
means of storage and representation depending on the interface.

– modeling.base.Attributes - Static (usually metadata) attributes that are intended to be specified once
per instance they are used (eg. the Biography class is used once per Subject)

– modeling.base.Table - Tabular data specifies that there should be multiple values for each of the fields
defined: in particular equal numbers of each of them. This is used for most data collected, as most data can
be framed in a tabular format.

• modeling.base.Group and modeling.base.Node - Abstract specifications for hierarchical data interfaces
- a Node is a particular element in a tree/network-like system, and a Group is a collection of Nodes. Some
transitional work is still being done to generalize Autopilot’s former data structures from H5F-specific groups
and nodes, so for the moment there is some parallel functionality in the H5F_Node and H5F_Group classes

93

https://pydantic-docs.helpmanual.io/
https://pydantic-docs.helpmanual.io/usage/models/

Autopilot Documentation, Release 0.5.0a1

• modeling.base.Schema - Specifications for organization of other data structures, for data that isn’t ex-
pected to ever be instantiated in its described form, but for scaffolding building other data structures together.
Some transitional work is also being done here, eventually moving the Subject Schema to an abstract form
(Subject_Schema) vs one tied to HDF5 (Subject_Structure)

13.2 models - The Models Themselves

Autopilot_Type

modeling.base.Node

modeling.base.Data

modeling.base.Group

modeling.base.Schema

models.protocol.Task_Params

interfaces.tables.H5F_Group

models.protocol.Protocol_Group

models.protocol.Step_Groupinterfaces.tables.H5F_Node

modeling.base.Attributes

models.biography.Biography

models.subject.Protocol_Status

modeling.base.Table

models.biography.Baselines

models.biography.Breeding

models.biography.Enclosure

models.biography.Gene

models.biography.Genotype

models.researcher.Researcher

models.subject.History_Group

models.protocol.Protocol_Data

models.protocol.Step_Data

models.subject.Subject_Schema

models.subject.Subject_Structure

models.protocol.Trial_Data

models.subject.Hashes

models.subject.History

models.subject.Weights

Specific models are then built out of the basic modeling components! This will serve as the point where data models
can be added or modified by plugins (stay tuned).

Each of the modules contains several classes that are used together in some particular context:

• models.biography - Defines biographical information for an individual Subject

• models.protocol - Defines the data structure of how multiple Tasks are stacked together into a training pro-
tocol, as well as how they are represented in the Subject’s h5f file.

• models.subject - Schemas that define how the multiple models that go into a subject are combined and struc-
tured on disk

• models.researcher - Stubs for researcher information that will be used in future versions for giving explicit
credit for data gathered by a particular researcher or research group. . .

94 Chapter 13. data

Autopilot Documentation, Release 0.5.0a1

13.3 interfaces - Bridging to Multiple Representations

Interfaces define mappings between basic python types and the classes in modeling.

This set of classes is still growing, and we’re still exploring the best strategy to make generalizable interfaces between
very different formats, but in general, each interface consists of mappings between types and some means of converting
the particular data structures of one format and another.

• Interface_Map - A specific declaration that one type is equivalent to another, with some optional conversion
or parameterization

• Interface_Mapset - A collection of Interface_Maps that define mappings for a collection of basic python
Types

• Interface - A stub for a future class that will handle conversion of the basic modeling components, but for
this first pass we have just applied the mapsets directly to certain subtypes of modeling objects: See tables.
model_to_description() and tables.description_to_model()

The only interface that is actively used within Autopilot is that for tables, but we have started interfaces for nwb
and datajoint (using a parallel project datajoint-babel). Both of these are provisional and very incomplete, but it
is possible to generate a datajoint schema from any table, and there are mappings and conversions for their different
representations of types.

Our goal for future versions is to generalize data interfaces to the point where a similar API can be shared across them,
so a subject’s data can be stored in HDF5 or in a datajoint database equivalently.

13.4 Subject - The Main Interface to Data Collection

Subject is the main object that most people will use to interact with their data, and it is used throughout Autopilot to
keep track of individual subjects data, the protocols they are run on, changes in code version over time, etc.

See the main data.subject module page for further information.

13.5 units - Explicit SI Unit representation

This too is just a stub, but we will be moving more of our models to using specific SI units when appropriate rather
than using generic floats and ints with human-readable descriptions of when they are a mL or a ms vs. second or
Liter, etc.

13.6 Transition Status

Transitioning to a uniform data modeling system is in progress! The following need to still be transitioned to formal
models.

• Task.PARAMS and Task.HARDWARE

• Task.PLOT which should be merged into the TrialData field descriptions

• autopilot.prefs - which currently has a large dictionary of default prefs

• Hardware parameter descriptions - Need to find better way of having models that represent class arguments.

• graduation objects.

• Verious GUI widgets need to use models rather than the zillions of ad-hoc representations:

13.3. interfaces - Bridging to Multiple Representations 95

https://github.com/auto-pi-lot/datajoint-babel

Autopilot Documentation, Release 0.5.0a1

– Protocol_Wizard
• utils.plugins needs its own model to handle dependencies, etc.

• agents needs models for defining basic agent attributes.

13.6.1 subject

Abstraction layer around subject data storage files

Classes:

Subject(name, dir, file, structure[, data, ...]) Class for managing one subject's data and protocol.

class Subject(name: typing.Optional[str] = None, dir: typing.Optional[pathlib.Path] = None, file:
typing.Optional[pathlib.Path] = None, structure: autopilot.data.models.subject.Subject_Structure
= Subject_Structure(info=H5F_Group(path='/info', title='Subject Biographical Information',
filters=None, attrs=None, children=None), data=H5F_Group(path='/data', title='',
filters=Filters(complevel=6, complib='blosc:lz4', shuffle=True, bitshuffle=False, fletcher32=False,
least_significant_digit=None), attrs=None, children=None),
protocol=H5F_Group(path='/protocol', title='Metadata for the currently assigned protocol',
filters=None, attrs=None, children=None), history=H5F_Group(path='/history', title='',
filters=None, attrs=None, children=[H5F_Group(path='/history/past_protocols', title='Past
Protocol Files', filters=None, attrs=None, children=None), _Hash_Table(path='/history/hashes',
title='Git commit hash history', filters=None, attrs=None, description=<class
'tables.description.Hashes'>, expectedrows=10000), _History_Table(path='/history/history',
title='Change History', filters=None, attrs=None, description=<class
'tables.description.History'>, expectedrows=10000), _Weight_Table(path='/history/weights',
title='Subject Weights', filters=None, attrs=None, description=<class
'tables.description.Weights'>, expectedrows=10000)])))

Bases: object

Class for managing one subject’s data and protocol.

Creates a tables hdf5 file in prefs.get(‘DATADIR’) with the general structure:

/ root
|--- current (tables.filenode) storing the current task as serialized JSON
|--- data (group)
| |--- task_name (group)
| |--- S##_step_name
| | |--- trial_data
| | |--- continuous_data
| |--- ...
|--- history (group)
| |--- hashes - history of git commit hashes
| |--- history - history of changes: protocols assigned, params changed, etc.
| |--- weights - history of pre and post-task weights
| |--- past_protocols (group) - stash past protocol params on reassign
| |--- date_protocol_name - tables.filenode of a previous protocol's params.
| |--- ...
|--- info - group with biographical information as attributes

Variables

96 Chapter 13. data

https://docs.python.org/3/library/functions.html#object

Autopilot Documentation, Release 0.5.0a1

• name (str) – Subject ID

• file (str) – Path to hdf5 file - usually {prefs.get(‘DATADIR’)}/{self.name}.h5

• logger (logging.Logger) – from init_logger()

• running (bool) – Flag that signals whether the subject is currently running a task or not.

• data_queue (queue.Queue) – Queue to dump data while running task

• did_graduate (threading.Event) – Event used to signal if the subject has graduated the
current step

Parameters
• name (str) – subject ID

• dir (str) – path where the .h5 file is located, if None, prefs.get(‘DATADIR’) is used

• file (str) – load a subject from a filename. if None, ignored.

• structure (Subject_Structure) – Structure to use with this subject.

Attributes:

info Subject biographical information
bio Subject biographical information (alias for info())
protocol The status of the currently assigned protocol
protocol_name Name of the currently assigned protocol
current_trial Current number of trial for the assigned task
session Current session of assigned protocol.
step Current step of assigned protocol
task Protocol dictionary for the current step
session_uuid Automatically generated UUID given to each session,

regardless of the session number.
history The Subject's history of parameter and other changes.
hashes History of version hashes and autopilot versions
weights History of weights at the start and end of running a

session.

Methods:

new(bio[, structure, data, attrs, children, ...]) Create a new subject file, make its structure, and pop-
ulate its Biography .

update_history(type, name, value[, step]) Update the history table when changes are made to
the subject's protocol.

assign_protocol(protocol[, step_n, pilot, ...]) Assign a protocol to the subject.
prepare_run() Prepares the Subject object to receive data while run-

ning the task.
save_data(data) Alternate and equivalent method of putting data in

the queue as Subject.data_queue.put(data)
stop_run() puts 'END' in the data_queue, which causes

_data_thread() to end.
get_trial_data([step]) Get trial data from the current task.
get_weight([which, include_baseline]) Gets start and stop weights.
set_weight(date, col_name, new_value) Updates an existing weight in the weight table.
update_weights([start, stop]) Store either a starting or stopping mass.

13.6. Transition Status 97

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/logging.html#logging.Logger
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/queue.html#queue.Queue
https://docs.python.org/3/library/threading.html#threading.Event

Autopilot Documentation, Release 0.5.0a1

property info: autopilot.data.models.biography.Biography

Subject biographical information

property bio: autopilot.data.models.biography.Biography

Subject biographical information (alias for info())

property protocol: Optional[autopilot.data.models.subject.Protocol_Status]

The status of the currently assigned protocol

See Protocol_Status

A property with an accompanying setter. When assigned to, stashes the details of the old protocol, and
remakes the table structure to support the new task.

property protocol_name: str

Name of the currently assigned protocol

Convenience accessor for Subject.protocol.protocol_name

property current_trial: int

Current number of trial for the assigned task

Convenience accessor for .protocol.current_trial

Has Setter (can be assigned to)

property session: int

Current session of assigned protocol.

Convenience accessor for .protocol.session

Has setter (can be assigned to)

property step: int

Current step of assigned protocol

Convenience accessor for .protocol.step

Has setter (can be assigned to) to manually promote/demote subject to different steps of the protocol.

property task: dict

Protocol dictionary for the current step

property session_uuid: str

Automatically generated UUID given to each session, regardless of the session number.

Ensures each session is uniquely addressable in the case of ambiguous session numbers (eg. subject was
manually promoted or demoted and session number was unable to be recovered, so there are multiple
sessions with the same number)

property history: autopilot.data.models.subject.History

The Subject’s history of parameter and other changes.

See History

property hashes: autopilot.data.models.subject.Hashes

History of version hashes and autopilot versions

See Hashes

98 Chapter 13. data

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str

Autopilot Documentation, Release 0.5.0a1

property weights: autopilot.data.models.subject.Weights

History of weights at the start and end of running a session.

See Weights

classmethod new(bio: autopilot.data.models.biography.Biography, structure:
typing.Optional[autopilot.data.models.subject.Subject_Structure] =
Subject_Structure(info=H5F_Group(path='/info', title='Subject Biographical
Information', filters=None, attrs=None, children=None), data=H5F_Group(path='/data',
title='', filters=Filters(complevel=6, complib='blosc:lz4', shuffle=True, bitshuffle=False,
fletcher32=False, least_significant_digit=None), attrs=None, children=None),
protocol=H5F_Group(path='/protocol', title='Metadata for the currently assigned
protocol', filters=None, attrs=None, children=None),
history=H5F_Group(path='/history', title='', filters=None, attrs=None,
children=[H5F_Group(path='/history/past_protocols', title='Past Protocol Files',
filters=None, attrs=None, children=None), _Hash_Table(path='/history/hashes',
title='Git commit hash history', filters=None, attrs=None, description=<class
'tables.description.Hashes'>, expectedrows=10000),
_History_Table(path='/history/history', title='Change History', filters=None, attrs=None,
description=<class 'tables.description.History'>, expectedrows=10000),
_Weight_Table(path='/history/weights', title='Subject Weights', filters=None, attrs=None,
description=<class 'tables.description.Weights'>, expectedrows=10000)])), path:
typing.Optional[pathlib.Path] = None)→ autopilot.data.subject.Subject

Create a new subject file, make its structure, and populate its Biography .

Parameters
• bio (Biography) – A collection of biographical information about the subject! Stored as

attributes within /info

• structure (Optional[Subject_Structure]) – The structure of tables and groups to use
when creating this Subject. Note: This is not currently saved with the subject file, so if
using a nonstandard structure, it needs to be passed every time on init. Sorry!

• path (Optional[pathlib.Path]) – Path of created file. If None, make a file within the
DATADIR within the user directory (typically ~/autopilot/data) using the subject ID as
the filename. (eg. ~/autopilot/data/{id}.h5)

Returns Subject , Newly Created.

update_history(type, name: str, value: Any, step=None)
Update the history table when changes are made to the subject’s protocol.

The current protocol is flushed to the past_protocols group and an updated filenode is created.

Note: This only updates the history table, and does not make the changes itself.

Parameters
• type (str) – What type of change is being made? Can be one of

– ‘param’ - a parameter of one task stage

– ‘step’ - the step of the current protocol

– ‘protocol’ - the whole protocol is being updated.

• name (str) – the name of either the parameter being changed or the new protocol

13.6. Transition Status 99

https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any

Autopilot Documentation, Release 0.5.0a1

• value (str) – the value that the parameter or step is being changed to, or the protocol dic-
tionary flattened to a string.

• step (int) – When type is ‘param’, changes the parameter at a particular step, otherwise the
current step is used.

assign_protocol(protocol: Union[pathlib.Path, str, List[dict]], step_n: int = 0, pilot: Optional[str] =
None, protocol_name: Optional[str] = None)

Assign a protocol to the subject.

If the subject has a currently assigned task, stashes it with stash_current()

Creates groups and tables according to the data descriptions in the task class being assigned. eg. as de-
scribed in Task.TrialData.

Updates the history table.

Parameters
• protocol (Path, str, dict) – the protocol to be assigned. Can be one of

– the name of the protocol (its filename minus .json) if it is in prefs.get(‘PROTOCOLDIR’)

– filename of the protocol (its filename with .json) if it is in the
prefs.get(‘PROTOCOLDIR’)

– the full path and filename of the protocol.

– The protocol dictionary serialized to a string

– the protocol as a list of dictionaries

• step_n (int) – Which step is being assigned?

• protocol_name (str) – If passing protocol as a dict, have to give a name to the protocol

prepare_run()→ dict
Prepares the Subject object to receive data while running the task.

Gets information about current task, trial number, spawns Graduation object, spawns data_queue and
calls _data_thread().

Returns
the parameters for the current step, with subject id, step number, current trial, and ses-

sion number included.

Return type Dict

save_data(data)
Alternate and equivalent method of putting data in the queue as Subject.data_queue.put(data)

Parameters data (dict) – trial data. each should have a ‘trial_num’, and a dictionary with key
‘TRIAL_END’ should be passed at the end of each trial.

stop_run()

puts ‘END’ in the data_queue, which causes _data_thread() to end.

get_trial_data(step: Optional[Union[int, list, str]] = None)→
Union[List[pandas.core.frame.DataFrame], pandas.core.frame.DataFrame]

Get trial data from the current task.

Parameters step (int, list, str, None) – Step that should be returned, can be one of

• None: All steps (default)

100 Chapter 13. data

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.List
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame

Autopilot Documentation, Release 0.5.0a1

• -1: the current step

• int: a single step

• list: of step numbers or step names (excluding S##_)

• string: the name of a step (excluding S##_)

Returns DataFrame of requested steps’ trial data (or list of dataframes).

Return type pandas.DataFrame

get_weight(which='last', include_baseline=False)
Gets start and stop weights.

Todo: add ability to get weights by session number, dates, and ranges.

Parameters
• which (str) – if ‘last’, gets most recent weights. Otherwise returns all weights.

• include_baseline (bool) – if True, includes baseline and minimum mass.

Returns dict

set_weight(date, col_name, new_value)
Updates an existing weight in the weight table.

Todo: Yes, i know this is bad. Merge with update_weights

Parameters
• date (str) – date in the ‘simple’ format, %y%m%d-%H%M%S

• col_name (‘start’, ‘stop’) – are we updating a pre-task or post-task weight?

• new_value (float) – New mass.

update_weights(start=None, stop=None)
Store either a starting or stopping mass.

start and stop can be passed simultaneously, start can be given in one call and stop in a later call, but stop
should not be given before start.

Parameters
• start (float) – Mass before running task in grams

• stop (float) – Mass after running task in grams.

13.6. Transition Status 101

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame

Autopilot Documentation, Release 0.5.0a1

13.6.2 interfaces

Interfaces define mappings between basic python types and the classes in modeling.

This set of classes is still growing, and we’re still exploring the best strategy to make generalizable interfaces between
very different formats, but in general, each interface consists of mappings between types and some means of converting
the particular data structures of one format and another.

• Interface_Map - A specific declaration that one type is equivalent to another, with some optional conversion
or parameterization

• Interface_Mapset - A collection of Interface_Maps that define mappings for a collection of basic python
Types

• Interface - A stub for a future class that will handle conversion of the basic modeling components, but for
this first pass we have just applied the mapsets directly to certain subtypes of modeling objects: See tables.
model_to_description() and tables.description_to_model()

The only interface that is actively used within Autopilot is that for tables, but we have started interfaces for nwb
and datajoint (using a parallel project datajoint-babel). Both of these are provisional and very incomplete, but it
is possible to generate a datajoint schema from any table, and there are mappings and conversions for their different
representations of types.

Our goal for future versions is to generalize data interfaces to the point where a similar API can be shared across them,
so a subject’s data can be stored in HDF5 or in a datajoint database equivalently.

base

Classes:

Interface_Map Statement of equivalence between two things, poten-
tially with some translation or parameterization, such
that a base type can be written to.

Interface_Mapset Metaclass for mapping base types to another format.
Interface Create a representation of a given Schema

Functions:

resolve_type(type_[, resolve_literal]) Get the "inner" type of a model field, sans Optionals and
Unions and the like

pydantic model Interface_Map

Bases: autopilot.root.Autopilot_Type

Statement of equivalence between two things, potentially with some translation or parameterization, such that a
base type can be written to.

{
"title": "Interface_Map",
"description": "Statement of equivalence between two things, potentially with␣

→˓some\ntranslation or parameterization, such that a base type can be written\nto.",
"type": "object",
"properties": {
"equals": {
"title": "Equals"

(continues on next page)

102 Chapter 13. data

https://github.com/auto-pi-lot/datajoint-babel

Autopilot Documentation, Release 0.5.0a1

(continued from previous page)

},
"args": {
"title": "Args",
"type": "array",
"items": {}

},
"kwargs": {
"title": "Kwargs",
"type": "object"

}
}

}

Fields
• args (Optional[List])

• conversion (Optional[Callable])

• equals (Type)

• kwargs (Optional[Dict])

field equals: Type [Required]

field args: Optional[List] = None

field kwargs: Optional[Dict] = None

field conversion: Optional[Callable] = None

pydantic model Interface_Mapset

Bases: autopilot.root.Autopilot_Type

Metaclass for mapping base types to another format.

Each field can be a Type (if it is instantiated without arguments, or can use the Interface_Map to specify them.

The special types group and node correspond to Group and Node classes, for when a given interface needs to
do something to create an abstract representation of a group or node in a schema’s hierarchy.

Todo: This will need to be generalized, eg. NWB doesn’t need a mapping between types and objects, but
mappings between annotated types and paths (eg. something within the /data/trial_data makes a behavioral
series, etc).

{
"title": "Interface_Mapset",
"description": "Metaclass for mapping base types to another format.\n\nEach␣

→˓field can be a Type (if it is instantiated without arguments, or\ncan use the␣
→˓:class:`.Interface_Map` to specify them.\n\nThe special types ``group`` and␣
→˓``node`` correspond to\n:class:`~.data.modeling.base.Group` and :class:`~.data.
→˓modeling.base.Node`\nclasses, for when a given interface needs to do something to␣
→˓create an\nabstract representation of a group or node in a schema's hierarchy.\n\
→˓n.. todo::\n\n This will need to be generalized, eg. NWB doesn't need a␣
→˓mapping between types and objects,\n but mappings between annotated types and␣
→˓paths (eg. something within the `/data/trial_data` makes\n a behavioral series,
→˓ etc).",

(continues on next page)

13.6. Transition Status 103

Autopilot Documentation, Release 0.5.0a1

(continued from previous page)

"type": "object",
"properties": {
"bool": {
"title": "Bool"

},
"int": {
"title": "Int"

},
"float": {
"title": "Float"

},
"str": {
"title": "Str"

},
"bytes": {
"title": "Bytes"

},
"datetime": {
"title": "Datetime"

},
"group": {
"title": "Group"

},
"node": {
"title": "Node"

}
}

}

Fields
• bool (Union[autopilot.data.interfaces.base.Interface_Map, Type])

• bytes (Optional[Union[autopilot.data.interfaces.base.Interface_Map,
Type]])

• datetime (Union[autopilot.data.interfaces.base.Interface_Map, Type])

• float (Union[autopilot.data.interfaces.base.Interface_Map, Type])

• group (Optional[Union[autopilot.data.interfaces.base.Interface_Map,
Type]])

• int (Union[autopilot.data.interfaces.base.Interface_Map, Type])

• node (Optional[Union[autopilot.data.interfaces.base.Interface_Map,
Type]])

• str (Union[autopilot.data.interfaces.base.Interface_Map, Type])

field bool: Union[autopilot.data.interfaces.base.Interface_Map, Type] [Required]

field int: Union[autopilot.data.interfaces.base.Interface_Map, Type] [Required]

field float: Union[autopilot.data.interfaces.base.Interface_Map, Type] [Required]

104 Chapter 13. data

Autopilot Documentation, Release 0.5.0a1

field str: Union[autopilot.data.interfaces.base.Interface_Map, Type] [Required]

field bytes: Optional[Union[autopilot.data.interfaces.base.Interface_Map, Type]] =
None

field datetime: Union[autopilot.data.interfaces.base.Interface_Map, Type]
[Required]

field group: Optional[Union[autopilot.data.interfaces.base.Interface_Map, Type]] =
None

field node: Optional[Union[autopilot.data.interfaces.base.Interface_Map, Type]] =
None

get(key, args: Optional[list] = None, kwargs: Optional[dict] = None)

pydantic model Interface

Bases: autopilot.root.Autopilot_Type

Create a representation of a given Schema

{
"title": "Interface",
"description": "Create a representation of a given Schema",
"type": "object",
"properties": {
"map": {
"title": "Map"

},
"schema": {
"$ref": "#/definitions/Schema"

}
},
"required": [

"schema"
],
"definitions": {
"Schema": {
"title": "Schema",
"description": "A special type of type intended to be a representation of␣

→˓an\nabstract structure/schema of data, rather than a live container of\ndata␣
→˓objects themselves. This class is used for constructing data containers,\
→˓ntranslating between formats, etc. rather than momentary data handling",

"type": "object",
"properties": {}

}
}

}

Fields
• map (autopilot.data.interfaces.base.Interface_Mapset)

• schema_ (autopilot.data.modeling.base.Schema)

13.6. Transition Status 105

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#dict

Autopilot Documentation, Release 0.5.0a1

field map: autopilot.data.interfaces.base.Interface_Mapset [Required]

field schema_: autopilot.data.modeling.base.Schema [Required] (alias 'schema')

abstract make(input: Any)→ bool
Make a given schema using the interface mapping given.

Returns True if successful

Return type bool

resolve_type(type_, resolve_literal=False)→ Type
Get the “inner” type of a model field, sans Optionals and Unions and the like

Parameters resolve_literal (bool) – If True, return the type of the inside of Literals, rather than the
Literal type itself.

tables

Interfaces for pytables and hdf5 generally

Classes:

H5F_Node Base class for H5F Nodes
H5F_Group Description of a pytables group and its location
H5F_Table

Tables_Interface

Functions:

model_to_description(table) Make a table description from the type annotations in a
model

description_to_model(description, cls) Make a pydantic modeling.base.Table from a
tables.IsDescription

pydantic model H5F_Node

Bases: autopilot.data.modeling.base.Node

Base class for H5F Nodes

{
"title": "H5F_Node",
"description": "Base class for H5F Nodes",
"type": "object",
"properties": {
"path": {
"title": "Path",
"type": "string"

},
"title": {
"title": "Title",
"default": "",

(continues on next page)

106 Chapter 13. data

https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Type

Autopilot Documentation, Release 0.5.0a1

(continued from previous page)

"type": "string"
},
"filters": {
"title": "Filters"

},
"attrs": {
"title": "Attrs",
"type": "object"

}
},
"required": [

"path"
]

}

Config
• arbitrary_types_allowed: bool = True

Fields
• attrs (Optional[dict])

• filters (Optional[tables.filters.Filters])

• path (str)

• title (Optional[str])

field path: str [Required]

field title: Optional[str] = ''

field filters: Optional[tables.filters.Filters] = None

field attrs: Optional[dict] = None

property parent: str

The parent node under which this node hangs.

Eg. if self.path is /this/is/my/path, then parent will be /this/is/my

Returns str

property name: str

Our path without parent

Returns str

abstract make(h5f: tables.file.File)
Abstract method to make whatever this node is

pydantic model H5F_Group

Bases: autopilot.data.interfaces.tables.H5F_Node

Description of a pytables group and its location

13.6. Transition Status 107

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Autopilot Documentation, Release 0.5.0a1

{
"title": "H5F_Group",
"description": "Description of a pytables group and its location",
"type": "object",
"properties": {
"path": {
"title": "Path",
"type": "string"

},
"title": {
"title": "Title",
"default": "",
"type": "string"

},
"filters": {
"title": "Filters"

},
"attrs": {
"title": "Attrs",
"type": "object"

},
"children": {
"title": "Children"

}
},
"required": [

"path"
]

}

Config
• arbitrary_types_allowed: bool = True

Fields
• children (Optional[List[Union[autopilot.data.interfaces.tables.
H5F_Node, H5F_Group]]])

field children: Optional[List[Union[autopilot.data.interfaces.tables.H5F_Node,
H5F_Group]]] = None

make(h5f: tables.file.File)
Make the group, if it doesn’t already exist.

If it exists, do nothing

Parameters h5f (tables.file.File) – The file to create the table in

pydantic model H5F_Table

Bases: autopilot.data.interfaces.tables.H5F_Node

{
"title": "H5F_Table",
"description": "Base class for H5F Nodes",

(continues on next page)

108 Chapter 13. data

Autopilot Documentation, Release 0.5.0a1

(continued from previous page)

"type": "object",
"properties": {
"path": {
"title": "Path",
"type": "string"

},
"title": {
"title": "Title",
"default": "",
"type": "string"

},
"filters": {
"title": "Filters"

},
"attrs": {
"title": "Attrs",
"type": "object"

},
"description": {
"title": "Description"

},
"expectedrows": {
"title": "Expectedrows",
"default": 10000,
"type": "integer"

}
},
"required": [

"path"
]

}

Config
• fields: dict = {‘description’: {‘exclude’: True}}

Fields
• description (tables.description.MetaIsDescription)

• expectedrows (int)

field description: tables.description.MetaIsDescription [Required]

field expectedrows: int = 10000

make(h5f: tables.file.File)
Make this table according to its description

Parameters h5f (tables.file.File) – The file to create the table in

pydantic model Tables_Interface

Bases: autopilot.data.interfaces.base.Interface

13.6. Transition Status 109

https://docs.python.org/3/library/functions.html#int

Autopilot Documentation, Release 0.5.0a1

{
"title": "Tables_Interface",
"description": "Create a representation of a given Schema",
"type": "object",
"properties": {
"map": {
"title": "Map"

},
"schema": {
"$ref": "#/definitions/Schema"

}
},
"required": [

"schema"
],
"definitions": {
"Schema": {
"title": "Schema",
"description": "A special type of type intended to be a representation of␣

→˓an\nabstract structure/schema of data, rather than a live container of\ndata␣
→˓objects themselves. This class is used for constructing data containers,\
→˓ntranslating between formats, etc. rather than momentary data handling",

"type": "object",
"properties": {}

}
}

}

Fields
• map (autopilot.data.interfaces.base.Interface_Mapset)

• schema_ (autopilot.data.modeling.base.Schema)

field map: autopilot.data.interfaces.base.Interface_Mapset =
Interface_Mapset(bool=<class
'tables.description.Col._subclass_from_prefix.<locals>.NewCol'>, int=<class
'tables.description.Col._subclass_from_prefix.<locals>.NewCol'>, float=<class
'tables.description.Col._subclass_from_prefix.<locals>.NewCol'>,
str=Interface_Map(equals=<class
'tables.description.Col._subclass_from_prefix.<locals>.NewCol'>, args=[1024],
kwargs=None, conversion=None), bytes=Interface_Map(equals=<class
'tables.description.Col._subclass_from_prefix.<locals>.NewCol'>, args=[1024],
kwargs=None, conversion=None), datetime=Interface_Map(equals=<class
'tables.description.Col._subclass_from_prefix.<locals>.NewCol'>, args=[1024],
kwargs=None, conversion=<function <lambda> at 0x7f418c2fd940>), group=<class
'autopilot.data.interfaces.tables.H5F_Group'>, node=None)

make(h5f: tables.file.File)→ bool
Make a given schema using the interface mapping given.

Returns True if successful

Return type bool

110 Chapter 13. data

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Autopilot Documentation, Release 0.5.0a1

field schema_: autopilot.data.modeling.base.Schema [Required] (alias 'schema')

model_to_description(table: Type[Table])→ Type[tables.description.IsDescription]
Make a table description from the type annotations in a model

Parameters table (modeling.base.Table) – Table description

Returns tables.IsDescription

description_to_model(description: Type[tables.description.IsDescription], cls: Type[Table])→ Table
Make a pydantic modeling.base.Table from a tables.IsDescription

Parameters
• description (tables.IsDescription) – to convert

• cls (modeling.base.Table) – Subclass of Table to make

Returns Subclass of Table

datajoint

nwb

Sketch of the problem:

13.6. Transition Status 111

https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/typing.html#typing.Type

Autopilot Documentation, Release 0.5.0a1

Subject

Task

Interfaces

Interfaces

NWB

subject_schema

biographyhistory_tablehash_table trial_data extension_schema

generic_hdf5

nwbfile

subject_object

task_schema

timestamps TrialData ContinuousData

create_timeseries

For each

create_interval_series

subject_file

nwbconverter

nwbcontainer

NWBHDFIO

nwb_file

nwb_schemanwb_container

file.Subject .BehavioralEpochsBehavioralEvents

Functions:

make_biography(bio) Make an NWB subject object from a biography

Classes:

NWB_Interface

make_biography(bio: autopilot.data.models.biography.Biography)→ pynwb.file.Subject
Make an NWB subject object from a biography

Todo: make this more flexible based on a mapping

pydantic model NWB_Interface

Bases: autopilot.root.Autopilot_Type

112 Chapter 13. data

Autopilot Documentation, Release 0.5.0a1

{
"title": "NWB_Interface",
"description": "Root autopilot model for types",
"type": "object",
"properties": {
"biography": {
"$ref": "#/definitions/Biography"

}
},
"required": [

"biography"
],
"definitions": {
"Breeding": {
"title": "Breeding",
"description": "Information about the breeding conditions of the subject",
"type": "object",
"properties": {
"parents": {
"title": "Parents",
"description": "The IDs of the parents of this subject, if any",
"type": "array",
"items": {
"type": "string"

}
},
"litter": {
"title": "Litter",
"description": "The identifying number or tag of the litter this␣

→˓subject was born in",
"anyOf": [

{
"type": "string"

},
{
"type": "integer"

}
]

}
},
"required": [

"parents",
"litter"

]
},
"Enclosure": {
"title": "Enclosure",
"description": "Where does the subject live?",
"type": "object",
"properties": {
"box": {
"title": "Box",
"description": "The number or name of the box this subject lives in,␣

→˓if any", (continues on next page)

13.6. Transition Status 113

Autopilot Documentation, Release 0.5.0a1

(continued from previous page)

"anyOf": [
{
"type": "string"

},
{
"type": "integer"

}
]

},
"building": {
"title": "Building",
"description": "The name of the building that the subject is housed␣

→˓in",
"type": "string"

},
"room": {
"title": "Room",
"description": "The room number that the animal is housed in",
"anyOf": [

{
"type": "string"

},
{
"type": "integer"

}
]

}
}

},
"Baselines": {
"title": "Baselines",
"description": "Baseline health measurements for animal care regulation.␣

→˓In the future this\nwill be integrated with a TrialManager class to titrate␣
→˓trials to ensure experimental\nsubjects remain healthy.",

"type": "object",
"properties": {
"mass": {
"title": "Mass",
"description": "Mass (grams) of the animal before any experimental␣

→˓manipulation",
"type": "number"

},
"minimum_pct": {
"title": "Minimum Pct",
"description": "The proportion (0-1) of the baseline mass that the␣

→˓animal is not allowed to fall under",
"type": "number"

}
}

},
"Gene": {
"title": "Gene",

(continues on next page)

114 Chapter 13. data

Autopilot Documentation, Release 0.5.0a1

(continued from previous page)

"description": "An individual (trans)gene that an animal may have.\n\nI am␣
→˓not a geneticist, lmk what this should look like",

"type": "object",
"properties": {
"name": {
"title": "Name",
"description": "The name of this gene",
"type": "string"

},
"zygosity": {
"title": "Zygosity",
"description": "One of typing.Literal['heterozygous', 'homozygous']",
"enum": [

"heterozygous",
"homozygous"

],
"type": "string"

}
},
"required": [

"name"
]

},
"Genotype": {
"title": "Genotype",
"description": "Genotyping information, information about a subject's␣

→˓background and (potentially multiple) :class:`.Gene` s of interest\n\n.. todo::\n\
→˓n Call Jax's API to get a list of available strain names",

"type": "object",
"properties": {
"strain": {
"title": "Strain",
"description": "The strain or background line of this subject, if any

→˓",
"type": "string"

},
"genes": {
"title": "Genes",
"description": "A list of any transgenes that this animal has",
"type": "array",
"items": {
"$ref": "#/definitions/Gene"

}
}

}
},
"Biography": {
"title": "Biography",
"description": "The combined biographical, health, genetic, and other␣

→˓details that define an experimental subject.\n\nThis is stored within the ``/
→˓info`` node in a typical :class:`.Subject` file as\nmetadata attributes, and␣
→˓accessible from :attr:`.Subject.info`\n\n**Development Goals**\n\n- Interface␣
→˓with the NWB biographical information schema.", (continues on next page)

13.6. Transition Status 115

Autopilot Documentation, Release 0.5.0a1

(continued from previous page)

"type": "object",
"properties": {
"id": {
"title": "Id",
"description": "The indentifying string, name, subject_id, etc. for␣

→˓this subject. This value is also used to name the related Subject file, like {id}.
→˓h5, so these are typically expected to be unique. If None is provided, a uuid.
→˓uuid4() will be generated (which will be ugly so you probably want to give an id).
→˓",

"type": "string"
},
"start_date": {
"title": "Start Date",
"description": "The date that this subject file was created. Not␣

→˓that this is not necessarily the date that the subject began training, which is␣
→˓more reliably determined from the timestamps within the data. If none is provided,
→˓ generated from current time.",

"type": "string",
"format": "date-time"

},
"dob": {
"title": "Dob",
"description": "The subject's date of birth. A datetime is allowed,␣

→˓but hours and minutes are typically not reliable. A time of midnight formally␣
→˓indicates that the hour and minute is not precise.",

"type": "string",
"format": "date-time"

},
"sex": {
"title": "Sex",
"description": "Sex of the subject, one of typing.Literal['F', 'M',

→˓'U', 'O']. See :data:`.SEX`",
"default": "U",
"enum": [

"F",
"M",
"U",
"O"

],
"type": "string"

},
"description": {
"title": "Description",
"description": "Some lengthier description of the subject, idk go␣

→˓hogwild.",
"type": "string"

},
"tags": {
"title": "Tags",
"description": "Any additional key/value tags that apply to this␣

→˓subject. Idiosyncratic metadata can be stored here, but caution should be taken␣
→˓to not overload this field and instead extend the Biography class because these␣
→˓values will not be included in any resulting schema.", (continues on next page)

116 Chapter 13. data

Autopilot Documentation, Release 0.5.0a1

(continued from previous page)

"type": "object"
},
"species": {
"title": "Species",
"description": "Species of subject, no recommendation common vs.␣

→˓latin names, but will be integrated with linked data schemas in the future",
"type": "string"

},
"breeding": {
"$ref": "#/definitions/Breeding"

},
"enclosure": {
"$ref": "#/definitions/Enclosure"

},
"baselines": {
"$ref": "#/definitions/Baselines"

},
"genotype": {
"$ref": "#/definitions/Genotype"

}
}

}
}

}

Fields
• biography (autopilot.data.models.biography.Biography)

field biography: autopilot.data.models.biography.Biography [Required]

make(sub: Subject, out_dir: pathlib.Path)→ pynwb.file.NWBFile

13.6.3 modeling

abc.ABC

autopilot.root.Autopilot_Type

autopilot.data.modeling.base.Attributes

autopilot.data.modeling.base.Data

autopilot.data.modeling.base.Table

autopilot.data.modeling.base.Group

autopilot.data.modeling.base.Node

autopilot.data.modeling.base.Schema

pydantic.main.BaseModelpydantic.utils.Representation

Autopilot’s models are built from pydantic models.

The autopilot.root module defines some of Autopilot’s basic metaclasses, one of which is Autopilot_Type. The
data.modeling module extends Autopilot_Type into several abstract modeling classes used for different types of
data:

13.6. Transition Status 117

https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://pydantic-docs.helpmanual.io/usage/models/

Autopilot Documentation, Release 0.5.0a1

• modeling.base.Data - Containers for data, generally these are used as containers for data, or else used to
specify how data should be handled and typed. Its subtypes indicate different classes of data that have different
means of storage and representation depending on the interface.

– modeling.base.Attributes - Static (usually metadata) attributes that are intended to be specified once
per instance they are used (eg. the Biography class is used once per Subject)

– modeling.base.Table - Tabular data specifies that there should be multiple values for each of the fields
defined: in particular equal numbers of each of them. This is used for most data collected, as most data can
be framed in a tabular format.

• modeling.base.Group and modeling.base.Node - Abstract specifications for hierarchical data interfaces
- a Node is a particular element in a tree/network-like system, and a Group is a collection of Nodes. Some
transitional work is still being done to generalize Autopilot’s former data structures from H5F-specific groups
and nodes, so for the moment there is some parallel functionality in the H5F_Node and H5F_Group classes

• modeling.base.Schema - Specifications for organization of other data structures, for data that isn’t ex-
pected to ever be instantiated in its described form, but for scaffolding building other data structures together.
Some transitional work is also being done here, eventually moving the Subject Schema to an abstract form
(Subject_Schema) vs one tied to HDF5 (Subject_Structure)

basic classes

Base classes for data models – the Data class itself.

Classes:

Data The top-level container for Data.
Table Tabular data: each field will have multiple values -- in

particular an equal number across fields.
Attributes A set of attributes that is intended to have a single rep-

resentation per usage: eg.
Schema A special type of type intended to be a representation of

an abstract structure/schema of data, rather than a live
container of data objects themselves.

Node Abstract representation of a Node in a treelike or linked
data structure.

Group A generic representation of a "Group" if present in a
given interface.

Data:

BASE_TYPES Base Python types that should be suppported by every
interface

pydantic model Data

Bases: autopilot.root.Autopilot_Type

The top-level container for Data.

Subtypes will define more specific formats and uses of data, but this is the most general form used to represent
the type and meaning of data.

The Data class is not intended to contain individual fields, but collections of data that are collected as a unit,
whether that be a video frame along with its timestamp and encoding, or a single trial of behavioral data.

118 Chapter 13. data

Autopilot Documentation, Release 0.5.0a1

This class is also generally not intended to be used for the literal transport of data when performance is necessary:
this class by default does type validation on instantiation that takes time (see the construct method for validation-
less creation). It is usually more to specify the type, grouping, and annotation for a given unit of data – though
users should feel free to dump their data in a Data object if it is not particularly performance sensitive.

{
"title": "Data",
"description": "The top-level container for Data.\n\nSubtypes will define more␣

→˓specific formats and uses of data, but this is the most general\nform used to␣
→˓represent the type and meaning of data.\n\nThe Data class is not intended to␣
→˓contain individual fields, but collections of data that are collected\nas a unit,␣
→˓whether that be a video frame along with its timestamp and encoding, or a single␣
→˓trial of behavioral data.\n\nThis class is also generally not intended to be used␣
→˓for the literal transport of data when performance is\nnecessary: this class by␣
→˓default does type validation on instantiation that takes time (see the `construct
→˓<https://pydantic-docs.helpmanual.io/usage/models/#creating-models-without-
→˓validation>`_\nmethod for validation-less creation). It is usually more to␣
→˓specify the type, grouping, and annotation for\na given unit of data -- though␣
→˓users should feel free to dump their data in a :class:`.Data` object if\nit is␣
→˓not particularly performance sensitive.",
"type": "object",
"properties": {}

}

pydantic model Table

Bases: autopilot.data.modeling.base.Data

Tabular data: each field will have multiple values – in particular an equal number across fields.

Used for trialwise data, and can be used to create pytables descriptions.

Todo: To make this usable as a live container of data, the fields need to be declared as Lists (eg. instead of
just declaring something an int, it must be specified as a List[int] to pass validation. We should expand this
model to relax that constraint and effectively treat every field as containing a list of values.

{
"title": "Table",
"description": "Tabular data: each field will have multiple values -- in␣

→˓particular an equal number across fields.\n\nUsed for trialwise data, and can be␣
→˓used to create pytables descriptions.\n\n.. todo::\n\n To make this usable as␣
→˓a live container of data, the fields need to be declared as Lists (eg. instead of␣
→˓just\n declaring something an ``int``, it must be specified as a ``List[int]``␣
→˓to pass validation. We should expand this\n model to relax that constraint and␣
→˓effectively treat every field as containing a list of values.",
"type": "object",
"properties": {}

}

classmethod to_pytables_description()→ Type[tables.description.IsDescription]
Convert the fields of this table to a pytables description.

See model_to_description()

classmethod from_pytables_description(description: Type[tables.description.IsDescription])→
autopilot.data.modeling.base.Table

13.6. Transition Status 119

https://pydantic-docs.helpmanual.io/usage/models/#creating-models-without-validation
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/typing.html#typing.Type

Autopilot Documentation, Release 0.5.0a1

Create an instance of a table from a pytables description

See description_to_model()

Parameters description (tables.IsDescription) – A Pytables description

to_df()→ pandas.core.frame.DataFrame
Create a dataframe from the lists of fields

Returns pandas.DataFrame

pydantic model Attributes

Bases: autopilot.data.modeling.base.Data

A set of attributes that is intended to have a single representation per usage: eg. a subject has a single set of
biographical information.

Useful to specify a particular type of storage that doesn’t need to include variable numbers of each field (eg. the
tables interface stores attribute objects as metadata on a node, rather than as a table).

{
"title": "Attributes",
"description": "A set of attributes that is intended to have a single␣

→˓representation per usage:\neg. a subject has a single set of biographical␣
→˓information.\n\nUseful to specify a particular type of storage that doesn't need␣
→˓to include variable\nnumbers of each field (eg. the tables interface stores␣
→˓attribute objects as metadata on a node, rather than as a table).",
"type": "object",
"properties": {}

}

pydantic model Schema

Bases: autopilot.root.Autopilot_Type

A special type of type intended to be a representation of an abstract structure/schema of data, rather than a live
container of data objects themselves. This class is used for constructing data containers, translating between
formats, etc. rather than momentary data handling

{
"title": "Schema",
"description": "A special type of type intended to be a representation of an\

→˓nabstract structure/schema of data, rather than a live container of\ndata objects␣
→˓themselves. This class is used for constructing data containers,\ntranslating␣
→˓between formats, etc. rather than momentary data handling",
"type": "object",
"properties": {}

}

pydantic model Node

Bases: autopilot.root.Autopilot_Type

Abstract representation of a Node in a treelike or linked data structure. This should be extended by interfaces
when relevant and needed to implement an abstract representation of their structure.

This class purposely lacks structure like a path or parents pending further usage in interfaces to see what would
be the best means of implementing them.

120 Chapter 13. data

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame

Autopilot Documentation, Release 0.5.0a1

{
"title": "Node",
"description": "Abstract representation of a Node in a treelike or linked data␣

→˓structure.\nThis should be extended by interfaces when relevant and needed to␣
→˓implement\nan abstract representation of their structure.\n\nThis class purposely␣
→˓lacks structure like a path or parents pending further\nusage in interfaces to␣
→˓see what would be the best means of implementing them.",
"type": "object",
"properties": {}

}

pydantic model Group

Bases: autopilot.root.Autopilot_Type

A generic representation of a “Group” if present in a given interface. Useful for when, for example in a given
container format you want to make an empty group that will be filled later, or one that has to be present for
syntactic correctness.

A children attribute is present because it is definitive of groups, but should be overridden by interfaces that use
it.

{
"title": "Group",
"description": "A generic representation of a \"Group\" if present in a given␣

→˓interface.\nUseful for when, for example in a given container format you want to\
→˓nmake an empty group that will be filled later, or one that has to be\npresent␣
→˓for syntactic correctness.\n\nA children attribute is present because it is␣
→˓definitive of groups, but\nshould be overridden by interfaces that use it.",
"type": "object",
"properties": {
"children": {
"title": "Children",
"type": "array",
"items": {
"$ref": "#/definitions/Node"

}
}

},
"definitions": {
"Node": {
"title": "Node",
"description": "Abstract representation of a Node in a treelike or linked␣

→˓data structure.\nThis should be extended by interfaces when relevant and needed␣
→˓to implement\nan abstract representation of their structure.\n\nThis class␣
→˓purposely lacks structure like a path or parents pending further\nusage in␣
→˓interfaces to see what would be the best means of implementing them.",

"type": "object",
"properties": {}

}
}

}

Fields

13.6. Transition Status 121

Autopilot Documentation, Release 0.5.0a1

• children (Optional[List[autopilot.data.modeling.base.Node]])

field children: Optional[List[autopilot.data.modeling.base.Node]] = None

BASE_TYPES = (<class 'bool'>, <class 'int'>, <class 'float'>, <class 'str'>, <class
'bytes'>, <class 'datetime.datetime'>)

Base Python types that should be suppported by every interface

13.6.4 models

Autopilot_Type

modeling.base.Node

modeling.base.Data

modeling.base.Group

modeling.base.Schema

models.protocol.Task_Params

interfaces.tables.H5F_Group

models.protocol.Protocol_Group

models.protocol.Step_Groupinterfaces.tables.H5F_Node

modeling.base.Attributes

models.biography.Biography

models.subject.Protocol_Status

modeling.base.Table

models.biography.Baselines

models.biography.Breeding

models.biography.Enclosure

models.biography.Gene

models.biography.Genotype

models.researcher.Researcher

models.subject.History_Group

models.protocol.Protocol_Data

models.protocol.Step_Data

models.subject.Subject_Schema

models.subject.Subject_Structure

models.protocol.Trial_Data

models.subject.Hashes

models.subject.History

models.subject.Weights

Specific models are then built out of the basic modeling components! This will serve as the point where data models
can be added or modified by plugins (stay tuned).

Each of the modules contains several classes that are used together in some particular context:

• models.biography - Defines biographical information for an individual Subject

• models.protocol - Defines the data structure of how multiple Tasks are stacked together into a training pro-
tocol, as well as how they are represented in the Subject’s h5f file.

• models.subject - Schemas that define how the multiple models that go into a subject are combined and struc-
tured on disk

• models.researcher - Stubs for researcher information that will be used in future versions for giving explicit
credit for data gathered by a particular researcher or research group. . .

122 Chapter 13. data

Autopilot Documentation, Release 0.5.0a1

biography

Data models for experimental subject biographies

Classes:

Enclosure Where does the subject live?
Breeding Information about the breeding conditions of the subject
Gene An individual (trans)gene that an animal may have.
Genotype Genotyping information, information about a subject's

background and (potentially multiple) Gene s of interest
Baselines Baseline health measurements for animal care regula-

tion.
Biography The combined biographical, health, genetic, and other

details that define an experimental subject.

SEX(*args, **kwargs)

• (F)emale

• (M)ale,

• (U)nknown,

• (O)ther.

We are following the Neurodata Without Borders suggestions here, but note that these are not prescriptive and
will be happily expanded whenever needed.

alias of Literal[‘F’, ‘M’, ‘U’, ‘O’]

pydantic model Enclosure

Bases: autopilot.data.modeling.base.Data

Where does the subject live?

{
"title": "Enclosure",
"description": "Where does the subject live?",
"type": "object",
"properties": {
"box": {
"title": "Box",
"description": "The number or name of the box this subject lives in, if any

→˓",
"anyOf": [

{
"type": "string"

},
{
"type": "integer"

}
]

},
"building": {
"title": "Building",
"description": "The name of the building that the subject is housed in",

(continues on next page)

13.6. Transition Status 123

https://docs.python.org/3/library/typing.html#typing.Literal

Autopilot Documentation, Release 0.5.0a1

(continued from previous page)

"type": "string"
},
"room": {
"title": "Room",
"description": "The room number that the animal is housed in",
"anyOf": [

{
"type": "string"

},
{
"type": "integer"

}
]

}
}

}

Fields
• box (Optional[Union[str, int]])

• building (Optional[str])

• room (Optional[Union[str, int]])

field box: Optional[Union[str, int]] = None

The number or name of the box this subject lives in, if any

field building: Optional[str] = None

The name of the building that the subject is housed in

field room: Optional[Union[str, int]] = None

The room number that the animal is housed in

pydantic model Breeding

Bases: autopilot.data.modeling.base.Data

Information about the breeding conditions of the subject

{
"title": "Breeding",
"description": "Information about the breeding conditions of the subject",
"type": "object",
"properties": {
"parents": {
"title": "Parents",
"description": "The IDs of the parents of this subject, if any",
"type": "array",
"items": {
"type": "string"

}
},
"litter": {
"title": "Litter",

(continues on next page)

124 Chapter 13. data

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

Autopilot Documentation, Release 0.5.0a1

(continued from previous page)

"description": "The identifying number or tag of the litter this subject␣
→˓was born in",

"anyOf": [
{
"type": "string"

},
{
"type": "integer"

}
]

}
},
"required": [

"parents",
"litter"

]
}

Fields
• litter (Union[str, int])

• parents (List[str])

field parents: List[str] [Required]

The IDs of the parents of this subject, if any

field litter: Union[str, int] [Required]

The identifying number or tag of the litter this subject was born in

pydantic model Gene

Bases: autopilot.data.modeling.base.Data

An individual (trans)gene that an animal may have.

I am not a geneticist, lmk what this should look like

{
"title": "Gene",
"description": "An individual (trans)gene that an animal may have.\n\nI am not a␣

→˓geneticist, lmk what this should look like",
"type": "object",
"properties": {
"name": {
"title": "Name",
"description": "The name of this gene",
"type": "string"

},
"zygosity": {
"title": "Zygosity",
"description": "One of typing.Literal['heterozygous', 'homozygous']",
"enum": [

"heterozygous",
"homozygous"

(continues on next page)

13.6. Transition Status 125

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

Autopilot Documentation, Release 0.5.0a1

(continued from previous page)

],
"type": "string"

}
},
"required": [

"name"
]

}

Fields
• name (str)

• zygosity (Literal['heterozygous', 'homozygous'])

field name: str [Required]

The name of this gene

field zygosity: Literal['heterozygous', 'homozygous'] = None

One of typing.Literal[‘heterozygous’, ‘homozygous’]

pydantic model Genotype

Bases: autopilot.data.modeling.base.Data

Genotyping information, information about a subject’s background and (potentially multiple) Gene s of interest

Todo: Call Jax’s API to get a list of available strain names

{
"title": "Genotype",
"description": "Genotyping information, information about a subject's background␣

→˓and (potentially multiple) :class:`.Gene` s of interest\n\n.. todo::\n\n Call␣
→˓Jax's API to get a list of available strain names",
"type": "object",
"properties": {
"strain": {
"title": "Strain",
"description": "The strain or background line of this subject, if any",
"type": "string"

},
"genes": {
"title": "Genes",
"description": "A list of any transgenes that this animal has",
"type": "array",
"items": {
"$ref": "#/definitions/Gene"

}
}

},
"definitions": {
"Gene": {
"title": "Gene",

(continues on next page)

126 Chapter 13. data

https://docs.python.org/3/library/stdtypes.html#str

Autopilot Documentation, Release 0.5.0a1

(continued from previous page)

"description": "An individual (trans)gene that an animal may have.\n\nI am␣
→˓not a geneticist, lmk what this should look like",

"type": "object",
"properties": {
"name": {
"title": "Name",
"description": "The name of this gene",
"type": "string"

},
"zygosity": {
"title": "Zygosity",
"description": "One of typing.Literal['heterozygous', 'homozygous']",
"enum": [

"heterozygous",
"homozygous"

],
"type": "string"

}
},
"required": [

"name"
]

}
}

}

Fields
• genes (Optional[List[autopilot.data.models.biography.Gene]])

• strain (Optional[str])

field strain: Optional[str] = None

The strain or background line of this subject, if any

field genes: Optional[List[autopilot.data.models.biography.Gene]] = None

A list of any transgenes that this animal has

pydantic model Baselines

Bases: autopilot.data.modeling.base.Data

Baseline health measurements for animal care regulation. In the future this will be integrated with a TrialManager
class to titrate trials to ensure experimental subjects remain healthy.

{
"title": "Baselines",
"description": "Baseline health measurements for animal care regulation. In the␣

→˓future this\nwill be integrated with a TrialManager class to titrate trials to␣
→˓ensure experimental\nsubjects remain healthy.",
"type": "object",
"properties": {
"mass": {
"title": "Mass",

(continues on next page)

13.6. Transition Status 127

https://docs.python.org/3/library/stdtypes.html#str

Autopilot Documentation, Release 0.5.0a1

(continued from previous page)

"description": "Mass (grams) of the animal before any experimental␣
→˓manipulation",

"type": "number"
},
"minimum_pct": {
"title": "Minimum Pct",
"description": "The proportion (0-1) of the baseline mass that the animal␣

→˓is not allowed to fall under",
"type": "number"

}
}

}

Fields
• mass (Optional[autopilot.data.units.base.Mass])

• minimum_pct (Optional[float])

field mass: Optional[autopilot.data.units.base.Mass] = None

Mass (grams) of the animal before any experimental manipulation

field minimum_pct: Optional[float] = None

The proportion (0-1) of the baseline mass that the animal is not allowed to fall under

property minimum_mass: float

The minimum mass (g), computed as mass * minimum_pct

pydantic model Biography

Bases: autopilot.data.modeling.base.Attributes

The combined biographical, health, genetic, and other details that define an experimental subject.

This is stored within the /info node in a typical Subject file as metadata attributes, and accessible from
Subject.info

Development Goals
• Interface with the NWB biographical information schema.

{
"title": "Biography",
"description": "The combined biographical, health, genetic, and other details␣

→˓that define an experimental subject.\n\nThis is stored within the ``/info`` node␣
→˓in a typical :class:`.Subject` file as\nmetadata attributes, and accessible from␣
→˓:attr:`.Subject.info`\n\n**Development Goals**\n\n- Interface with the NWB␣
→˓biographical information schema.",
"type": "object",
"properties": {
"id": {
"title": "Id",
"description": "The indentifying string, name, subject_id, etc. for this␣

→˓subject. This value is also used to name the related Subject file, like {id}.h5,␣
→˓so these are typically expected to be unique. If None is provided, a uuid.uuid4()␣
→˓will be generated (which will be ugly so you probably want to give an id).",

(continues on next page)

128 Chapter 13. data

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

Autopilot Documentation, Release 0.5.0a1

(continued from previous page)

"type": "string"
},
"start_date": {
"title": "Start Date",
"description": "The date that this subject file was created. Not that this␣

→˓is not necessarily the date that the subject began training, which is more␣
→˓reliably determined from the timestamps within the data. If none is provided,␣
→˓generated from current time.",

"type": "string",
"format": "date-time"

},
"dob": {
"title": "Dob",
"description": "The subject's date of birth. A datetime is allowed, but␣

→˓hours and minutes are typically not reliable. A time of midnight formally␣
→˓indicates that the hour and minute is not precise.",

"type": "string",
"format": "date-time"

},
"sex": {
"title": "Sex",
"description": "Sex of the subject, one of typing.Literal['F', 'M', 'U', 'O

→˓']. See :data:`.SEX`",
"default": "U",
"enum": [

"F",
"M",
"U",
"O"

],
"type": "string"

},
"description": {
"title": "Description",
"description": "Some lengthier description of the subject, idk go hogwild.

→˓",
"type": "string"

},
"tags": {
"title": "Tags",
"description": "Any additional key/value tags that apply to this subject.␣

→˓Idiosyncratic metadata can be stored here, but caution should be taken to not␣
→˓overload this field and instead extend the Biography class because these values␣
→˓will not be included in any resulting schema.",

"type": "object"
},
"species": {
"title": "Species",
"description": "Species of subject, no recommendation common vs. latin␣

→˓names, but will be integrated with linked data schemas in the future",
"type": "string"

},

(continues on next page)

13.6. Transition Status 129

Autopilot Documentation, Release 0.5.0a1

(continued from previous page)

"breeding": {
"$ref": "#/definitions/Breeding"

},
"enclosure": {
"$ref": "#/definitions/Enclosure"

},
"baselines": {
"$ref": "#/definitions/Baselines"

},
"genotype": {
"$ref": "#/definitions/Genotype"

}
},
"definitions": {
"Breeding": {
"title": "Breeding",
"description": "Information about the breeding conditions of the subject",
"type": "object",
"properties": {
"parents": {
"title": "Parents",
"description": "The IDs of the parents of this subject, if any",
"type": "array",
"items": {
"type": "string"

}
},
"litter": {
"title": "Litter",
"description": "The identifying number or tag of the litter this␣

→˓subject was born in",
"anyOf": [

{
"type": "string"

},
{
"type": "integer"

}
]

}
},
"required": [

"parents",
"litter"

]
},
"Enclosure": {
"title": "Enclosure",
"description": "Where does the subject live?",
"type": "object",
"properties": {
"box": {

(continues on next page)

130 Chapter 13. data

Autopilot Documentation, Release 0.5.0a1

(continued from previous page)

"title": "Box",
"description": "The number or name of the box this subject lives in,␣

→˓if any",
"anyOf": [

{
"type": "string"

},
{
"type": "integer"

}
]

},
"building": {
"title": "Building",
"description": "The name of the building that the subject is housed␣

→˓in",
"type": "string"

},
"room": {
"title": "Room",
"description": "The room number that the animal is housed in",
"anyOf": [

{
"type": "string"

},
{
"type": "integer"

}
]

}
}

},
"Baselines": {
"title": "Baselines",
"description": "Baseline health measurements for animal care regulation.␣

→˓In the future this\nwill be integrated with a TrialManager class to titrate␣
→˓trials to ensure experimental\nsubjects remain healthy.",

"type": "object",
"properties": {
"mass": {
"title": "Mass",
"description": "Mass (grams) of the animal before any experimental␣

→˓manipulation",
"type": "number"

},
"minimum_pct": {
"title": "Minimum Pct",
"description": "The proportion (0-1) of the baseline mass that the␣

→˓animal is not allowed to fall under",
"type": "number"

}
}

(continues on next page)

13.6. Transition Status 131

Autopilot Documentation, Release 0.5.0a1

(continued from previous page)

},
"Gene": {
"title": "Gene",
"description": "An individual (trans)gene that an animal may have.\n\nI am␣

→˓not a geneticist, lmk what this should look like",
"type": "object",
"properties": {
"name": {
"title": "Name",
"description": "The name of this gene",
"type": "string"

},
"zygosity": {
"title": "Zygosity",
"description": "One of typing.Literal['heterozygous', 'homozygous']",
"enum": [

"heterozygous",
"homozygous"

],
"type": "string"

}
},
"required": [

"name"
]

},
"Genotype": {
"title": "Genotype",
"description": "Genotyping information, information about a subject's␣

→˓background and (potentially multiple) :class:`.Gene` s of interest\n\n.. todo::\n\
→˓n Call Jax's API to get a list of available strain names",

"type": "object",
"properties": {
"strain": {
"title": "Strain",
"description": "The strain or background line of this subject, if any

→˓",
"type": "string"

},
"genes": {
"title": "Genes",
"description": "A list of any transgenes that this animal has",
"type": "array",
"items": {
"$ref": "#/definitions/Gene"

}
}

}
}

}
}

132 Chapter 13. data

Autopilot Documentation, Release 0.5.0a1

Fields
• baselines (Optional[autopilot.data.models.biography.Baselines])

• breeding (Optional[autopilot.data.models.biography.Breeding])

• description (Optional[str])

• dob (Optional[datetime.datetime])

• enclosure (Optional[autopilot.data.models.biography.Enclosure])

• genotype (Optional[autopilot.data.models.biography.Genotype])

• id (str)

• sex (Literal['F', 'M', 'U', 'O'])

• species (Optional[str])

• start_date (Optional[datetime.datetime])

• tags (Optional[dict])

field id: str [Optional]

The indentifying string, name, subject_id, etc. for this subject. This value is also used to name the related
Subject file, like {id}.h5, so these are typically expected to be unique. If None is provided, a uuid.uuid4()
will be generated (which will be ugly so you probably want to give an id).

field start_date: Optional[datetime.datetime] [Optional]

The date that this subject file was created. Not that this is not necessarily the date that the subject began
training, which is more reliably determined from the timestamps within the data. If none is provided,
generated from current time.

field dob: Optional[datetime.datetime] = None

The subject’s date of birth. A datetime is allowed, but hours and minutes are typically not reliable. A time
of midnight formally indicates that the hour and minute is not precise.

field sex: Literal['F', 'M', 'U', 'O'] = 'U'

Sex of the subject, one of typing.Literal[‘F’, ‘M’, ‘U’, ‘O’]. See SEX

field description: Optional[str] = None

Some lengthier description of the subject, idk go hogwild.

field tags: Optional[dict] = None

Any additional key/value tags that apply to this subject. Idiosyncratic metadata can be stored here, but
caution should be taken to not overload this field and instead extend the Biography class because these
values will not be included in any resulting schema.

field species: Optional[str] = None

Species of subject, no recommendation common vs. latin names, but will be integrated with linked data
schemas in the future

field breeding: Optional[autopilot.data.models.biography.Breeding] = None

field enclosure: Optional[autopilot.data.models.biography.Enclosure] = None

field baselines: Optional[autopilot.data.models.biography.Baselines] = None

field genotype: Optional[autopilot.data.models.biography.Genotype] = None

property age: datetime.timedelta

Difference between now and dob

13.6. Transition Status 133

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/datetime.html#datetime.timedelta

Autopilot Documentation, Release 0.5.0a1

protocol

Representations of experimental protocols: multiple Task s grouped together with Graduation objects.

Classes:

Task_Params Metaclass for storing task parameters
Trial_Data Base class for declaring trial data.
Step_Group An hdf5 group for an individual step within a protocol.
Protocol_Group The group and subgroups for a given protocol.
Step_Data Schema for storing data for a single step of a protocol
Protocol_Data

pydantic model Task_Params

Bases: autopilot.root.Autopilot_Type

Metaclass for storing task parameters

Todo: Not yet used in GUI, terminal, and subject classes. Will replace the dictionary structure ASAP

{
"title": "Task_Params",
"description": "Metaclass for storing task parameters\n\n.. todo::\n\n Not␣

→˓yet used in GUI, terminal, and subject classes. Will replace the dictionary␣
→˓structure ASAP",
"type": "object",
"properties": {}

}

pydantic model Trial_Data

Bases: autopilot.data.modeling.base.Table

Base class for declaring trial data.

Tasks should subclass this and add any additional parameters that are needed. The subject class will then use
this to create a table in the hdf5 file.

See Nafc.TrialData for an example

{
"title": "Trial_Data",
"description": "Base class for declaring trial data.\n\nTasks should subclass␣

→˓this and add any additional parameters that are needed.\nThe subject class will␣
→˓then use this to create a table in the hdf5 file.\n\nSee :attr:`.Nafc.TrialData`␣
→˓for an example",
"type": "object",
"properties": {
"group": {
"title": "Group",
"description": "Path of the parent step group",
"type": "string"

},
(continues on next page)

134 Chapter 13. data

Autopilot Documentation, Release 0.5.0a1

(continued from previous page)

"session": {
"title": "Session",
"description": "Current training session, increments every time the task␣

→˓is started",
"type": "integer"

},
"session_uuid": {
"title": "Session Uuid",
"description": "Each session gets a unique uuid, regardless of the session␣

→˓integer, to enable independent addressing of sessions when session numbers might␣
→˓overlap (eg. reassignment)",

"type": "string"
},
"trial_num": {
"title": "Trial Num",
"description": "Trial data is grouped within, well, trials, which increase␣

→˓(rather than resetting) across sessions within a task",
"datajoint": {
"key": true

},
"type": "integer"

}
},
"required": [

"session",
"trial_num"

]
}

Fields
• group (Optional[str])

• session (int)

• session_uuid (Optional[str])

• trial_num (int)

field group: Optional[str] = None

Path of the parent step group

field session: int [Required]

Current training session, increments every time the task is started

field session_uuid: Optional[str] = None

Each session gets a unique uuid, regardless of the session integer, to enable independent addressing of
sessions when session numbers might overlap (eg. reassignment)

field trial_num: int [Required]

Trial data is grouped within, well, trials, which increase (rather than resetting) across sessions within a task

pydantic model Step_Group

Bases: autopilot.data.interfaces.tables.H5F_Group

An hdf5 group for an individual step within a protocol.

13.6. Transition Status 135

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

Autopilot Documentation, Release 0.5.0a1

Typically this is populated by passing a step number and a dictionary of step parameters.

Parameters
• step (int) – Step number within a protocol

• group_path (str) – Path to the group within an HDF5 file

• step_dict (dict) – Dictionary of step parameters. Either this or step_name must be passed

• step_name (str) – Step name – if step_dict is not present, use this to generate a name for
the created hdf5 group

• trial_data (Trial_Data) – Explicitly passed Trial_Data object. If not passed, get from the
task_type parameter in the step_dict

• **data – passed to superclass __init__ method

{
"title": "Step_Group",
"description": "An hdf5 group for an individual step within a protocol.\n\

→˓nTypically this is populated by passing a step number and a dictionary of step␣
→˓parameters.",
"type": "object",
"properties": {
"path": {
"title": "Path",
"type": "string"

},
"title": {
"title": "Title",
"default": "",
"type": "string"

},
"filters": {
"title": "Filters"

},
"attrs": {
"title": "Attrs",
"type": "object"

},
"children": {
"title": "Children"

},
"step_name": {
"title": "Step Name",
"type": "string"

},
"step": {
"title": "Step",
"type": "integer"

},
"trial_data": {
"title": "Trial Data"

},
"continuous_group": {
"title": "Continuous Group"

(continues on next page)

136 Chapter 13. data

Autopilot Documentation, Release 0.5.0a1

(continued from previous page)

}
},
"required": [

"path",
"step_name",
"step"

]
}

Config
• arbitrary_types_allowed: bool = True

Fields
• continuous_group (Optional[autopilot.data.interfaces.tables.
H5F_Group])

• path (str)

• step (int)

• step_name (str)

• trial_data (Optional[Type[autopilot.data.models.protocol.
Trial_Data]])

field step_name: str [Required]

field step: int [Required]

field path: str [Required]

field trial_data: Optional[Type[autopilot.data.models.protocol.Trial_Data]] =
<class 'autopilot.data.models.protocol.Trial_Data'>

field continuous_group: Optional[autopilot.data.interfaces.tables.H5F_Group] = None

pydantic model Protocol_Group

Bases: autopilot.data.interfaces.tables.H5F_Group

The group and subgroups for a given protocol.

For each protocol, a main group is created that has the name of the protocol, and then subgroups are created for
each of its steps.

Within each step group, a table is made for TrialData, and tables are created as-needed for continuous data.

For Example:

/ data
|--- protocol_name

|--- S##_step_name
| |--- trial_data
| |--- continuous_data
|--- ... additional steps

13.6. Transition Status 137

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Autopilot Documentation, Release 0.5.0a1

Todo: Also make a Step group. . . what’s the matter with ya.

Override default __init__ method to populate a task’s groups.

Todo: When finished, replace the implicit structure of the protocol dictionary with Task_Params

Parameters
• protocol_name (str) – Name of a protocol (filename minus .json)

• protocol (List[dict]) – A list of dictionaries, one with the parameters for each task level.

• **data – passed to superclass init

{
"title": "Protocol_Group",
"description": "The group and subgroups for a given protocol.\n\nFor each␣

→˓protocol, a main group is created that has the name of the protocol,\nand then␣
→˓subgroups are created for each of its steps.\n\nWithin each step group, a table␣
→˓is made for TrialData, and tables are created\nas-needed for continuous data.\n\
→˓nFor Example::\n\n / data\n |--- protocol_name\n |--- S##_step_name\
→˓n | |--- trial_data\n | |--- continuous_data\n |--- ...␣
→˓additional steps\n\n.. todo::\n\n Also make a Step group... what's the matter␣
→˓with ya.",
"type": "object",
"properties": {
"path": {
"title": "Path",
"type": "string"

},
"title": {
"title": "Title",
"default": "",
"type": "string"

},
"filters": {
"title": "Filters"

},
"attrs": {
"title": "Attrs",
"type": "object"

},
"children": {
"title": "Children"

},
"protocol_name": {
"title": "Protocol Name",
"type": "string"

},
"protocol": {
"title": "Protocol",

(continues on next page)

138 Chapter 13. data

Autopilot Documentation, Release 0.5.0a1

(continued from previous page)

"type": "array",
"items": {
"type": "object"

}
},
"tabs": {
"title": "Tabs"

},
"steps": {
"title": "Steps"

}
},
"required": [

"path",
"protocol_name",
"protocol"

]
}

Config
• arbitrary_types_allowed: bool = True

Fields
• protocol (List[dict])

• protocol_name (str)

• steps (List[autopilot.data.models.protocol.Step_Group])

• tabs (List[autopilot.data.interfaces.tables.H5F_Table])

field protocol_name: str [Required]

field protocol: List[dict] [Required]

field tabs: List[autopilot.data.interfaces.tables.H5F_Table] [Required]

field steps: List[autopilot.data.models.protocol.Step_Group] [Required]

pydantic model Step_Data

Bases: autopilot.data.modeling.base.Schema

Schema for storing data for a single step of a protocol

{
"title": "Step_Data",
"description": "Schema for storing data for a single step of a protocol",
"type": "object",
"properties": {
"task": {
"$ref": "#/definitions/Task_Params"

},
"trial_data_table": {
"$ref": "#/definitions/Table"

(continues on next page)

13.6. Transition Status 139

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

Autopilot Documentation, Release 0.5.0a1

(continued from previous page)

},
"trial_data": {
"$ref": "#/definitions/Trial_Data"

},
"continuous_data": {
"title": "Continuous Data",
"type": "object",
"additionalProperties": {
"type": "array",
"items": {}

}
}

},
"required": [

"task",
"trial_data_table",
"trial_data",
"continuous_data"

],
"definitions": {
"Task_Params": {
"title": "Task_Params",
"description": "Metaclass for storing task parameters\n\n.. todo::\n\n ␣

→˓Not yet used in GUI, terminal, and subject classes. Will replace the dictionary␣
→˓structure ASAP",

"type": "object",
"properties": {}

},
"Table": {
"title": "Table",
"description": "Tabular data: each field will have multiple values -- in␣

→˓particular an equal number across fields.\n\nUsed for trialwise data, and can be␣
→˓used to create pytables descriptions.\n\n.. todo::\n\n To make this usable as␣
→˓a live container of data, the fields need to be declared as Lists (eg. instead of␣
→˓just\n declaring something an ``int``, it must be specified as a ``List[int]``␣
→˓to pass validation. We should expand this\n model to relax that constraint and␣
→˓effectively treat every field as containing a list of values.",

"type": "object",
"properties": {}

},
"Trial_Data": {
"title": "Trial_Data",
"description": "Base class for declaring trial data.\n\nTasks should␣

→˓subclass this and add any additional parameters that are needed.\nThe subject␣
→˓class will then use this to create a table in the hdf5 file.\n\nSee :attr:`.Nafc.
→˓TrialData` for an example",

"type": "object",
"properties": {
"group": {
"title": "Group",
"description": "Path of the parent step group",
"type": "string"

(continues on next page)

140 Chapter 13. data

Autopilot Documentation, Release 0.5.0a1

(continued from previous page)

},
"session": {
"title": "Session",
"description": "Current training session, increments every time the␣

→˓task is started",
"type": "integer"

},
"session_uuid": {
"title": "Session Uuid",
"description": "Each session gets a unique uuid, regardless of the␣

→˓session integer, to enable independent addressing of sessions when session␣
→˓numbers might overlap (eg. reassignment)",

"type": "string"
},
"trial_num": {
"title": "Trial Num",
"description": "Trial data is grouped within, well, trials, which␣

→˓increase (rather than resetting) across sessions within a task",
"datajoint": {
"key": true

},
"type": "integer"

}
},
"required": [

"session",
"trial_num"

]
}

}
}

Fields
• continuous_data (Dict[str, list])

• task (autopilot.data.models.protocol.Task_Params)

• trial_data (autopilot.data.models.protocol.Trial_Data)

• trial_data_table (autopilot.data.modeling.base.Table)

field task: autopilot.data.models.protocol.Task_Params [Required]

field trial_data_table: autopilot.data.modeling.base.Table [Required]

field trial_data: autopilot.data.models.protocol.Trial_Data [Required]

field continuous_data: Dict[str, list] [Required]

pydantic model Protocol_Data

Bases: autopilot.data.modeling.base.Schema

13.6. Transition Status 141

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list

Autopilot Documentation, Release 0.5.0a1

{
"title": "Protocol_Data",
"description": "A special type of type intended to be a representation of an\

→˓nabstract structure/schema of data, rather than a live container of\ndata objects␣
→˓themselves. This class is used for constructing data containers,\ntranslating␣
→˓between formats, etc. rather than momentary data handling",
"type": "object",
"properties": {
"steps": {
"title": "Steps",
"type": "array",
"items": {
"$ref": "#/definitions/Step_Data"

}
}

},
"required": [

"steps"
],
"definitions": {
"Task_Params": {
"title": "Task_Params",
"description": "Metaclass for storing task parameters\n\n.. todo::\n\n ␣

→˓Not yet used in GUI, terminal, and subject classes. Will replace the dictionary␣
→˓structure ASAP",

"type": "object",
"properties": {}

},
"Table": {
"title": "Table",
"description": "Tabular data: each field will have multiple values -- in␣

→˓particular an equal number across fields.\n\nUsed for trialwise data, and can be␣
→˓used to create pytables descriptions.\n\n.. todo::\n\n To make this usable as␣
→˓a live container of data, the fields need to be declared as Lists (eg. instead of␣
→˓just\n declaring something an ``int``, it must be specified as a ``List[int]``␣
→˓to pass validation. We should expand this\n model to relax that constraint and␣
→˓effectively treat every field as containing a list of values.",

"type": "object",
"properties": {}

},
"Trial_Data": {
"title": "Trial_Data",
"description": "Base class for declaring trial data.\n\nTasks should␣

→˓subclass this and add any additional parameters that are needed.\nThe subject␣
→˓class will then use this to create a table in the hdf5 file.\n\nSee :attr:`.Nafc.
→˓TrialData` for an example",

"type": "object",
"properties": {
"group": {
"title": "Group",
"description": "Path of the parent step group",
"type": "string"

},
(continues on next page)

142 Chapter 13. data

Autopilot Documentation, Release 0.5.0a1

(continued from previous page)

"session": {
"title": "Session",
"description": "Current training session, increments every time the␣

→˓task is started",
"type": "integer"

},
"session_uuid": {
"title": "Session Uuid",
"description": "Each session gets a unique uuid, regardless of the␣

→˓session integer, to enable independent addressing of sessions when session␣
→˓numbers might overlap (eg. reassignment)",

"type": "string"
},
"trial_num": {
"title": "Trial Num",
"description": "Trial data is grouped within, well, trials, which␣

→˓increase (rather than resetting) across sessions within a task",
"datajoint": {
"key": true

},
"type": "integer"

}
},
"required": [

"session",
"trial_num"

]
},
"Step_Data": {
"title": "Step_Data",
"description": "Schema for storing data for a single step of a protocol",
"type": "object",
"properties": {
"task": {
"$ref": "#/definitions/Task_Params"

},
"trial_data_table": {
"$ref": "#/definitions/Table"

},
"trial_data": {
"$ref": "#/definitions/Trial_Data"

},
"continuous_data": {
"title": "Continuous Data",
"type": "object",
"additionalProperties": {
"type": "array",
"items": {}

}
}

},
"required": [

(continues on next page)

13.6. Transition Status 143

Autopilot Documentation, Release 0.5.0a1

(continued from previous page)

"task",
"trial_data_table",
"trial_data",
"continuous_data"

]
}

}
}

Fields
• steps (List[autopilot.data.models.protocol.Step_Data])

field steps: List[autopilot.data.models.protocol.Step_Data] [Required]

researcher

Researcher, lab, institute data structures

Classes:

Researcher

pydantic model Researcher

Bases: autopilot.data.modeling.base.Data

{
"title": "Researcher",
"description": "The top-level container for Data.\n\nSubtypes will define more␣

→˓specific formats and uses of data, but this is the most general\nform used to␣
→˓represent the type and meaning of data.\n\nThe Data class is not intended to␣
→˓contain individual fields, but collections of data that are collected\nas a unit,␣
→˓whether that be a video frame along with its timestamp and encoding, or a single␣
→˓trial of behavioral data.\n\nThis class is also generally not intended to be used␣
→˓for the literal transport of data when performance is\nnecessary: this class by␣
→˓default does type validation on instantiation that takes time (see the `construct
→˓<https://pydantic-docs.helpmanual.io/usage/models/#creating-models-without-
→˓validation>`_\nmethod for validation-less creation). It is usually more to␣
→˓specify the type, grouping, and annotation for\na given unit of data -- though␣
→˓users should feel free to dump their data in a :class:`.Data` object if\nit is␣
→˓not particularly performance sensitive.",
"type": "object",
"properties": {
"name": {
"title": "Name",
"type": "string"

}
},
"required": [

"name"
(continues on next page)

144 Chapter 13. data

Autopilot Documentation, Release 0.5.0a1

(continued from previous page)

]
}

Fields
• name (str)

field name: str [Required]

subject

Data models used by the Subject class

Classes:

History Table to describe parameter and protocol change history
Hashes Table to track changes in version over time
Weights Class to describe table for weight history
History_Group Group for collecting subject history tables.
Protocol_Status Status of assigned protocol.
Subject_Structure Structure of the Subject class's hdf5 file
Subject_Schema Structure of the Subject class's hdf5 file

pydantic model History

Bases: autopilot.data.modeling.base.Table

Table to describe parameter and protocol change history

{
"title": "History",
"description": "Table to describe parameter and protocol change history",
"type": "object",
"properties": {
"time": {
"title": "Time",
"type": "array",
"items": {
"type": "string",
"format": "date-time"

}
},
"type": {
"title": "Type",
"type": "array",
"items": {
"type": "string"

}
},
"name": {
"title": "Name",
"type": "array",

(continues on next page)

13.6. Transition Status 145

https://docs.python.org/3/library/stdtypes.html#str

Autopilot Documentation, Release 0.5.0a1

(continued from previous page)

"items": {
"type": "string"

}
},
"value": {
"title": "Value",
"type": "array",
"items": {
"anyOf": [

{
"type": "string"

},
{
"type": "array",
"items": {
"type": "object"

}
}

]
}

}
},
"required": [

"time",
"type",
"name",
"value"

]
}

Fields
• name (List[str])

• time (List[datetime.datetime])

• type (List[str])

• value (List[Union[str, List[dict]]])

Validators
• simple_time » time

field time: List[datetime.datetime] [Required]

Timestamps for history changes

Validated by
• simple_time

field type: List[str] [Required]

Type of change - protocol, parameter, step

field name: List[str] [Required]

Which parameter was changed, name of protocol, manual vs. graduation step change

146 Chapter 13. data

https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Autopilot Documentation, Release 0.5.0a1

field value: List[Union[str, List[dict]]] [Required]

What was the parameter/protocol/etc. changed to, step if protocol.

validator simple_time » time

pydantic model Hashes

Bases: autopilot.data.modeling.base.Table

Table to track changes in version over time

{
"title": "Hashes",
"description": "Table to track changes in version over time",
"type": "object",
"properties": {
"time": {
"title": "Time",
"type": "array",
"items": {
"type": "string",
"format": "date-time"

}
},
"hash": {
"title": "Hash",
"type": "array",
"items": {
"type": "string"

}
},
"version": {
"title": "Version",
"type": "array",
"items": {
"type": "string"

}
},
"id": {
"title": "Id",
"type": "array",
"items": {
"type": "string"

}
}

},
"required": [

"time",
"hash",
"version",
"id"

]
}

Fields

13.6. Transition Status 147

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

Autopilot Documentation, Release 0.5.0a1

• hash (List[str])

• id (List[str])

• time (List[datetime.datetime])

• version (List[str])

field time: List[datetime.datetime] [Required]

Timestamps for entries

field hash: List[str] [Required]

Hash of the currently checked out commit of the git repository.

field version: List[str] [Required]

Current Version of autopilot, if not run from a cloned repository

field id: List[str] [Required]

ID of the agent whose hash we are stashing (we want to keep track of all connected agents, ideally

pydantic model Weights

Bases: autopilot.data.modeling.base.Table

Class to describe table for weight history

{
"title": "Weights",
"description": "Class to describe table for weight history",
"type": "object",
"properties": {
"start": {
"title": "Start",
"type": "array",
"items": {
"type": "number"

}
},
"stop": {
"title": "Stop",
"type": "array",
"items": {
"type": "number"

}
},
"date": {
"title": "Date",
"type": "array",
"items": {
"type": "string",
"format": "date-time"

}
},
"session": {
"title": "Session",
"type": "array",
"items": {

(continues on next page)

148 Chapter 13. data

https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Autopilot Documentation, Release 0.5.0a1

(continued from previous page)

"type": "integer"
}

}
},
"required": [

"start",
"stop",
"date",
"session"

]
}

Fields
• date (List[datetime.datetime])

• session (List[int])

• start (List[float])

• stop (List[float])

Validators
• simple_time » date

field start: List[float] [Required]

Pre-task mass

field stop: List[float] [Required]

Post-task mass

field date: List[datetime.datetime] [Required]

Timestamp of task start

Validated by
• simple_time

field session: List[int] [Required]

Session number

validator simple_time » date

pydantic model History_Group

Bases: autopilot.data.modeling.base.Group

Group for collecting subject history tables.

Typically stored in /history in the subject .h5f file

{
"title": "History_Group",
"description": "Group for collecting subject history tables.\n\nTypically stored␣

→˓in ``/history`` in the subject .h5f file",
"type": "object",
"properties": {
"children": {

(continues on next page)

13.6. Transition Status 149

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/functions.html#int

Autopilot Documentation, Release 0.5.0a1

(continued from previous page)

"title": "Children",
"type": "array",
"items": {
"$ref": "#/definitions/Node"

}
},
"history": {
"$ref": "#/definitions/History"

},
"hashes": {
"$ref": "#/definitions/Hashes"

},
"weights": {
"$ref": "#/definitions/Weights"

},
"past_protocols": {
"$ref": "#/definitions/Group"

}
},
"required": [

"history",
"hashes",
"weights",
"past_protocols"

],
"definitions": {
"Node": {
"title": "Node",
"description": "Abstract representation of a Node in a treelike or linked␣

→˓data structure.\nThis should be extended by interfaces when relevant and needed␣
→˓to implement\nan abstract representation of their structure.\n\nThis class␣
→˓purposely lacks structure like a path or parents pending further\nusage in␣
→˓interfaces to see what would be the best means of implementing them.",

"type": "object",
"properties": {}

},
"History": {
"title": "History",
"description": "Table to describe parameter and protocol change history",
"type": "object",
"properties": {
"time": {
"title": "Time",
"type": "array",
"items": {
"type": "string",
"format": "date-time"

}
},
"type": {
"title": "Type",
"type": "array",

(continues on next page)

150 Chapter 13. data

Autopilot Documentation, Release 0.5.0a1

(continued from previous page)

"items": {
"type": "string"

}
},
"name": {
"title": "Name",
"type": "array",
"items": {
"type": "string"

}
},
"value": {
"title": "Value",
"type": "array",
"items": {
"anyOf": [

{
"type": "string"

},
{
"type": "array",
"items": {
"type": "object"

}
}

]
}

}
},
"required": [

"time",
"type",
"name",
"value"

]
},
"Hashes": {
"title": "Hashes",
"description": "Table to track changes in version over time",
"type": "object",
"properties": {
"time": {
"title": "Time",
"type": "array",
"items": {
"type": "string",
"format": "date-time"

}
},
"hash": {
"title": "Hash",
"type": "array",

(continues on next page)

13.6. Transition Status 151

Autopilot Documentation, Release 0.5.0a1

(continued from previous page)

"items": {
"type": "string"

}
},
"version": {
"title": "Version",
"type": "array",
"items": {
"type": "string"

}
},
"id": {
"title": "Id",
"type": "array",
"items": {
"type": "string"

}
}

},
"required": [

"time",
"hash",
"version",
"id"

]
},
"Weights": {
"title": "Weights",
"description": "Class to describe table for weight history",
"type": "object",
"properties": {
"start": {
"title": "Start",
"type": "array",
"items": {
"type": "number"

}
},
"stop": {
"title": "Stop",
"type": "array",
"items": {
"type": "number"

}
},
"date": {
"title": "Date",
"type": "array",
"items": {
"type": "string",
"format": "date-time"

}

(continues on next page)

152 Chapter 13. data

Autopilot Documentation, Release 0.5.0a1

(continued from previous page)

},
"session": {
"title": "Session",
"type": "array",
"items": {
"type": "integer"

}
}

},
"required": [

"start",
"stop",
"date",
"session"

]
},
"Group": {
"title": "Group",
"description": "A generic representation of a \"Group\" if present in a␣

→˓given interface.\nUseful for when, for example in a given container format you␣
→˓want to\nmake an empty group that will be filled later, or one that has to be\
→˓npresent for syntactic correctness.\n\nA children attribute is present because it␣
→˓is definitive of groups, but\nshould be overridden by interfaces that use it.",

"type": "object",
"properties": {
"children": {
"title": "Children",
"type": "array",
"items": {
"$ref": "#/definitions/Node"

}
}

}
}

}
}

Fields
• hashes (autopilot.data.models.subject.Hashes)

• history (autopilot.data.models.subject.History)

• past_protocols (autopilot.data.modeling.base.Group)

• weights (autopilot.data.models.subject.Weights)

field history: autopilot.data.models.subject.History [Required]

field hashes: autopilot.data.models.subject.Hashes [Required]

field weights: autopilot.data.models.subject.Weights [Required]

field past_protocols: autopilot.data.modeling.base.Group [Required]

13.6. Transition Status 153

Autopilot Documentation, Release 0.5.0a1

pydantic model Protocol_Status

Bases: autopilot.data.modeling.base.Attributes

Status of assigned protocol. Accessible from the Subject.protocol getter/setter

See Subject.assign_protocol().

{
"title": "Protocol_Status",
"description": "Status of assigned protocol. Accessible from the :attr:`.Subject.

→˓protocol` getter/setter\n\nSee :meth:`.Subject.assign_protocol`.",
"type": "object",
"properties": {
"current_trial": {
"title": "Current Trial",
"type": "integer"

},
"session": {
"title": "Session",
"type": "integer"

},
"step": {
"title": "Step",
"type": "integer"

},
"protocol": {
"title": "Protocol",
"type": "array",
"items": {
"type": "object"

}
},
"protocol_name": {
"title": "Protocol Name",
"type": "string"

},
"pilot": {
"title": "Pilot",
"description": "Pilot that this subject runs on",
"type": "string"

},
"assigned": {
"title": "Assigned",
"type": "string",
"format": "date-time"

}
},
"required": [

"current_trial",
"session",
"step",
"protocol",
"protocol_name"

]
(continues on next page)

154 Chapter 13. data

Autopilot Documentation, Release 0.5.0a1

(continued from previous page)

}

Fields
• assigned (datetime.datetime)

• current_trial (int)

• pilot (Optional[str])

• protocol (List[dict])

• protocol_name (str)

• session (int)

• step (int)

field current_trial: int [Required]

Current or last trial that was run in the particular level of the protocol. Continues to increment across
sessions, resets across different levels of the protocol.

field session: int [Required]

Session number. Increments every time the subject is run.

field step: int [Required]

Current step of the protocol that the subject is running.

field protocol: List[dict] [Required]

The full definition of the steps (individual tasks) that define the protocol

field protocol_name: str [Required]

Name of the assigned protocol, typically the filename this protocol is stored in minus .json

field pilot: Optional[str] = None

The ID of the pilot that this subject does their experiment on

Pilot that this subject runs on

field assigned: datetime.datetime [Optional]

The time that this protocol was assigned. If not passed explicitly, generated each time the protocol status is
changed.

pydantic model Subject_Structure

Bases: autopilot.data.modeling.base.Schema

Structure of the Subject class’s hdf5 file

{
"title": "Subject_Structure",
"description": "Structure of the :class:`.Subject` class's hdf5 file",
"type": "object",
"properties": {
"info": {
"title": "Info"

},
"data": {
"title": "Data"

(continues on next page)

13.6. Transition Status 155

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/datetime.html#datetime.datetime

Autopilot Documentation, Release 0.5.0a1

(continued from previous page)

},
"protocol": {
"title": "Protocol"

},
"history": {
"title": "History"

}
}

}

Fields

make(h5f: tables.file.File)
Make all the nodes!

Parameters h5f (tables.file.File) – The h5f file to make the groups in!

pydantic model Subject_Schema

Bases: autopilot.data.modeling.base.Schema

Structure of the Subject class’s hdf5 file

Todo: Convert this into an abstract representation of data rather than literally hdf5 tables.

At the moment twins Subject_Structure

{
"title": "Subject_Schema",
"description": "Structure of the :class:`.Subject` class's hdf5 file\n\n..␣

→˓todo::\n\n Convert this into an abstract representation of data rather than␣
→˓literally hdf5 tables.\n\n At the moment twins :class:`.Subject_Structure`",
"type": "object",
"properties": {
"info": {
"$ref": "#/definitions/Biography"

},
"data": {
"$ref": "#/definitions/Protocol_Data"

},
"protocol": {
"$ref": "#/definitions/Protocol_Status"

},
"past_protocols": {
"title": "Past Protocols",
"type": "array",
"items": {
"$ref": "#/definitions/Protocol_Status"

}
},
"history": {
"$ref": "#/definitions/History_Group"

}
(continues on next page)

156 Chapter 13. data

Autopilot Documentation, Release 0.5.0a1

(continued from previous page)

},
"required": [

"info",
"data",
"protocol",
"past_protocols",
"history"

],
"definitions": {
"Breeding": {
"title": "Breeding",
"description": "Information about the breeding conditions of the subject",
"type": "object",
"properties": {
"parents": {
"title": "Parents",
"description": "The IDs of the parents of this subject, if any",
"type": "array",
"items": {
"type": "string"

}
},
"litter": {
"title": "Litter",
"description": "The identifying number or tag of the litter this␣

→˓subject was born in",
"anyOf": [

{
"type": "string"

},
{
"type": "integer"

}
]

}
},
"required": [

"parents",
"litter"

]
},
"Enclosure": {
"title": "Enclosure",
"description": "Where does the subject live?",
"type": "object",
"properties": {
"box": {
"title": "Box",
"description": "The number or name of the box this subject lives in,␣

→˓if any",
"anyOf": [

{

(continues on next page)

13.6. Transition Status 157

Autopilot Documentation, Release 0.5.0a1

(continued from previous page)

"type": "string"
},
{
"type": "integer"

}
]

},
"building": {
"title": "Building",
"description": "The name of the building that the subject is housed␣

→˓in",
"type": "string"

},
"room": {
"title": "Room",
"description": "The room number that the animal is housed in",
"anyOf": [

{
"type": "string"

},
{
"type": "integer"

}
]

}
}

},
"Baselines": {
"title": "Baselines",
"description": "Baseline health measurements for animal care regulation.␣

→˓In the future this\nwill be integrated with a TrialManager class to titrate␣
→˓trials to ensure experimental\nsubjects remain healthy.",

"type": "object",
"properties": {
"mass": {
"title": "Mass",
"description": "Mass (grams) of the animal before any experimental␣

→˓manipulation",
"type": "number"

},
"minimum_pct": {
"title": "Minimum Pct",
"description": "The proportion (0-1) of the baseline mass that the␣

→˓animal is not allowed to fall under",
"type": "number"

}
}

},
"Gene": {
"title": "Gene",
"description": "An individual (trans)gene that an animal may have.\n\nI am␣

→˓not a geneticist, lmk what this should look like",

(continues on next page)

158 Chapter 13. data

Autopilot Documentation, Release 0.5.0a1

(continued from previous page)

"type": "object",
"properties": {
"name": {
"title": "Name",
"description": "The name of this gene",
"type": "string"

},
"zygosity": {
"title": "Zygosity",
"description": "One of typing.Literal['heterozygous', 'homozygous']",
"enum": [

"heterozygous",
"homozygous"

],
"type": "string"

}
},
"required": [

"name"
]

},
"Genotype": {
"title": "Genotype",
"description": "Genotyping information, information about a subject's␣

→˓background and (potentially multiple) :class:`.Gene` s of interest\n\n.. todo::\n\
→˓n Call Jax's API to get a list of available strain names",

"type": "object",
"properties": {
"strain": {
"title": "Strain",
"description": "The strain or background line of this subject, if any

→˓",
"type": "string"

},
"genes": {
"title": "Genes",
"description": "A list of any transgenes that this animal has",
"type": "array",
"items": {
"$ref": "#/definitions/Gene"

}
}

}
},
"Biography": {
"title": "Biography",
"description": "The combined biographical, health, genetic, and other␣

→˓details that define an experimental subject.\n\nThis is stored within the ``/
→˓info`` node in a typical :class:`.Subject` file as\nmetadata attributes, and␣
→˓accessible from :attr:`.Subject.info`\n\n**Development Goals**\n\n- Interface␣
→˓with the NWB biographical information schema.",

"type": "object",

(continues on next page)

13.6. Transition Status 159

Autopilot Documentation, Release 0.5.0a1

(continued from previous page)

"properties": {
"id": {
"title": "Id",
"description": "The indentifying string, name, subject_id, etc. for␣

→˓this subject. This value is also used to name the related Subject file, like {id}.
→˓h5, so these are typically expected to be unique. If None is provided, a uuid.
→˓uuid4() will be generated (which will be ugly so you probably want to give an id).
→˓",

"type": "string"
},
"start_date": {
"title": "Start Date",
"description": "The date that this subject file was created. Not␣

→˓that this is not necessarily the date that the subject began training, which is␣
→˓more reliably determined from the timestamps within the data. If none is provided,
→˓ generated from current time.",

"type": "string",
"format": "date-time"

},
"dob": {
"title": "Dob",
"description": "The subject's date of birth. A datetime is allowed,␣

→˓but hours and minutes are typically not reliable. A time of midnight formally␣
→˓indicates that the hour and minute is not precise.",

"type": "string",
"format": "date-time"

},
"sex": {
"title": "Sex",
"description": "Sex of the subject, one of typing.Literal['F', 'M',

→˓'U', 'O']. See :data:`.SEX`",
"default": "U",
"enum": [

"F",
"M",
"U",
"O"

],
"type": "string"

},
"description": {
"title": "Description",
"description": "Some lengthier description of the subject, idk go␣

→˓hogwild.",
"type": "string"

},
"tags": {
"title": "Tags",
"description": "Any additional key/value tags that apply to this␣

→˓subject. Idiosyncratic metadata can be stored here, but caution should be taken␣
→˓to not overload this field and instead extend the Biography class because these␣
→˓values will not be included in any resulting schema.",

(continues on next page)

160 Chapter 13. data

Autopilot Documentation, Release 0.5.0a1

(continued from previous page)

"type": "object"
},
"species": {
"title": "Species",
"description": "Species of subject, no recommendation common vs.␣

→˓latin names, but will be integrated with linked data schemas in the future",
"type": "string"

},
"breeding": {
"$ref": "#/definitions/Breeding"

},
"enclosure": {
"$ref": "#/definitions/Enclosure"

},
"baselines": {
"$ref": "#/definitions/Baselines"

},
"genotype": {
"$ref": "#/definitions/Genotype"

}
}

},
"Task_Params": {
"title": "Task_Params",
"description": "Metaclass for storing task parameters\n\n.. todo::\n\n ␣

→˓Not yet used in GUI, terminal, and subject classes. Will replace the dictionary␣
→˓structure ASAP",

"type": "object",
"properties": {}

},
"Table": {
"title": "Table",
"description": "Tabular data: each field will have multiple values -- in␣

→˓particular an equal number across fields.\n\nUsed for trialwise data, and can be␣
→˓used to create pytables descriptions.\n\n.. todo::\n\n To make this usable as␣
→˓a live container of data, the fields need to be declared as Lists (eg. instead of␣
→˓just\n declaring something an ``int``, it must be specified as a ``List[int]``␣
→˓to pass validation. We should expand this\n model to relax that constraint and␣
→˓effectively treat every field as containing a list of values.",

"type": "object",
"properties": {}

},
"Trial_Data": {
"title": "Trial_Data",
"description": "Base class for declaring trial data.\n\nTasks should␣

→˓subclass this and add any additional parameters that are needed.\nThe subject␣
→˓class will then use this to create a table in the hdf5 file.\n\nSee :attr:`.Nafc.
→˓TrialData` for an example",

"type": "object",
"properties": {
"group": {
"title": "Group",

(continues on next page)

13.6. Transition Status 161

Autopilot Documentation, Release 0.5.0a1

(continued from previous page)

"description": "Path of the parent step group",
"type": "string"

},
"session": {
"title": "Session",
"description": "Current training session, increments every time the␣

→˓task is started",
"type": "integer"

},
"session_uuid": {
"title": "Session Uuid",
"description": "Each session gets a unique uuid, regardless of the␣

→˓session integer, to enable independent addressing of sessions when session␣
→˓numbers might overlap (eg. reassignment)",

"type": "string"
},
"trial_num": {
"title": "Trial Num",
"description": "Trial data is grouped within, well, trials, which␣

→˓increase (rather than resetting) across sessions within a task",
"datajoint": {
"key": true

},
"type": "integer"

}
},
"required": [

"session",
"trial_num"

]
},
"Step_Data": {
"title": "Step_Data",
"description": "Schema for storing data for a single step of a protocol",
"type": "object",
"properties": {
"task": {
"$ref": "#/definitions/Task_Params"

},
"trial_data_table": {
"$ref": "#/definitions/Table"

},
"trial_data": {
"$ref": "#/definitions/Trial_Data"

},
"continuous_data": {
"title": "Continuous Data",
"type": "object",
"additionalProperties": {
"type": "array",
"items": {}

}

(continues on next page)

162 Chapter 13. data

Autopilot Documentation, Release 0.5.0a1

(continued from previous page)

}
},
"required": [

"task",
"trial_data_table",
"trial_data",
"continuous_data"

]
},
"Protocol_Data": {
"title": "Protocol_Data",
"description": "A special type of type intended to be a representation of␣

→˓an\nabstract structure/schema of data, rather than a live container of\ndata␣
→˓objects themselves. This class is used for constructing data containers,\
→˓ntranslating between formats, etc. rather than momentary data handling",

"type": "object",
"properties": {
"steps": {
"title": "Steps",
"type": "array",
"items": {
"$ref": "#/definitions/Step_Data"

}
}

},
"required": [

"steps"
]

},
"Protocol_Status": {
"title": "Protocol_Status",
"description": "Status of assigned protocol. Accessible from the :attr:`.

→˓Subject.protocol` getter/setter\n\nSee :meth:`.Subject.assign_protocol`.",
"type": "object",
"properties": {
"current_trial": {
"title": "Current Trial",
"type": "integer"

},
"session": {
"title": "Session",
"type": "integer"

},
"step": {
"title": "Step",
"type": "integer"

},
"protocol": {
"title": "Protocol",
"type": "array",
"items": {
"type": "object"

(continues on next page)

13.6. Transition Status 163

Autopilot Documentation, Release 0.5.0a1

(continued from previous page)

}
},
"protocol_name": {
"title": "Protocol Name",
"type": "string"

},
"pilot": {
"title": "Pilot",
"description": "Pilot that this subject runs on",
"type": "string"

},
"assigned": {
"title": "Assigned",
"type": "string",
"format": "date-time"

}
},
"required": [

"current_trial",
"session",
"step",
"protocol",
"protocol_name"

]
},
"Node": {
"title": "Node",
"description": "Abstract representation of a Node in a treelike or linked␣

→˓data structure.\nThis should be extended by interfaces when relevant and needed␣
→˓to implement\nan abstract representation of their structure.\n\nThis class␣
→˓purposely lacks structure like a path or parents pending further\nusage in␣
→˓interfaces to see what would be the best means of implementing them.",

"type": "object",
"properties": {}

},
"History": {
"title": "History",
"description": "Table to describe parameter and protocol change history",
"type": "object",
"properties": {
"time": {
"title": "Time",
"type": "array",
"items": {
"type": "string",
"format": "date-time"

}
},
"type": {
"title": "Type",
"type": "array",
"items": {

(continues on next page)

164 Chapter 13. data

Autopilot Documentation, Release 0.5.0a1

(continued from previous page)

"type": "string"
}

},
"name": {
"title": "Name",
"type": "array",
"items": {
"type": "string"

}
},
"value": {
"title": "Value",
"type": "array",
"items": {
"anyOf": [

{
"type": "string"

},
{
"type": "array",
"items": {
"type": "object"

}
}

]
}

}
},
"required": [

"time",
"type",
"name",
"value"

]
},
"Hashes": {
"title": "Hashes",
"description": "Table to track changes in version over time",
"type": "object",
"properties": {
"time": {
"title": "Time",
"type": "array",
"items": {
"type": "string",
"format": "date-time"

}
},
"hash": {
"title": "Hash",
"type": "array",
"items": {

(continues on next page)

13.6. Transition Status 165

Autopilot Documentation, Release 0.5.0a1

(continued from previous page)

"type": "string"
}

},
"version": {
"title": "Version",
"type": "array",
"items": {
"type": "string"

}
},
"id": {
"title": "Id",
"type": "array",
"items": {
"type": "string"

}
}

},
"required": [

"time",
"hash",
"version",
"id"

]
},
"Weights": {
"title": "Weights",
"description": "Class to describe table for weight history",
"type": "object",
"properties": {
"start": {
"title": "Start",
"type": "array",
"items": {
"type": "number"

}
},
"stop": {
"title": "Stop",
"type": "array",
"items": {
"type": "number"

}
},
"date": {
"title": "Date",
"type": "array",
"items": {
"type": "string",
"format": "date-time"

}
},

(continues on next page)

166 Chapter 13. data

Autopilot Documentation, Release 0.5.0a1

(continued from previous page)

"session": {
"title": "Session",
"type": "array",
"items": {
"type": "integer"

}
}

},
"required": [

"start",
"stop",
"date",
"session"

]
},
"Group": {
"title": "Group",
"description": "A generic representation of a \"Group\" if present in a␣

→˓given interface.\nUseful for when, for example in a given container format you␣
→˓want to\nmake an empty group that will be filled later, or one that has to be\
→˓npresent for syntactic correctness.\n\nA children attribute is present because it␣
→˓is definitive of groups, but\nshould be overridden by interfaces that use it.",

"type": "object",
"properties": {
"children": {
"title": "Children",
"type": "array",
"items": {
"$ref": "#/definitions/Node"

}
}

}
},
"History_Group": {
"title": "History_Group",
"description": "Group for collecting subject history tables.\n\nTypically␣

→˓stored in ``/history`` in the subject .h5f file",
"type": "object",
"properties": {
"children": {
"title": "Children",
"type": "array",
"items": {
"$ref": "#/definitions/Node"

}
},
"history": {
"$ref": "#/definitions/History"

},
"hashes": {
"$ref": "#/definitions/Hashes"

},

(continues on next page)

13.6. Transition Status 167

Autopilot Documentation, Release 0.5.0a1

(continued from previous page)

"weights": {
"$ref": "#/definitions/Weights"

},
"past_protocols": {
"$ref": "#/definitions/Group"

}
},
"required": [

"history",
"hashes",
"weights",
"past_protocols"

]
}

}
}

Fields
• data (autopilot.data.models.protocol.Protocol_Data)

• history (autopilot.data.models.subject.History_Group)

• info (autopilot.data.models.biography.Biography)

• past_protocols (List[autopilot.data.models.subject.Protocol_Status])

• protocol (autopilot.data.models.subject.Protocol_Status)

field info: autopilot.data.models.biography.Biography [Required]

field data: autopilot.data.models.protocol.Protocol_Data [Required]

field protocol: autopilot.data.models.subject.Protocol_Status [Required]

field past_protocols: List[autopilot.data.models.subject.Protocol_Status]
[Required]

field history: autopilot.data.models.subject.History_Group [Required]

13.6.5 units

168 Chapter 13. data

CHAPTER

FOURTEEN

GUI

GUI Modules used by the Terminal agent.

Each of the submodules contains GUI objects of different types, and will continue to be refined to allow for extensions
by plugins.

• gui.menus - Widgets and dialogues available from the Terminal menubar

• gui.plots - Widgets and graphical primitives used for task plots

• gui.widgets - General purpose widgets that make up the Terminal GUI

• gui.dialog - Convenience function for popping standard modal/nonmodal dialogues

• gui.styles - Qt Stylesheets (css-like) for the Terminal

These classes implement the GUI used by the Terminal.

The GUI is built using PySide2, a Python wrapper around Qt5.

These classes are all currently used only by the Terminal.

If performing any GUI operations in another thread (eg. as a callback from a networking object), the method must be
decorated with @gui_event which will call perform the update in the main thread as required by Qt.

Note: Currently, the GUI code is some of the oldest code in the library – in particular much of it was developed before
the network infrastructure was mature. As a result, a lot of modules are interdependent (eg. pass objects between each
other). This will be corrected before v1.0

14.1 menus

14.1.1 file

Classes:

Protocol_Wizard() A dialog window to create a new protocol.

class Protocol_Wizard

Bases: PySide2.QtWidgets.QDialog

A dialog window to create a new protocol.

169

https://doc.qt.io/qtforpython/

Autopilot Documentation, Release 0.5.0a1

Warning: This is a heavily overloaded class, and will be split into separate objects to handle parameters
separately. For now this is what we got though and it works.

Protocols are collections of multiple tasks (steps) with some graduation criterion for moving between them.

This widget is composed of three windows:

• left: possible task types from autopilot.get_task()

• center: current steps in task

• right: Parameters for currently selected step.

The parameters that are used are of the form used by Task.PARAMS (see Nafc.PARAMS for an example).

Todo: Make specific parameter class so this definition is less squishy

its general structure is:

{'parameter_key': {'tag':'Human Readable Name',
'type':'param_type'}}

while some parameter types have extra items, eg.:

{'list_param': {'tag':'Select from a List of Parameters',
'type': 'list',
'values': {'First Option':0, 'Second Option':1}}

where k:v pairs are still used with lists to allow parameter values (0, 1) be human readable.

The available types include:

• int - integer

• float - floating point number

• bool - boolean boolbox

• list - a list of values to choose from

• sounds - a Sound_Widget that allows sounds to be defined.

• graduation - a Graduation_Widget that allows graduation criteria to be defined

Variables
• task_list (QtWidgets.QListWidget) – The leftmost window, lists available tasks

• step_list (QtWidgets.QListWidget) – The center window, lists tasks currently in pro-
tocol

• param_layout (QtWidgets.QFormLayout) – The right window, allows changing available
parameters for currently selected step.

• steps (list) – A list of dictionaries defining the protocol.

Methods:

170 Chapter 14. GUI

https://docs.python.org/3/library/stdtypes.html#list

Autopilot Documentation, Release 0.5.0a1

add_step() Loads PARAMS from task object, adds base parame-
ters to steps list

rename_step() When the step name widget's text is changed, fire this
function to update step_list which updates steps

remove_step() Remove step from step_list and steps
populate_params() Calls clear_params() and then creates widgets to

edit parameter values.
clear_params() Clears widgets from parameter window
reorder_steps(*args) When steps are dragged into a different order, update

the step dictionary
set_param() Callback function connected to the signal each wid-

get uses to signal it has changed.
set_sounds() Stores parameters that define sounds.
set_graduation() Stores parameters that define graduation criteria in

self.steps
check_depends() Handle dependencies between parameters, eg.

Attributes:

staticMetaObject

add_step()

Loads PARAMS from task object, adds base parameters to steps list

rename_step()

When the step name widget’s text is changed, fire this function to update step_list which updates

steps

remove_step()

Remove step from step_list and steps

populate_params()

Calls clear_params() and then creates widgets to edit parameter values. Returns:

clear_params()

Clears widgets from parameter window

reorder_steps(*args)
When steps are dragged into a different order, update the step dictionary

Parameters *args – Input from our step_list ‘s QtWidgets.QListModel ‘s reorder signal.

set_param()

Callback function connected to the signal each widget uses to signal it has changed.

Identifies the param that was changed, gets the current value, and updates self.steps

set_sounds()

Stores parameters that define sounds.

Sound parameters work a bit differently, specifically we have to retrieve Sound_Widget.sound_dict.

14.1. menus 171

Autopilot Documentation, Release 0.5.0a1

set_graduation()

Stores parameters that define graduation criteria in self.steps

Graduation parameters work a bit differently, specifically we have to retrieve Graduation_Widget.
param_dict.

check_depends()

Handle dependencies between parameters, eg. if “correction trials” are unchecked, the box that defines the
correction trial percentage should be grayed out.

Todo: Not implemented.

staticMetaObject = <PySide2.QtCore.QMetaObject object at 0x7f41840ea040>

14.1.2 plots

Classes:

Psychometric(subjects_protocols) A Dialog to select subjects, steps, and variables to use in
a psychometric curve plot.

class Psychometric(subjects_protocols)
Bases: PySide2.QtWidgets.QDialog

A Dialog to select subjects, steps, and variables to use in a psychometric curve plot.

See Terminal.plot_psychometric()

Parameters subjects_protocols (dict) – The Terminals Terminal.subjects_protocols dict

Variables plot_params (list) – A list of tuples, each consisting of (subject_id, step, variable) to
be given to viz.plot_psychometric()

Methods:

init_ui()

populate_steps(subject) When a protocol is selected, populate the selection
box with the steps that can be chosen.

populate_variables() Fill selection boxes with step and variable names
check_all() Toggle all checkboxes on or off

Attributes:

plot_params Generate parameters for plot to be passed to viz.
plot_psychometric()

staticMetaObject

init_ui()

172 Chapter 14. GUI

https://docs.python.org/3/library/stdtypes.html#list

Autopilot Documentation, Release 0.5.0a1

populate_steps(subject)
When a protocol is selected, populate the selection box with the steps that can be chosen.

Parameters subject (str) – ID of subject whose steps are being populated

populate_variables()

Fill selection boxes with step and variable names

check_all()

Toggle all checkboxes on or off

property plot_params

Generate parameters for plot to be passed to viz.plot_psychometric()

Returns (subject_name, step_name, x_var_name, n_trials_back)

Return type tuple

staticMetaObject = <PySide2.QtCore.QMetaObject object at 0x7f41840ea0c0>

14.1.3 plugins

Classes:

Plugins() Dialog window that allows plugins to be viewed and in-
stalled.

class Plugins

Bases: PySide2.QtWidgets.QDialog

Dialog window that allows plugins to be viewed and installed.

Works by querying the wiki , find anything in the category Autopilot Plugins , clone the related repo, and
reload plugins.

At the moment this widget is a proof of concept and will be made functional asap :)

Methods:

init_ui()

list_plugins()

download_plugin()

select_plugin_type()

select_plugin()

Attributes:

staticMetaObject

14.1. menus 173

https://docs.python.org/3/library/stdtypes.html#tuple
https://wiki.auto-pi-lot.com

Autopilot Documentation, Release 0.5.0a1

init_ui()

list_plugins()

download_plugin()

select_plugin_type()

select_plugin()

staticMetaObject = <PySide2.QtCore.QMetaObject object at 0x7f4184d034c0>

14.1.4 swarm

Classes:

Stream_Video(pilots, *args, **kwargs) Dialogue to stream, display, and save video.

class Stream_Video(pilots: dict, *args, **kwargs)
Bases: PySide2.QtWidgets.QDialog

Dialogue to stream, display, and save video.

Parameters pilots (dict) – The Terminal.pilot_dbwith the prefs of each pilot (given by Pilot.
handshake())

Methods:

init_ui()

populate_cameras()

camera_selected()

toggle_start()

write_video()

l_frame(value)

closeEvent(self, arg__1)

Attributes:

current_pilot

current_camera

staticMetaObject

writer

174 Chapter 14. GUI

https://docs.python.org/3/library/stdtypes.html#dict

Autopilot Documentation, Release 0.5.0a1

comboboxes

buttons

cam_info

init_ui()

property current_pilot: str

property current_camera: str

populate_cameras()

camera_selected()

toggle_start()

write_video()

l_frame(value)

closeEvent(self, arg__1: PySide2.QtGui.QCloseEvent)→ None

staticMetaObject = <PySide2.QtCore.QMetaObject object at 0x7f417d53aa00>

14.1.5 tests

Classes:

Bandwidth_Test(pilots) Test the limits of the rate of messaging from the con-
nected Pilots.

class Bandwidth_Test(pilots)
Bases: PySide2.QtWidgets.QDialog

Test the limits of the rate of messaging from the connected Pilots.

Asks pilots to send messages at varying rates and with varying payload sizes, and with messages with/without
receipts.

Measures drop rates and message latency

Variables
• rate_list (list) – List of rates (Hz) to test

• payload_list (list) – List of payload sizes (KB) to test

• messages (list) – list of messages received during test

Methods:

14.1. menus 175

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list

Autopilot Documentation, Release 0.5.0a1

init_ui() Look we're just making the stuff in the window over
here alright? relax.

start() Start the test!!!
send_test(rate, payload, n_msg, confirm, ...) Send a message describing the test to each of the pi-

lots in Bandwidth_Test.test_pilots
process_test(rate, n_msg, confirm, blosc, ...) Process the results of the test and update the plot win-

dow.
save() Select save file location for test results (csv) and then

save them there
register_msg(value) Receive message from pilot, stash timestamp, num-

ber and pilot
update_pbar(val)

validate_list() Checks that the entries in Bandwidth_Test.rates
and Bandwidth_Test.payloads are well formed.

Attributes:

staticMetaObject

init_ui()

Look we’re just making the stuff in the window over here alright? relax.

start()

Start the test!!!

send_test(rate: int, payload: int, n_msg: int, confirm: bool, blosc: bool, random: bool, preserialized: bool)
Send a message describing the test to each of the pilots in Bandwidth_Test.test_pilots

Parameters
• rate (int) – Rate of message sending in Hz

• payload (int) – Size of message payload in bytes

• n_msg (int) – Number of messages to send

• confirm (bool) – If True, use message confirmation, if False no confirmation.

• blosc (bool) – Use blosc compression?

• random (bool) – Use random arrays?

• preserialized (bool) – Serialize the message once, rather than serializing every time?

Returns:

process_test(rate, n_msg, confirm, blosc, random, preserialized)
Process the results of the test and update the plot window.

Reads message results from messages, appends computed results to results, and starts the next test if
any remain.

Parameters
• rate (int) – Rate of current test in Hz

• n_msg (int) – Number of expected messages in this test

176 Chapter 14. GUI

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Autopilot Documentation, Release 0.5.0a1

• confirm (bool) – Whether message confirmations were enabled for this test.

save()

Select save file location for test results (csv) and then save them there

register_msg(value)
Receive message from pilot, stash timestamp, number and pilot

Parameters value (dict) – Value should contain

• Pilot

• Timestamp

• Message number

• Payload

update_pbar(val)

validate_list()

Checks that the entries in Bandwidth_Test.rates and Bandwidth_Test.payloads are well formed.

ie. that they are of the form ‘integer, integer, integer’. . .

pops a window that warns about ill formed entry and clears line edit if badly formed

If the list validates, stored as either Bandwidth_Test.rate_list or Bandwidth_Test.payload_list

staticMetaObject = <PySide2.QtCore.QMetaObject object at 0x7f417d53a9c0>

14.1.6 tools

Classes:

Calibrate_Water(pilots) A window to calibrate the volume of water dispensed per
ms.

Reassign(subjects, protocols) A dialog that lets subjects be batch reassigned to new
protocols or steps.

Weights(subject_weights, subjects) A table for viewing and editing the most recent subject
weights.

Pilot_Ports(pilot[, n_clicks, click_dur]) Created by Calibrate_Water, Each pilot's ports and
buttons to control repeated release.

class Calibrate_Water(pilots)
Bases: PySide2.QtWidgets.QDialog

A window to calibrate the volume of water dispensed per ms.

Parameters
• pilots (Terminal.pilots) – A dictionary of pilots

• message_fn (Net_Node.send()) – The method the Terminal uses to send messages via its
net node.

Methods:

init_ui()

14.1. menus 177

Autopilot Documentation, Release 0.5.0a1

Attributes:

staticMetaObject

init_ui()

staticMetaObject = <PySide2.QtCore.QMetaObject object at 0x7f417d49e040>

class Reassign(subjects, protocols)
Bases: PySide2.QtWidgets.QDialog

A dialog that lets subjects be batch reassigned to new protocols or steps.

Parameters
• subjects (dict) –

A dictionary that contains each subject’s protocol and step, ie.:

{'subject_id':['protocol_name', step_int], ... }

• protocols (list) – list of protocol files in the prefs.get(‘PROTOCOLDIR’). Not entirely sure
why we don’t just list them ourselves here.

Methods:

init_ui() Initializes graphical elements.
populate_steps(subject) When a protocol is selected, populate the selection

box with the steps that can be chosen.
set_protocol() When the protocol is changed, stash that and call

Reassign.populate_steps() .
set_step() When the step is changed, stash that.

Attributes:

staticMetaObject

init_ui()

Initializes graphical elements.

Makes a row for each subject where its protocol and step can be changed.

populate_steps(subject)
When a protocol is selected, populate the selection box with the steps that can be chosen.

Parameters subject (str) – ID of subject whose steps are being populated

set_protocol()

When the protocol is changed, stash that and call Reassign.populate_steps() . Returns:

set_step()

When the step is changed, stash that.

staticMetaObject = <PySide2.QtCore.QMetaObject object at 0x7f417d5464c0>

178 Chapter 14. GUI

Autopilot Documentation, Release 0.5.0a1

class Weights(subject_weights, subjects)
Bases: PySide2.QtWidgets.QTableWidget

A table for viewing and editing the most recent subject weights.

Parameters
• subject_weights (list) – a list of weights of the format returned by Subject.
get_weight(baseline=True)().

• subjects (dict) – the Terminal’s Terminal.subjects dictionary of Subject objects.

Methods:

init_ui() Initialized graphical elements.
set_weight(row, column) Updates the most recent weights in gui.Weights.

subjects objects.

Attributes:

staticMetaObject

init_ui()

Initialized graphical elements. Literally just filling a table.

set_weight(row, column)
Updates the most recent weights in gui.Weights.subjects objects.

Note: Only the daily weight measurements can be changed this way - not subject name, baseline weight,
etc.

Parameters
• row (int) – row of table

• column (int) – column of table

staticMetaObject = <PySide2.QtCore.QMetaObject object at 0x7f417d5466c0>

class Pilot_Ports(pilot, n_clicks=1000, click_dur=30)
Bases: PySide2.QtWidgets.QWidget

Created by Calibrate_Water, Each pilot’s ports and buttons to control repeated release.

Parameters
• pilot (str) – name of pilot to calibrate

• n_clicks (int) – number of times to open the port during calibration

• click_dur (int) – how long to open the port (in ms)

Methods:

14.1. menus 179

Autopilot Documentation, Release 0.5.0a1

init_ui() Init the layout for one pilot's ports:
update_volumes() Store the result of a volume calibration test in

volumes
start_calibration() Send the calibration test parameters to the Pilot
l_progress(value) Value should contain

Attributes:

staticMetaObject

init_ui()

Init the layout for one pilot’s ports:

• pilot name

• port buttons

• 3 times and vol dispersed

Returns

update_volumes()

Store the result of a volume calibration test in volumes

start_calibration()

Send the calibration test parameters to the Pilot

Sends a message with a 'CALIBRATE_PORT' key, which is handled by Pilot.l_cal_port()

l_progress(value)
Value should contain

• Pilot

• Port

• Current Click (click_num)

Parameters value –

Returns

staticMetaObject = <PySide2.QtCore.QMetaObject object at 0x7f417d546780>

14.2 Plots

14.2.1 plot

Primary plot widgets that contain items from geom

Functions:

180 Chapter 14. GUI

Autopilot Documentation, Release 0.5.0a1

gui_event(fn) Wrapper/decorator around an event that posts GUI
events back to the main thread that our window is run-
ning in.

Classes:

Plot_Widget() Main plot widget that holds plots for all pilots
Plot(pilot[, x_width, parent]) Widget that hosts a pyqtgraph.PlotWidget and man-

ages graphical objects for one pilot depending on the
task.

gui_event(fn)
Wrapper/decorator around an event that posts GUI events back to the main thread that our window is running in.

Parameters fn (callable) – a function that does something to the GUI

class Plot_Widget

Bases: PySide2.QtWidgets.QWidget

Main plot widget that holds plots for all pilots

Essentially just a container to give plots a layout and handle any logic that should apply to all plots.

Variables
• logger (logging.Logger) – The ‘main’ logger

• plots (dict) – mapping from pilot name to Plot

Methods:

init_plots(pilot_list) For each pilot, instantiate a Plot and add to layout.

Attributes:

staticMetaObject

init_plots(pilot_list)
For each pilot, instantiate a Plot and add to layout.

Parameters pilot_list (list) – the keys from Terminal.pilots

staticMetaObject = <PySide2.QtCore.QMetaObject object at 0x7f41799d7540>

class Plot(pilot, x_width=50, parent=None)
Bases: PySide2.QtWidgets.QWidget

Widget that hosts a pyqtgraph.PlotWidget and manages graphical objects for one pilot depending on the task.

listens

Key Method Description
‘START’ l_start() starting a new task
‘DATA’ l_data() getting a new datapoint
‘STOP’ l_stop() stop the task
‘PARAM’ l_param() change some parameter

14.2. Plots 181

https://pyqtgraph.readthedocs.io/en/latest/widgets/plotwidget.html#pyqtgraph.PlotWidget
https://docs.python.org/3/library/stdtypes.html#dict
https://pyqtgraph.readthedocs.io/en/latest/widgets/plotwidget.html#pyqtgraph.PlotWidget

Autopilot Documentation, Release 0.5.0a1

Plot Parameters
The plot is built from the PLOT={data:plot_element} mappings described in the Task class. Additional
parameters can be specified in the PLOT dictionary. Currently:

• continuous (bool): whether the data should be plotted against the trial number (False or NA) or against
time (True)

• chance_bar (bool): Whether to draw a red horizontal line at chance level (default: 0.5)

• chance_level (float): The position in the y-axis at which the chance_bar should be drawn

• roll_window (int): The number of trials Roll_Mean take the average over.

Variables
• pilot (str) – The name of our pilot, used to set the identity of our socket, specifically:

'P_{pilot}'

• infobox (QtWidgets.QFormLayout) – Box to plot basic task information like trial number,
etc.

• info (dict) – Widgets in infobox:

– ’N Trials’: QtWidgets.QLabel,

– ’Runtime’ : Timer,

– ’Session’ : QtWidgets.QLabel,

– ’Protocol’: QtWidgets.QLabel,

– ’Step’ : QtWidgets.QLabel

• plot (pyqtgraph.PlotWidget) – The widget where we draw our plots

• plot_params (dict) – A dictionary of plot parameters we receive from the Task class

• data (dict) – A dictionary of the data we’ve received

• plots (dict) – The collection of plots we instantiate based on plot_params

• node (Net_Node) – Our local net node where we listen for data.

• state (str) – state of the pilot, used to keep plot synchronized.

Parameters
• pilot (str) – The name of our pilot

• x_width (int) – How many trials in the past should we plot?

Methods:

182 Chapter 14. GUI

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://pyqtgraph.readthedocs.io/en/latest/widgets/plotwidget.html#pyqtgraph.PlotWidget
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str

Autopilot Documentation, Release 0.5.0a1

init_plots() Make pre-task GUI objects and set basic visual pa-
rameters of self.plot

l_start(value) Starting a task, initialize task-specific plot objects de-
scribed in the Task.PLOT attribute.

l_data(value) Receive some data, if we were told to plot it, stash the
data and update the assigned plot.

l_stop(value) Clean up the plot objects.
l_param(value)

Warning:
Not
im-
ple-
mented

l_state(value) Pilot letting us know its state has changed.

Attributes:

staticMetaObject

init_plots()

Make pre-task GUI objects and set basic visual parameters of self.plot

l_start(value)
Starting a task, initialize task-specific plot objects described in the Task.PLOT attribute.

Matches the data field name (keys of Task.PLOT) to the plot object that represents it, eg, to make the
standard nafc plot:

{'target' : 'point',
'response' : 'segment',
'correct' : 'rollmean'}

Parameters value (dict) – The same parameter dictionary sent by Terminal.toggle_start(),
including

• current_trial

• step

• session

• step_name

• task_type

l_data(value)
Receive some data, if we were told to plot it, stash the data and update the assigned plot.

Parameters value (dict) – Value field of a data message sent during a task.

14.2. Plots 183

Autopilot Documentation, Release 0.5.0a1

l_stop(value)
Clean up the plot objects.

Parameters value (dict) – if “graduation” is a key, don’t stop the timer.

l_param(value)

Warning: Not implemented

Parameters value

l_state(value)
Pilot letting us know its state has changed. Mostly for the case where we think we’re running but the pi
doesn’t.

Parameters value (Pilot.state) – the state of our pilot

staticMetaObject = <PySide2.QtCore.QMetaObject object at 0x7f41799d7b40>

14.2.2 geom

Geometric primitives for plots.

Classes:

Point([color, size]) A simple point.
Line([color, size]) A simple line
Segment(**kwargs) A line segment that draws from 0.5 to some endpoint.
Roll_Mean Shaded area underneath a rolling average.
Shaded(**kwargs) Shaded area for a continuous plot
HLine() A Horizontal line.

Data:

PLOT_LIST A dictionary connecting plot keys to objects.

class Point(color=(0, 0, 0), size=5, **kwargs)
Bases: pyqtgraph.graphicsItems.PlotDataItem.PlotDataItem

A simple point.

Variables
• brush (QtWidgets.QBrush) –

• pen (QtWidgets.QPen) –

Parameters
• color (tuple) – RGB color of points

• size (int) – width in px.

184 Chapter 14. GUI

https://pyqtgraph.readthedocs.io/en/latest/graphicsItems/plotdataitem.html#pyqtgraph.PlotDataItem

Autopilot Documentation, Release 0.5.0a1

Methods:

update(data)
Parameters data (numpy.ndarray) --

an x_width x 2 array where

Attributes:

staticMetaObject

update(data)

Parameters data (numpy.ndarray) – an x_width x 2 array where column 0 is trial number and
column 1 is the value, where value can be “L”, “C”, “R” or a float.

staticMetaObject = <PySide2.QtCore.QMetaObject object at 0x7f4179a2f740>

class Line(color=(0, 0, 0), size=1, **kwargs)
Bases: pyqtgraph.graphicsItems.PlotDataItem.PlotDataItem

A simple line

There are many different ways to create a PlotDataItem.

Data initialization arguments: (x,y data only)

PlotDataItem(x, y) x, y: array_like coordinate values
PlotDataItem(y) y values only – x will be automatically set to range(len(y))
PlotDataItem(x=x, y=y) x and y given by keyword arguments
Plot-
DataItem(ndarray(N,2))

single numpy array with shape (N, 2), where x=data[:,0] and
y=data[:,1]

Data initialization arguments: (x,y data AND may include spot style)

PlotDataItem(recarray) numpy record array with dtype=[('x', float), ('y', float),
...]

PlotDataItem(list-of-
dicts)

[{'x': x, 'y': y, ...}, ...]

PlotDataItem(dict-of-
lists)

{'x': [...], 'y': [...], ...}

Line style keyword arguments:

14.2. Plots 185

https://pyqtgraph.readthedocs.io/en/latest/graphicsItems/plotdataitem.html#pyqtgraph.PlotDataItem

Autopilot Documentation, Release 0.5.0a1

con-
nect

Specifies how / whether vertexes should be connected. See below for details.

pen Pen to use for drawing the lines between points. Default is solid grey, 1px width. Use None
to disable line drawing. May be a QPen or any single argument accepted by mkPen()

shad-
ow-
Pen

Pen for secondary line to draw behind the primary line. Disabled by default. May be a QPen
or any single argument accepted by mkPen()

fil-
lLevel

If specified, the area between the curve and fillLevel is filled.

fill-
Out-
line

(bool) If True, an outline surrounding the fillLevel area is drawn.

fill-
Brush

Fill to use in the fillLevel area. May be any single argument accepted by mkBrush()

step-
Mode

(str or None) If specified and not None, a stepped curve is drawn. For ‘left’ the specified
points each describe the left edge of a step. For ‘right’, they describe the right edge. For
‘center’, the x coordinates specify the location of the step boundaries. This mode is com-
monly used for histograms. Note that it requires an additional x value, such that len(x) =
len(y) + 1 .

connect supports the following arguments:

• ‘all’ connects all points.

• ‘pairs’ generates lines between every other point.

• ‘finite’ creates a break when a nonfinite points is encountered.

• If an ndarray is passed, it should contain N int32 values of 0 or 1. Values of 1 indicate that the respective
point will be connected to the next.

• In the default ‘auto’ mode, PlotDataItem will normally use ‘all’, but if any nonfinite data points are detected,
it will automatically switch to ‘finite’.

See arrayToQPath() for more details.

Point style keyword arguments: (see ScatterPlotItem.setData() for more information)

symbol Symbol to use for drawing points, or a list of symbols for each. The default is no
symbol.

symbol-
Pen

Outline pen for drawing points, or a list of pens, one per point. May be any single
argument accepted by mkPen().

symbol-
Brush

Brush for filling points, or a list of brushes, one per point. May be any single argument
accepted by mkBrush().

symbol-
Size

Diameter of symbols, or list of diameters.

pxMode (bool) If True, then symbolSize is specified in pixels. If False, then symbolSize is
specified in data coordinates.

Any symbol recognized by ScatterPlotItem can be specified, including ‘o’ (circle), ‘s’ (square), ‘t’, ‘t1’, ‘t2’,
‘t3’ (triangles of different orientation), ‘d’ (diamond), ‘+’ (plus sign), ‘x’ (x mark), ‘p’ (pentagon), ‘h’ (hexagon)
and ‘star’.

Symbols can also be directly given in the form of a QtGui.QPainterPath instance.

Optimization keyword arguments:

186 Chapter 14. GUI

https://pyqtgraph.readthedocs.io/en/latest/functions.html#pyqtgraph.mkPen
https://pyqtgraph.readthedocs.io/en/latest/functions.html#pyqtgraph.mkPen
https://pyqtgraph.readthedocs.io/en/latest/functions.html#pyqtgraph.mkBrush
https://pyqtgraph.readthedocs.io/en/latest/functions.html#pyqtgraph.arrayToQPath
https://pyqtgraph.readthedocs.io/en/latest/functions.html#pyqtgraph.mkPen
https://pyqtgraph.readthedocs.io/en/latest/functions.html#pyqtgraph.mkBrush
https://pyqtgraph.readthedocs.io/en/latest/graphicsItems/scatterplotitem.html#pyqtgraph.ScatterPlotItem

Autopilot Documentation, Release 0.5.0a1

an-
tialias

(bool) By default, antialiasing is disabled to improve performance. Note that in some cases
(in particular, when pxMode=True), points will be rendered antialiased even if this is set
to False.

down-
sam-
ple

(int) Reduce the number of samples displayed by the given factor.

down-
sam-
pleMethod

‘subsample’: Downsample by taking the first of N samples. This method is fastest and least
accurate. ‘mean’: Downsample by taking the mean of N samples. ‘peak’: Downsample
by drawing a saw wave that follows the min and max of the original data. This method
produces the best visual representation of the data but is slower.

autoDown-
sam-
ple

(bool) If True, resample the data before plotting to avoid plotting multiple line segments
per pixel. This can improve performance when viewing very high-density data, but in-
creases the initial overhead and memory usage.

clip-
ToView

(bool) If True, only data visible within the X range of the containing ViewBox is plotted.
This can improve performance when plotting very large data sets where only a fraction of
the data is visible at any time.

dy-
nam-
i-
cRange-
Limit

(float or None) Limit off-screen y positions of data points. None disables the limiting. This
can increase performance but may cause plots to disappear at high levels of magnification.
The default of 1e6 limits data to approximately 1,000,000 times the ViewBox height.

dy-
nam-
i-
cRange-
Hyst

(float) Permits changes in vertical zoom up to the given hysteresis factor (the default is
3.0) before the limit calculation is repeated.

skipFiniteCheck(bool, default False) Optimization flag that can speed up plotting by not checking and
compensating for NaN values. If set to True, and NaN values exist, unpredictable behavior
will occur. The data may not be displayed or the plot may take a significant performance
hit.
In the default ‘auto’ connect mode, PlotDataItem will apply this setting automatically.

Meta-info keyword arguments:

name (string) Name of item for use in the plot legend

Notes on performance:
Plotting lines with the default single-pixel width is the fastest available option. For such lines, translucent colors
(alpha < 1) do not result in a significant slowdown.

Wider lines increase the complexity due to the overlap of individual line segments. Translucent colors require
merging the entire plot into a single entity before the alpha value can be applied. For plots with more than a few
hundred points, this can result in excessive slowdown.

Since version 0.12.4, this slowdown is automatically avoided by an algorithm that draws line segments separately
for fully opaque lines. Setting alpha < 1 reverts to the previous, slower drawing method.

For lines with a width of more than 4 pixels, pyqtgraph.mkPen() will automatically create a QPen with
Qt.PenCapStyle.RoundCap to ensure a smooth connection of line segments. This incurs a small performance
penalty.

Methods:

14.2. Plots 187

https://pyqtgraph.readthedocs.io/en/latest/functions.html#pyqtgraph.mkPen

Autopilot Documentation, Release 0.5.0a1

update() -> None)

Attributes:

staticMetaObject

update(self, rect: PySide2.QtCore.QRectF = Default(QRectF))→ None
update(self, x: float, y: float, width: float, height: float)→ None

staticMetaObject = <PySide2.QtCore.QMetaObject object at 0x7f4179a2fa00>

class Segment(**kwargs)
Bases: pyqtgraph.graphicsItems.PlotDataItem.PlotDataItem

A line segment that draws from 0.5 to some endpoint.

There are many different ways to create a PlotDataItem.

Data initialization arguments: (x,y data only)

PlotDataItem(x, y) x, y: array_like coordinate values
PlotDataItem(y) y values only – x will be automatically set to range(len(y))
PlotDataItem(x=x, y=y) x and y given by keyword arguments
Plot-
DataItem(ndarray(N,2))

single numpy array with shape (N, 2), where x=data[:,0] and
y=data[:,1]

Data initialization arguments: (x,y data AND may include spot style)

PlotDataItem(recarray) numpy record array with dtype=[('x', float), ('y', float),
...]

PlotDataItem(list-of-
dicts)

[{'x': x, 'y': y, ...}, ...]

PlotDataItem(dict-of-
lists)

{'x': [...], 'y': [...], ...}

Line style keyword arguments:

188 Chapter 14. GUI

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://pyqtgraph.readthedocs.io/en/latest/graphicsItems/plotdataitem.html#pyqtgraph.PlotDataItem

Autopilot Documentation, Release 0.5.0a1

con-
nect

Specifies how / whether vertexes should be connected. See below for details.

pen Pen to use for drawing the lines between points. Default is solid grey, 1px width. Use None
to disable line drawing. May be a QPen or any single argument accepted by mkPen()

shad-
ow-
Pen

Pen for secondary line to draw behind the primary line. Disabled by default. May be a QPen
or any single argument accepted by mkPen()

fil-
lLevel

If specified, the area between the curve and fillLevel is filled.

fill-
Out-
line

(bool) If True, an outline surrounding the fillLevel area is drawn.

fill-
Brush

Fill to use in the fillLevel area. May be any single argument accepted by mkBrush()

step-
Mode

(str or None) If specified and not None, a stepped curve is drawn. For ‘left’ the specified
points each describe the left edge of a step. For ‘right’, they describe the right edge. For
‘center’, the x coordinates specify the location of the step boundaries. This mode is com-
monly used for histograms. Note that it requires an additional x value, such that len(x) =
len(y) + 1 .

connect supports the following arguments:

• ‘all’ connects all points.

• ‘pairs’ generates lines between every other point.

• ‘finite’ creates a break when a nonfinite points is encountered.

• If an ndarray is passed, it should contain N int32 values of 0 or 1. Values of 1 indicate that the respective
point will be connected to the next.

• In the default ‘auto’ mode, PlotDataItem will normally use ‘all’, but if any nonfinite data points are detected,
it will automatically switch to ‘finite’.

See arrayToQPath() for more details.

Point style keyword arguments: (see ScatterPlotItem.setData() for more information)

symbol Symbol to use for drawing points, or a list of symbols for each. The default is no
symbol.

symbol-
Pen

Outline pen for drawing points, or a list of pens, one per point. May be any single
argument accepted by mkPen().

symbol-
Brush

Brush for filling points, or a list of brushes, one per point. May be any single argument
accepted by mkBrush().

symbol-
Size

Diameter of symbols, or list of diameters.

pxMode (bool) If True, then symbolSize is specified in pixels. If False, then symbolSize is
specified in data coordinates.

Any symbol recognized by ScatterPlotItem can be specified, including ‘o’ (circle), ‘s’ (square), ‘t’, ‘t1’, ‘t2’,
‘t3’ (triangles of different orientation), ‘d’ (diamond), ‘+’ (plus sign), ‘x’ (x mark), ‘p’ (pentagon), ‘h’ (hexagon)
and ‘star’.

Symbols can also be directly given in the form of a QtGui.QPainterPath instance.

Optimization keyword arguments:

14.2. Plots 189

https://pyqtgraph.readthedocs.io/en/latest/functions.html#pyqtgraph.mkPen
https://pyqtgraph.readthedocs.io/en/latest/functions.html#pyqtgraph.mkPen
https://pyqtgraph.readthedocs.io/en/latest/functions.html#pyqtgraph.mkBrush
https://pyqtgraph.readthedocs.io/en/latest/functions.html#pyqtgraph.arrayToQPath
https://pyqtgraph.readthedocs.io/en/latest/functions.html#pyqtgraph.mkPen
https://pyqtgraph.readthedocs.io/en/latest/functions.html#pyqtgraph.mkBrush
https://pyqtgraph.readthedocs.io/en/latest/graphicsItems/scatterplotitem.html#pyqtgraph.ScatterPlotItem

Autopilot Documentation, Release 0.5.0a1

an-
tialias

(bool) By default, antialiasing is disabled to improve performance. Note that in some cases
(in particular, when pxMode=True), points will be rendered antialiased even if this is set
to False.

down-
sam-
ple

(int) Reduce the number of samples displayed by the given factor.

down-
sam-
pleMethod

‘subsample’: Downsample by taking the first of N samples. This method is fastest and least
accurate. ‘mean’: Downsample by taking the mean of N samples. ‘peak’: Downsample
by drawing a saw wave that follows the min and max of the original data. This method
produces the best visual representation of the data but is slower.

autoDown-
sam-
ple

(bool) If True, resample the data before plotting to avoid plotting multiple line segments
per pixel. This can improve performance when viewing very high-density data, but in-
creases the initial overhead and memory usage.

clip-
ToView

(bool) If True, only data visible within the X range of the containing ViewBox is plotted.
This can improve performance when plotting very large data sets where only a fraction of
the data is visible at any time.

dy-
nam-
i-
cRange-
Limit

(float or None) Limit off-screen y positions of data points. None disables the limiting. This
can increase performance but may cause plots to disappear at high levels of magnification.
The default of 1e6 limits data to approximately 1,000,000 times the ViewBox height.

dy-
nam-
i-
cRange-
Hyst

(float) Permits changes in vertical zoom up to the given hysteresis factor (the default is
3.0) before the limit calculation is repeated.

skipFiniteCheck(bool, default False) Optimization flag that can speed up plotting by not checking and
compensating for NaN values. If set to True, and NaN values exist, unpredictable behavior
will occur. The data may not be displayed or the plot may take a significant performance
hit.
In the default ‘auto’ connect mode, PlotDataItem will apply this setting automatically.

Meta-info keyword arguments:

name (string) Name of item for use in the plot legend

Notes on performance:
Plotting lines with the default single-pixel width is the fastest available option. For such lines, translucent colors
(alpha < 1) do not result in a significant slowdown.

Wider lines increase the complexity due to the overlap of individual line segments. Translucent colors require
merging the entire plot into a single entity before the alpha value can be applied. For plots with more than a few
hundred points, this can result in excessive slowdown.

Since version 0.12.4, this slowdown is automatically avoided by an algorithm that draws line segments separately
for fully opaque lines. Setting alpha < 1 reverts to the previous, slower drawing method.

For lines with a width of more than 4 pixels, pyqtgraph.mkPen() will automatically create a QPen with
Qt.PenCapStyle.RoundCap to ensure a smooth connection of line segments. This incurs a small performance
penalty.

Methods:

190 Chapter 14. GUI

https://pyqtgraph.readthedocs.io/en/latest/functions.html#pyqtgraph.mkPen

Autopilot Documentation, Release 0.5.0a1

update(data) data is doubled and then every other value is set to
0.5, then setData() is used with connect='pairs' to
make line segments.

Attributes:

staticMetaObject

update(data)
data is doubled and then every other value is set to 0.5, then setData() is used with connect=’pairs’ to
make line segments.

Parameters data (numpy.ndarray) – an x_width x 2 array where column 0 is trial number and
column 1 is the value, where value can be “L”, “C”, “R” or a float.

staticMetaObject = <PySide2.QtCore.QMetaObject object at 0x7f41799d71c0>

class Roll_Mean

Bases: pyqtgraph.graphicsItems.PlotDataItem.PlotDataItem

Shaded area underneath a rolling average.

Typically used as a rolling mean of corrects, so area above and below 0.5 is drawn.

Parameters winsize (int) – number of trials in the past to take a rolling mean of

Methods:

update(data)
Parameters data (numpy.ndarray) --

an x_width x 2 array where

Attributes:

staticMetaObject

update(data)

Parameters data (numpy.ndarray) – an x_width x 2 array where column 0 is trial number and
column 1 is the value.

staticMetaObject = <PySide2.QtCore.QMetaObject object at 0x7f41799d7240>

class Shaded(**kwargs)
Bases: pyqtgraph.graphicsItems.PlotDataItem.PlotDataItem

Shaded area for a continuous plot

There are many different ways to create a PlotDataItem.

Data initialization arguments: (x,y data only)

14.2. Plots 191

https://pyqtgraph.readthedocs.io/en/latest/graphicsItems/plotdataitem.html#pyqtgraph.PlotDataItem
https://pyqtgraph.readthedocs.io/en/latest/graphicsItems/plotdataitem.html#pyqtgraph.PlotDataItem

Autopilot Documentation, Release 0.5.0a1

PlotDataItem(x, y) x, y: array_like coordinate values
PlotDataItem(y) y values only – x will be automatically set to range(len(y))
PlotDataItem(x=x, y=y) x and y given by keyword arguments
Plot-
DataItem(ndarray(N,2))

single numpy array with shape (N, 2), where x=data[:,0] and
y=data[:,1]

Data initialization arguments: (x,y data AND may include spot style)

PlotDataItem(recarray) numpy record array with dtype=[('x', float), ('y', float),
...]

PlotDataItem(list-of-
dicts)

[{'x': x, 'y': y, ...}, ...]

PlotDataItem(dict-of-
lists)

{'x': [...], 'y': [...], ...}

Line style keyword arguments:

con-
nect

Specifies how / whether vertexes should be connected. See below for details.

pen Pen to use for drawing the lines between points. Default is solid grey, 1px width. Use None
to disable line drawing. May be a QPen or any single argument accepted by mkPen()

shad-
ow-
Pen

Pen for secondary line to draw behind the primary line. Disabled by default. May be a QPen
or any single argument accepted by mkPen()

fil-
lLevel

If specified, the area between the curve and fillLevel is filled.

fill-
Out-
line

(bool) If True, an outline surrounding the fillLevel area is drawn.

fill-
Brush

Fill to use in the fillLevel area. May be any single argument accepted by mkBrush()

step-
Mode

(str or None) If specified and not None, a stepped curve is drawn. For ‘left’ the specified
points each describe the left edge of a step. For ‘right’, they describe the right edge. For
‘center’, the x coordinates specify the location of the step boundaries. This mode is com-
monly used for histograms. Note that it requires an additional x value, such that len(x) =
len(y) + 1 .

connect supports the following arguments:

• ‘all’ connects all points.

• ‘pairs’ generates lines between every other point.

• ‘finite’ creates a break when a nonfinite points is encountered.

• If an ndarray is passed, it should contain N int32 values of 0 or 1. Values of 1 indicate that the respective
point will be connected to the next.

• In the default ‘auto’ mode, PlotDataItem will normally use ‘all’, but if any nonfinite data points are detected,
it will automatically switch to ‘finite’.

See arrayToQPath() for more details.

192 Chapter 14. GUI

https://pyqtgraph.readthedocs.io/en/latest/functions.html#pyqtgraph.mkPen
https://pyqtgraph.readthedocs.io/en/latest/functions.html#pyqtgraph.mkPen
https://pyqtgraph.readthedocs.io/en/latest/functions.html#pyqtgraph.mkBrush
https://pyqtgraph.readthedocs.io/en/latest/functions.html#pyqtgraph.arrayToQPath

Autopilot Documentation, Release 0.5.0a1

Point style keyword arguments: (see ScatterPlotItem.setData() for more information)

symbol Symbol to use for drawing points, or a list of symbols for each. The default is no
symbol.

symbol-
Pen

Outline pen for drawing points, or a list of pens, one per point. May be any single
argument accepted by mkPen().

symbol-
Brush

Brush for filling points, or a list of brushes, one per point. May be any single argument
accepted by mkBrush().

symbol-
Size

Diameter of symbols, or list of diameters.

pxMode (bool) If True, then symbolSize is specified in pixels. If False, then symbolSize is
specified in data coordinates.

Any symbol recognized by ScatterPlotItem can be specified, including ‘o’ (circle), ‘s’ (square), ‘t’, ‘t1’, ‘t2’,
‘t3’ (triangles of different orientation), ‘d’ (diamond), ‘+’ (plus sign), ‘x’ (x mark), ‘p’ (pentagon), ‘h’ (hexagon)
and ‘star’.

Symbols can also be directly given in the form of a QtGui.QPainterPath instance.

Optimization keyword arguments:

an-
tialias

(bool) By default, antialiasing is disabled to improve performance. Note that in some cases
(in particular, when pxMode=True), points will be rendered antialiased even if this is set
to False.

down-
sam-
ple

(int) Reduce the number of samples displayed by the given factor.

down-
sam-
pleMethod

‘subsample’: Downsample by taking the first of N samples. This method is fastest and least
accurate. ‘mean’: Downsample by taking the mean of N samples. ‘peak’: Downsample
by drawing a saw wave that follows the min and max of the original data. This method
produces the best visual representation of the data but is slower.

autoDown-
sam-
ple

(bool) If True, resample the data before plotting to avoid plotting multiple line segments
per pixel. This can improve performance when viewing very high-density data, but in-
creases the initial overhead and memory usage.

clip-
ToView

(bool) If True, only data visible within the X range of the containing ViewBox is plotted.
This can improve performance when plotting very large data sets where only a fraction of
the data is visible at any time.

dy-
nam-
i-
cRange-
Limit

(float or None) Limit off-screen y positions of data points. None disables the limiting. This
can increase performance but may cause plots to disappear at high levels of magnification.
The default of 1e6 limits data to approximately 1,000,000 times the ViewBox height.

dy-
nam-
i-
cRange-
Hyst

(float) Permits changes in vertical zoom up to the given hysteresis factor (the default is
3.0) before the limit calculation is repeated.

skipFiniteCheck(bool, default False) Optimization flag that can speed up plotting by not checking and
compensating for NaN values. If set to True, and NaN values exist, unpredictable behavior
will occur. The data may not be displayed or the plot may take a significant performance
hit.
In the default ‘auto’ connect mode, PlotDataItem will apply this setting automatically.

Meta-info keyword arguments:

14.2. Plots 193

https://pyqtgraph.readthedocs.io/en/latest/functions.html#pyqtgraph.mkPen
https://pyqtgraph.readthedocs.io/en/latest/functions.html#pyqtgraph.mkBrush
https://pyqtgraph.readthedocs.io/en/latest/graphicsItems/scatterplotitem.html#pyqtgraph.ScatterPlotItem

Autopilot Documentation, Release 0.5.0a1

name (string) Name of item for use in the plot legend

Notes on performance:
Plotting lines with the default single-pixel width is the fastest available option. For such lines, translucent colors
(alpha < 1) do not result in a significant slowdown.

Wider lines increase the complexity due to the overlap of individual line segments. Translucent colors require
merging the entire plot into a single entity before the alpha value can be applied. For plots with more than a few
hundred points, this can result in excessive slowdown.

Since version 0.12.4, this slowdown is automatically avoided by an algorithm that draws line segments separately
for fully opaque lines. Setting alpha < 1 reverts to the previous, slower drawing method.

For lines with a width of more than 4 pixels, pyqtgraph.mkPen() will automatically create a QPen with
Qt.PenCapStyle.RoundCap to ensure a smooth connection of line segments. This incurs a small performance
penalty.

Methods:

update(data)
Parameters data (numpy.ndarray) --

an x_width x 2 array where

Attributes:

staticMetaObject

update(data)

Parameters data (numpy.ndarray) – an x_width x 2 array where column 0 is time and column
1 is the value.

staticMetaObject = <PySide2.QtCore.QMetaObject object at 0x7f41799d7300>

class HLine

Bases: PySide2.QtWidgets.QFrame

A Horizontal line.

Attributes:

staticMetaObject

staticMetaObject = <PySide2.QtCore.QMetaObject object at 0x7f41799d75c0>

PLOT_LIST = { 'line': <class 'autopilot.gui.plots.geom.Line'>, 'point': <class
'autopilot.gui.plots.geom.Point'>, 'rollmean': <class
'autopilot.gui.plots.geom.Roll_Mean'>, 'segment': <class
'autopilot.gui.plots.geom.Segment'>, 'shaded': <class
'autopilot.gui.plots.geom.Shaded'>}

194 Chapter 14. GUI

https://pyqtgraph.readthedocs.io/en/latest/functions.html#pyqtgraph.mkPen

Autopilot Documentation, Release 0.5.0a1

A dictionary connecting plot keys to objects.

Todo: Just reference the plot objects.

14.2.3 info

Widgets for displaying non-plot information from within the terminal

Classes:

Timer() A simple timer that counts.

class Timer

Bases: PySide2.QtWidgets.QLabel

A simple timer that counts. . . time. . .

Uses a QtCore.QTimer connected to Timer.update_time() .

Methods:

start_timer([update_interval])
Parameters update_interval (float) --

How often (in ms) the timer should
be updated.

stop_timer() you can read the sign ya punk
update_time() Called every (update_interval) milliseconds to set the

text of the timer.

Attributes:

staticMetaObject

start_timer(update_interval=1000)

Parameters update_interval (float) – How often (in ms) the timer should be updated.

stop_timer()

you can read the sign ya punk

update_time()

Called every (update_interval) milliseconds to set the text of the timer.

staticMetaObject = <PySide2.QtCore.QMetaObject object at 0x7f4179a2f8c0>

14.2. Plots 195

Autopilot Documentation, Release 0.5.0a1

14.2.4 video

Classes for displaying streamed video

Classes:

Video(videos[, fps]) Display Video data as it is collected.
ImageItem_TimedUpdate(*args, **kwargs) Reclass of pyqtgraph.ImageItem to update with a

fixed fps.

class Video(videos, fps=None)
Bases: PySide2.QtWidgets.QWidget

Display Video data as it is collected.

Uses the ImageItem_TimedUpdate class to do timed frame updates.

Parameters
• videos (list, tuple) – Names of video streams that will be displayed

• fps (int) – if None, draw according to prefs.get('DRAWFPS'). Otherwise frequency of
widget update

Variables
• videos (list, tuple) – Names of video streams that will be displayed

• fps (int) – if None, draw according to prefs.get('DRAWFPS'). Otherwise frequency of
widget update

• ifps (int) – 1/fps, duration of frame in s

• qs (dict) – Dictionary of :class:`~queue.Queue`s in which frames will be dumped

• quitting (threading.Event) – Signal to quit drawing

• update_thread (threading.Thread) – Thread with tar-
get=:meth:~.Video._update_frame

• layout (PySide2.QtWidgets.QGridLayout) – Widget layout

• vid_widgets (dict) – dict containing widgets for each of the individual video streams.

Methods:

init_gui()

update_frame(video, data) Put a frame for a video stream into its queue.
release()

Attributes:

staticMetaObject

init_gui()

196 Chapter 14. GUI

https://pyqtgraph.readthedocs.io/en/latest/graphicsItems/imageitem.html#pyqtgraph.ImageItem
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/threading.html#threading.Event
https://docs.python.org/3/library/threading.html#threading.Thread
https://docs.python.org/3/library/stdtypes.html#dict

Autopilot Documentation, Release 0.5.0a1

update_frame(video, data)
Put a frame for a video stream into its queue.

If there is a waiting frame, pull it from the queue first – it’s old now.

Parameters
• video (str) – name of video stream

• data (numpy.ndarray) – video frame

release()

staticMetaObject = <PySide2.QtCore.QMetaObject object at 0x7f417d53a400>

class ImageItem_TimedUpdate(*args, **kwargs)
Bases: pyqtgraph.graphicsItems.ImageItem.ImageItem

Reclass of pyqtgraph.ImageItem to update with a fixed fps.

Rather than calling update() every time a frame is updated, call it according to the timer.

fps is set according to prefs.get('DRAWFPS'), if not available, draw at 10fps

Variables timer (QTimer) – Timer held in globals() that synchronizes frame updates across im-
age items

See setOpts() for further keyword arguments and and setImage() for information on supported formats.

image: array Image data

Methods:

setImage([image, autoLevels]) Updates the image displayed by this ImageItem.
update_img() Call update()

Attributes:

staticMetaObject

setImage(image=None, autoLevels=None, **kargs)
Updates the image displayed by this ImageItem. For more information on how the image is processed before
displaying, see makeARGB().

For backward compatibility, image data is assumed to be in column-major order (column, row) by default.
However, most data is stored in row-major order (row, column). It can either be transposed before assign-
ment:

imageitem.setImage(imagedata.T)

or the interpretation of the data can be changed locally through the axisOrder keyword or by changing
the imageAxisOrder global configuration option.

All keywords supported by setOpts() are also allowed here.

image: array Image data given as NumPy array with an integer or floating point dtype of any bit depth.
A 2-dimensional array describes single-valued (monochromatic) data. A 3-dimensional array is used
to give individual color components. The third dimension must be of length 3 (RGB) or 4 (RGBA).

14.2. Plots 197

https://pyqtgraph.readthedocs.io/en/latest/graphicsItems/imageitem.html#pyqtgraph.ImageItem
https://pyqtgraph.readthedocs.io/en/latest/graphicsItems/imageitem.html#pyqtgraph.ImageItem
https://pyqtgraph.readthedocs.io/en/latest/functions.html#pyqtgraph.makeARGB
https://pyqtgraph.readthedocs.io/en/latest/config_options.html#apiref-config

Autopilot Documentation, Release 0.5.0a1

rect: QRectF, QRect or list_like of floats [x, y, w, h], optional If given, sets translation and scaling
to display the image within the specified rectangle. See setRect().

autoLevels: bool, optional If True, ImageItem will automatically select levels based on the maximum and
minimum values encountered in the data. For performance reasons, this search subsamples the images
and may miss individual bright or or dark points in the data set.

If False, the search will be omitted.

The default is False if a levels keyword argument is given, and True otherwise.

levelSamples: int, default 65536 When determining minimum and maximum values, ImageItem only in-
spects a subset of pixels no larger than this number. Setting this larger than the total number of pixels
considers all values.

staticMetaObject = <PySide2.QtCore.QMetaObject object at 0x7f417d665300>

update_img()

Call update()

14.3 widgets

14.3.1 input

Widgets for representing input widgets for different types.

The metaclass {class}`.Input` represents the basic structure, which each of the inheriting classes override. Subclasses
can be retrieved and instantiated with the overloaded from_type() method:

retrieve the class
int_input_class = Input.from_type(int)
instantiate the class -- some subtypes (see :class:`.LiteralInput`) need arguments on␣
→˓instantiation.
int_input = int_input_class()

and can then be used to make and manipulate Qt Widgets:

make the literal ``QWidget`` to be used
widget = int_input.make()
get/set the value of the created widget
value = int_input.value()
int_input.setValue(value)

This allows the ModelWidget class to provide a uniform interface to fill end edit models.

Classes:

198 Chapter 14. GUI

Autopilot Documentation, Release 0.5.0a1

Input([args, kwargs, range]) Metaclass to parametrically spawn a Qt Input widget for
a given type.

BoolInput([args, kwargs, range])

IntInput([args, kwargs, range])

FloatInput([args, kwargs, range])

StrInput([args, kwargs, range])

DatetimeInput([args, kwargs, range])

ListInput([args, kwargs, range])

DictInput([args, kwargs, range])

LiteralInput(choices[, default])

class Input(args: Optional[list] = None, kwargs: Optional[dict] = None, range: Optional[Tuple[Union[int,
float], Union[int, float]]] = None)

Bases: abc.ABC

Metaclass to parametrically spawn a Qt Input widget for a given type.

Primarily for the purpose of making a unified widget creation and value retreival syntax within the ModelWidget
class

widget: ClassVar[Type[PySide2.QtWidgets.QWidget]] = None

The widget that is made with the make() method

validator: ClassVar[Optional[Type[PySide2.QtGui.QValidator]]] = None

The validator applied to the input widget

method_calls: ClassVar[Optional[List[Tuple[str, List]]]] = None

Names of methods to call after instantiation, passed as a tuple of (method_name, [method_args])

python_type: ClassVar[Type]

The python type that this input provides interface for

permissiveness: ClassVar[int] = 0

When a type is annotated with a Union, the more permissive (higher number) one will be chosen. Arbitrary
units.

args: Optional[list] = FieldInfo(default=PydanticUndefined, default_factory=<class
'list'>, extra={})

Args to pass to the widget on creation

kwargs: Optional[dict] = FieldInfo(default=PydanticUndefined,
default_factory=<class 'dict'>, extra={})

Kwargs to pass to the widget on creation

range: Optional[Tuple[Union[int, float], Union[int, float]]] = None

Limit numerical types to a specific range

classmethod from_type(type_: Type[bool])→ Type[BoolInput]

14.3. widgets 199

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/abc.html#abc.ABC
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Type

Autopilot Documentation, Release 0.5.0a1

classmethod from_type(type_: Type[int])→ Type[IntInput]
classmethod from_type(type_: Type[float])→ Type[FloatInput]
classmethod from_type(type_: Type[str])→ Type[StrInput]
classmethod from_type(type_: Type[datetime.datetime])→ Type[DatetimeInput]
classmethod from_type(type_: Type[list])→ Type[ListInput]

Get a subclass of Input that represents a given type.

Parameters type_ (typing.Type) – The type (eg. float, int) to be represented

Returns An appropriate Input subclass

Raises ValueError –

abstract setValue(value: Any)
Set a value in the created widget

After the Input.make() method is called, returning a widget, the Input instance will store a reference to
it. This method then allows its value to be set, doing appropriate type conversions and invoking the correct
methods.

abstract value()→ Any
Retrieve the value from the widget!

After the Input.make() method is called, returning a widget, the Input instance will store a reference to
it. This method then returns the value, doing appropriate type conversion.

make(widget_kwargs: Optional[dict] = None, validator_kwargs: Optional[dict] = None)→
PySide2.QtWidgets.QWidget

Make the appropriate widget for this input.

Stores the made widget in the private _widget attr, which is then used in subsequent Input.value() and
Input.setValue() calls.

Parameters
• widget_kwargs (dict) – Optional: kwargs given to the widget on instantiation

• validator_kwargs (dict) – Optional: kwargs given to the validator on instantiation

Returns Subclass of QWidget according to Input type

Return type PySide2.QtWidgets.QWidget

class BoolInput(args: Optional[list] = None, kwargs: Optional[dict] = None, range: Optional[Tuple[Union[int,
float], Union[int, float]]] = None)

Bases: autopilot.gui.widgets.input.Input

widget

alias of PySide2.QtWidgets.QCheckBox

python_type

alias of bool

setValue(value: bool)
Set a value in the created widget

After the Input.make() method is called, returning a widget, the Input instance will store a reference to
it. This method then allows its value to be set, doing appropriate type conversions and invoking the correct
methods.

200 Chapter 14. GUI

https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Autopilot Documentation, Release 0.5.0a1

value()→ bool
Retrieve the value from the widget!

After the Input.make() method is called, returning a widget, the Input instance will store a reference to
it. This method then returns the value, doing appropriate type conversion.

class IntInput(args: Optional[list] = None, kwargs: Optional[dict] = None, range: Optional[Tuple[Union[int,
float], Union[int, float]]] = None)

Bases: autopilot.gui.widgets.input.Input

widget

alias of PySide2.QtWidgets.QLineEdit

validator

alias of PySide2.QtGui.QIntValidator

permissiveness: ClassVar[int] = 1

When a type is annotated with a Union, the more permissive (higher number) one will be chosen. Arbitrary
units.

python_type

alias of int

setValue(value: int)
Set a value in the created widget

After the Input.make() method is called, returning a widget, the Input instance will store a reference to
it. This method then allows its value to be set, doing appropriate type conversions and invoking the correct
methods.

value()→ int
Retrieve the value from the widget!

After the Input.make() method is called, returning a widget, the Input instance will store a reference to
it. This method then returns the value, doing appropriate type conversion.

class FloatInput(args: Optional[list] = None, kwargs: Optional[dict] = None, range:
Optional[Tuple[Union[int, float], Union[int, float]]] = None)

Bases: autopilot.gui.widgets.input.Input

widget

alias of PySide2.QtWidgets.QLineEdit

validator

alias of PySide2.QtGui.QIntValidator

permissiveness: ClassVar[int] = (2,)

When a type is annotated with a Union, the more permissive (higher number) one will be chosen. Arbitrary
units.

python_type

alias of float

setValue(value: float)
Set a value in the created widget

After the Input.make() method is called, returning a widget, the Input instance will store a reference to
it. This method then allows its value to be set, doing appropriate type conversions and invoking the correct
methods.

14.3. widgets 201

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

Autopilot Documentation, Release 0.5.0a1

value()→ float
Retrieve the value from the widget!

After the Input.make() method is called, returning a widget, the Input instance will store a reference to
it. This method then returns the value, doing appropriate type conversion.

class StrInput(args: Optional[list] = None, kwargs: Optional[dict] = None, range: Optional[Tuple[Union[int,
float], Union[int, float]]] = None)

Bases: autopilot.gui.widgets.input.Input

widget

alias of PySide2.QtWidgets.QLineEdit

permissiveness: ClassVar[int] = 3

When a type is annotated with a Union, the more permissive (higher number) one will be chosen. Arbitrary
units.

python_type

alias of str

setValue(value: str)
Set a value in the created widget

After the Input.make() method is called, returning a widget, the Input instance will store a reference to
it. This method then allows its value to be set, doing appropriate type conversions and invoking the correct
methods.

value()→ str
Retrieve the value from the widget!

After the Input.make() method is called, returning a widget, the Input instance will store a reference to
it. This method then returns the value, doing appropriate type conversion.

class DatetimeInput(args: Optional[list] = None, kwargs: Optional[dict] = None, range:
Optional[Tuple[Union[int, float], Union[int, float]]] = None)

Bases: autopilot.gui.widgets.input.Input

widget

alias of PySide2.QtWidgets.QDateTimeEdit

method_calls: ClassVar[Optional[List[Tuple[str, List]]]] = [('setCalendarPopup',
[True])]

Names of methods to call after instantiation, passed as a tuple of (method_name, [method_args])

python_type

alias of datetime.datetime

setValue(value: datetime.datetime)
Set a value in the created widget

After the Input.make() method is called, returning a widget, the Input instance will store a reference to
it. This method then allows its value to be set, doing appropriate type conversions and invoking the correct
methods.

value()→ datetime.datetime
Retrieve the value from the widget!

After the Input.make() method is called, returning a widget, the Input instance will store a reference to
it. This method then returns the value, doing appropriate type conversion.

202 Chapter 14. GUI

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.datetime

Autopilot Documentation, Release 0.5.0a1

class ListInput(args: Optional[list] = None, kwargs: Optional[dict] = None, range: Optional[Tuple[Union[int,
float], Union[int, float]]] = None)

Bases: autopilot.gui.widgets.input.Input

widget

alias of PySide2.QtWidgets.QLineEdit

python_type

alias of list

setValue(value: list)
Set a value in the created widget

After the Input.make() method is called, returning a widget, the Input instance will store a reference to
it. This method then allows its value to be set, doing appropriate type conversions and invoking the correct
methods.

value()→ list
Retrieve the value from the widget!

After the Input.make() method is called, returning a widget, the Input instance will store a reference to
it. This method then returns the value, doing appropriate type conversion.

class DictInput(args: Optional[list] = None, kwargs: Optional[dict] = None, range: Optional[Tuple[Union[int,
float], Union[int, float]]] = None)

Bases: autopilot.gui.widgets.input.Input

widget

alias of PySide2.QtWidgets.QLineEdit

python_type

alias of dict

setValue(value: dict)
Set a value in the created widget

After the Input.make() method is called, returning a widget, the Input instance will store a reference to
it. This method then allows its value to be set, doing appropriate type conversions and invoking the correct
methods.

value()→ dict
Retrieve the value from the widget!

After the Input.make() method is called, returning a widget, the Input instance will store a reference to
it. This method then returns the value, doing appropriate type conversion.

class LiteralInput(choices: list, default: Optional[Any] = None, **kwargs)
Bases: autopilot.gui.widgets.input.Input

widget

alias of PySide2.QtWidgets.QComboBox

python_type(*args, **kwds): ClassVar[Type] = typing.Literal

The python type that this input provides interface for

choices: list

Args are not optional for literal input types

14.3. widgets 203

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#list

Autopilot Documentation, Release 0.5.0a1

default: Optional[Any] = None

If one of the entries in the literal type should be default, set this on widget creation

make(widget_kwargs: Optional[dict] = None, validator_kwargs: Optional[dict] = None)→
PySide2.QtWidgets.QComboBox

Call the superclass make method, but then set the options for the combobox based on our LiteralInput.
args attribute.

Parameters
• widget_kwargs (dict) – Optional: kwargs given to the widget on instantiation

• validator_kwargs (dict) – Optional: kwargs given to the validator on instantiation

Returns PySide2.QtWidgets.QComboBox

setValue(value: Any)
Set a value in the created widget

After the Input.make() method is called, returning a widget, the Input instance will store a reference to
it. This method then allows its value to be set, doing appropriate type conversions and invoking the correct
methods.

value()→ Any
Retrieve the value from the widget!

After the Input.make() method is called, returning a widget, the Input instance will store a reference to
it. This method then returns the value, doing appropriate type conversion.

14.3.2 model

Widget to fill fields for a pydantic model

Classes:

ModelWidget(model[, optional, scroll]) Recursive collection of all inputs for a given model.
ListModelWidget(model[, optional, scroll]) Container class to make lists of ModelWidget s for

when a field is a List
Model_Filler_Dialogue(model, **kwargs) Dialogue wrapper around ModelWidget

class ModelWidget(model: Union[pydantic.main.BaseModel, Type[pydantic.main.BaseModel]], optional: bool
= False, scroll: bool = True, **kwargs)

Bases: PySide2.QtWidgets.QWidget

Recursive collection of all inputs for a given model.

Each attribute that has a single Input (eg. a single number, string, and so on) that can be resolved by
resolve_type() is represented by a Model_Input.

Otherwise, attributes that are themselves other models are recursively added additional ModelWidget s.

When a model’s field is typing.Optional, passed as ModelWidget.optional , The groupbox for the model
has a checkbox. When it is unchecked, the model fields are inactive and it is returned by ModelWidget.value()
as None. (Shouldn’t be used with a top-level model.)

Parameters
• model (pydantic.BaseModel) – The model to represent. Can either be a model class or

an instantiated model. If an instantiated model, the fields are filled with the current values.

204 Chapter 14. GUI

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Autopilot Documentation, Release 0.5.0a1

• optional (bool) – If True, the enclosing groupbox has a checkbox that when unchecked
causes ModelWidget.value() to return None. If False, ModelWidget.value() always
attempts to return the model

• scroll (bool) – Whether the widget should be within a scrollbar. True by default, but should
probably be False for child models.

• **kwargs – passed to superclass

Methods:

setValue(model) Set all values of the form given an instantiated model.
value() Return an instance of the model populated with val-

ues from dict()
dict() Return a (recursive) dictionary of all current model

values.
validate([kwargs, dialog]) Test whether the given inputs pass model validation,

and if not return which fail

Attributes:

staticMetaObject

inputs

setValue(model: Union[pydantic.main.BaseModel, dict])
Set all values of the form given an instantiated model.

To set values of individual inputs, use Input.setValue()

value()→ ['BaseModel', None]
Return an instance of the model populated with values from dict()

If model fails to validate, pop a dialog with the validation errors and return None (see validate())

Returns pydantic.BaseModel of the type specified in ModelWidget.model

dict()→ Optional[dict]
Return a (recursive) dictionary of all current model values.

Returns dict None: if model is optional and unchecked.

validate(kwargs: Optional[autopilot.gui.widgets.model.ModelWidget.dict] = None, dialog: bool = False)
→ Union[List[autopilot.gui.widgets.model.ModelWidget.dict], autopilot.root.Autopilot_Type,
pydantic.main.BaseModel]

Test whether the given inputs pass model validation, and if not return which fail

Parameters dialog (bool) – Whether or not to pop a dialogue showing which fields failed to
validate

staticMetaObject = <PySide2.QtCore.QMetaObject object at 0x7f4184e2a280>

class ListModelWidget(model: Union[pydantic.main.BaseModel, Type[pydantic.main.BaseModel]], optional:
bool = False, scroll: bool = True, **kwargs)

Bases: PySide2.QtWidgets.QWidget

Container class to make lists of ModelWidget s for when a field is a List

14.3. widgets 205

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Autopilot Documentation, Release 0.5.0a1

Parameters
• model (pydantic.BaseModel) – The model to represent. Can either be a model class or

an instantiated model. If an instantiated model, the fields are filled with the current values.

• optional (bool) – If True, the enclosing groupbox has a checkbox that when unchecked
causes ModelWidget.value() to return None. If False, ModelWidget.value() always
attempts to return the model

• scroll (bool) – Whether the widget should be within a scrollbar. True by default, but should
probably be False for child models

• **kwargs
Variables

• model_layout (QVBoxLayout) – Layout containing model widgets

• add_button (QPushButton) – Button pressed to add new models

• remove_button (QPushButton) – Button pressed to remove the bottom-most model

Methods:

dict() Sort of a misnomer, but return a list of dictionaries
that contain the values to be used in the model

value() A list of instantiated models
add_model([checked, model]) When the add_button is pressed, add an additional

ModelWidget
remove_model([checked]) When the remove_button is pressed, remove the

last-added ModelWidget
setValue(value) Create and set values for a list of instantiated data

models.

Attributes:

staticMetaObject

model_widgets

dict()→ List[dict]
Sort of a misnomer, but return a list of dictionaries that contain the values to be used in the model

value()→ List[pydantic.main.BaseModel]
A list of instantiated models

add_model(checked: bool = False, model: Optional[pydantic.main.BaseModel] = None)
When the add_button is pressed, add an additional ModelWidget

Parameters
• checked (bool) – Whether the button is checked (from the clicked signal)

• model (pydantic.BaseModel) – Manually override the model to construct. (default is to
use the .model attribute)

206 Chapter 14. GUI

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional

Autopilot Documentation, Release 0.5.0a1

remove_model(checked: bool = False)
When the remove_button is pressed, remove the last-added ModelWidget

Parameters checked (bool) – Whether the button is checked (from the clicked signal)

setValue(value: List[pydantic.main.BaseModel])
Create and set values for a list of instantiated data models.

First clears any existing models that have been made.

Parameters value (list[BaseModel]) – List of instantiated base models.

staticMetaObject = <PySide2.QtCore.QMetaObject object at 0x7f4184e2a240>

class Model_Filler_Dialogue(model: Union[Type[autopilot.root.Autopilot_Type],
Type[pydantic.main.BaseModel]], **kwargs)

Bases: PySide2.QtWidgets.QDialog

Dialogue wrapper around ModelWidget

Attributes:

staticMetaObject

staticMetaObject = <PySide2.QtCore.QMetaObject object at 0x7f4184e2a580>

14.3.3 protocol

Widget to fill fields for a pydantic model

Classes:

ModelWidget(model[, optional, scroll]) Recursive collection of all inputs for a given model.
ListModelWidget(model[, optional, scroll]) Container class to make lists of ModelWidget s for

when a field is a List
Model_Filler_Dialogue(model, **kwargs) Dialogue wrapper around ModelWidget

class ModelWidget(model: Union[pydantic.main.BaseModel, Type[pydantic.main.BaseModel]], optional: bool
= False, scroll: bool = True, **kwargs)

Bases: PySide2.QtWidgets.QWidget

Recursive collection of all inputs for a given model.

Each attribute that has a single Input (eg. a single number, string, and so on) that can be resolved by
resolve_type() is represented by a Model_Input.

Otherwise, attributes that are themselves other models are recursively added additional ModelWidget s.

When a model’s field is typing.Optional, passed as ModelWidget.optional , The groupbox for the model
has a checkbox. When it is unchecked, the model fields are inactive and it is returned by ModelWidget.value()
as None. (Shouldn’t be used with a top-level model.)

Parameters
• model (pydantic.BaseModel) – The model to represent. Can either be a model class or

an instantiated model. If an instantiated model, the fields are filled with the current values.

14.3. widgets 207

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Autopilot Documentation, Release 0.5.0a1

• optional (bool) – If True, the enclosing groupbox has a checkbox that when unchecked
causes ModelWidget.value() to return None. If False, ModelWidget.value() always
attempts to return the model

• scroll (bool) – Whether the widget should be within a scrollbar. True by default, but should
probably be False for child models.

• **kwargs – passed to superclass

Attributes:

inputs

staticMetaObject

Methods:

setValue(model) Set all values of the form given an instantiated model.
value() Return an instance of the model populated with val-

ues from dict()
dict() Return a (recursive) dictionary of all current model

values.
validate([kwargs, dialog]) Test whether the given inputs pass model validation,

and if not return which fail

inputs

setValue(model: Union[pydantic.main.BaseModel, dict])
Set all values of the form given an instantiated model.

To set values of individual inputs, use Input.setValue()

value()→ ['BaseModel', None]
Return an instance of the model populated with values from dict()

If model fails to validate, pop a dialog with the validation errors and return None (see validate())

Returns pydantic.BaseModel of the type specified in ModelWidget.model

dict()→ Optional[dict]
Return a (recursive) dictionary of all current model values.

Returns dict None: if model is optional and unchecked.

validate(kwargs: Optional[autopilot.gui.widgets.model.ModelWidget.dict] = None, dialog: bool = False)
→ Union[List[autopilot.gui.widgets.model.ModelWidget.dict], autopilot.root.Autopilot_Type,
pydantic.main.BaseModel]

Test whether the given inputs pass model validation, and if not return which fail

Parameters dialog (bool) – Whether or not to pop a dialogue showing which fields failed to
validate

staticMetaObject = <PySide2.QtCore.QMetaObject object at 0x7f4184e2a280>

208 Chapter 14. GUI

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.List

Autopilot Documentation, Release 0.5.0a1

class ListModelWidget(model: Union[pydantic.main.BaseModel, Type[pydantic.main.BaseModel]], optional:
bool = False, scroll: bool = True, **kwargs)

Bases: PySide2.QtWidgets.QWidget

Container class to make lists of ModelWidget s for when a field is a List

Parameters
• model (pydantic.BaseModel) – The model to represent. Can either be a model class or

an instantiated model. If an instantiated model, the fields are filled with the current values.

• optional (bool) – If True, the enclosing groupbox has a checkbox that when unchecked
causes ModelWidget.value() to return None. If False, ModelWidget.value() always
attempts to return the model

• scroll (bool) – Whether the widget should be within a scrollbar. True by default, but should
probably be False for child models

• **kwargs
Variables

• model_layout (QVBoxLayout) – Layout containing model widgets

• add_button (QPushButton) – Button pressed to add new models

• remove_button (QPushButton) – Button pressed to remove the bottom-most model

Attributes:

model_widgets

staticMetaObject

Methods:

dict() Sort of a misnomer, but return a list of dictionaries
that contain the values to be used in the model

value() A list of instantiated models
add_model([checked, model]) When the add_button is pressed, add an additional

ModelWidget
remove_model([checked]) When the remove_button is pressed, remove the

last-added ModelWidget
setValue(value) Create and set values for a list of instantiated data

models.

model_widgets

dict()→ List[dict]
Sort of a misnomer, but return a list of dictionaries that contain the values to be used in the model

value()→ List[pydantic.main.BaseModel]
A list of instantiated models

add_model(checked: bool = False, model: Optional[pydantic.main.BaseModel] = None)
When the add_button is pressed, add an additional ModelWidget

Parameters

14.3. widgets 209

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional

Autopilot Documentation, Release 0.5.0a1

• checked (bool) – Whether the button is checked (from the clicked signal)

• model (pydantic.BaseModel) – Manually override the model to construct. (default is to
use the .model attribute)

remove_model(checked: bool = False)
When the remove_button is pressed, remove the last-added ModelWidget

Parameters checked (bool) – Whether the button is checked (from the clicked signal)

setValue(value: List[pydantic.main.BaseModel])
Create and set values for a list of instantiated data models.

First clears any existing models that have been made.

Parameters value (list[BaseModel]) – List of instantiated base models.

staticMetaObject = <PySide2.QtCore.QMetaObject object at 0x7f4184e2a240>

class Model_Filler_Dialogue(model: Union[Type[autopilot.root.Autopilot_Type],
Type[pydantic.main.BaseModel]], **kwargs)

Bases: PySide2.QtWidgets.QDialog

Dialogue wrapper around ModelWidget

Attributes:

staticMetaObject

staticMetaObject = <PySide2.QtCore.QMetaObject object at 0x7f4184e2a580>

14.3.4 subject

Classes:

New_Subject_Wizard() A popup that prompts you to define variables for a new
subject.Subject object

class New_Subject_Wizard

Bases: PySide2.QtWidgets.QDialog

A popup that prompts you to define variables for a new subject.Subject object

Called by Control_Panel.create_subject() , which handles actually creating the subject file and updating
the Terminal.pilots dict and file.

Contains two tabs - Biography_Tab - to set basic biographical information about a subject - Task_Tab - to set
the protocol and step to start the subject on

Variables
• protocol_dir (str) – A full path to where protocols are stored, received from prefs.
get('PROTOCOLDIR')

• bio_tab (Biography_Tab) – Sub-object to set and store biographical variables

• task_tab (Task_Tab) – Sub-object to set and store protocol and step assignment

210 Chapter 14. GUI

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/stdtypes.html#str

Autopilot Documentation, Release 0.5.0a1

Classes:

Task_Tab() A tab for selecting a task and step to assign to the
subject.

Attributes:

staticMetaObject

class Task_Tab

Bases: PySide2.QtWidgets.QWidget

A tab for selecting a task and step to assign to the subject.

Reads available tasks from prefs.get(‘PROTOCOLDIR’) , lists them, and creates a spinbox to select from
the available steps.

Warning: Like Biography_Tab , these are not the actual instance attributes. Values are stored in a
values dictionary.

Variables
• protocol (str) – the name of the assigned protocol, filename without .json extension

• step (int) – current step to assign.

Methods:

update_step_box() Clears any steps that might be in the step selection
box, loads the protocol file and repopulates it.

protocol_changed() When the protocol is changed, save the value and
call update_step_box().

step_changed() When the step is changed, save it.

Attributes:

staticMetaObject

update_step_box()

Clears any steps that might be in the step selection box, loads the protocol file and repopulates it.

protocol_changed()

When the protocol is changed, save the value and call update_step_box().

step_changed()

When the step is changed, save it.

staticMetaObject = <PySide2.QtCore.QMetaObject object at 0x7f4184e2a7c0>

staticMetaObject = <PySide2.QtCore.QMetaObject object at 0x7f4184e1b040>

14.3. widgets 211

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

Autopilot Documentation, Release 0.5.0a1

14.3.5 terminal

Classes:

Control_Panel(subjects, start_fn, ping_fn, ...) A QtWidgets.QWidget that contains the controls for
all pilots.

Subject_List([subjects, drop_fn]) A trivial modification of QListWidget that updates
pilots when an item in the list is dragged to another
location.

Pilot_Panel([pilot, subject_list, start_fn, ...]) A little panel with
Pilot_Button([pilot, subject_list, ...]) A subclass of (toggled) QtWidgets.QPushButton that

incorporates the style logic of a start/stop button - ie.

class Control_Panel(subjects, start_fn, ping_fn, pilots)
Bases: PySide2.QtWidgets.QWidget

A QtWidgets.QWidget that contains the controls for all pilots.

Parameters
• subjects (dict) – See Control_Panel.subjects

• start_fn (toggle_start()) – the Terminal’s toggle_start function, propagated down to
each Pilot_Button

• pilots – Usually the Terminal’s pilots dict. If not passed, will try to load params.
PILOT_DB

Variables
• subjects (dict) – A dictionary with subject ID’s as keys and data.subject.Subject

objects as values. Shared with the Terminal object to manage access conflicts.

• start_fn (toggle_start()) – See Control_Panel.start_fn

• pilots (dict) – A dictionary with pilot ID’s as keys and nested dictionaries containing
subjects, IP, etc. as values

• subject_lists (dict) – A dict mapping subject ID to subject_List

• layout (QGridLayout) – Layout grid for widget

• panels (dict) – A dict mapping pilot name to the relevant Pilot_Panel

Specifically, for each pilot, it contains

• one subject_List: A list of the subjects that run in each pilot.

• one Pilot_Panel: A set of button controls for starting/stopping behavior

This class should not be instantiated outside the context of a Terminal object, as they share the subjects
dictionary.

Methods:

212 Chapter 14. GUI

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

Autopilot Documentation, Release 0.5.0a1

init_ui() Called on init, creates the UI components.
add_pilot(pilot_id[, subjects]) Add a Pilot_Panel for a new pilot, and populate a

Subject_List for it :Parameters: * pilot_id (str) --
ID of new pilot * subjects (list) -- Optional, list of
any subjects that the pilot has.

create_subject(pilot) Becomes Pilot_Panel.create_fn.
update_db([pilots]) Gathers any changes in Subject_List s and dumps

pilots to prefs.get('PILOT_DB')

Attributes:

staticMetaObject

init_ui()

Called on init, creates the UI components.

Specifically, for each pilot in pilots, make a subject_List: and Pilot_Panel:, set size policies and
connect Qt signals.

add_pilot(pilot_id: str, subjects: Optional[list] = None)
Add a Pilot_Panel for a new pilot, and populate a Subject_List for it :Parameters: * pilot_id (str) –
ID of new pilot

• subjects (list) – Optional, list of any subjects that the pilot has.

Returns:

create_subject(pilot)
Becomes Pilot_Panel.create_fn. Opens a New_Subject_Wizard to create a new subject file and
assign protocol. Finally, adds the new subject to the pilots database and updates it.

Parameters pilot (str) – Pilot name passed from Pilot_Panel, added to the created Subject
object.

update_db(pilots: Optional[dict] = None, **kwargs)
Gathers any changes in Subject_List s and dumps pilots to prefs.get('PILOT_DB')

Parameters kwargs – Create new pilots by passing a dictionary with the structure

new={‘pilot_name’:’pilot_values’}

where ‘pilot_values’ can be nothing, a list of subjects, or any other information included in
the pilot db

staticMetaObject = <PySide2.QtCore.QMetaObject object at 0x7f4184e2a840>

class Subject_List(subjects=None, drop_fn=None)
Bases: PySide2.QtWidgets.QListWidget

A trivial modification of QListWidget that updates pilots when an item in the list is dragged to another
location.

Should not be initialized except by Control_Panel .

Variables
• subjects (list) – A list of subjects ID’s passed by Control_Panel

14.3. widgets 213

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list

Autopilot Documentation, Release 0.5.0a1

• drop_fn (Control_Panel.update_db()) – called on a drop event

Parameters
• subjects – see subjects. Can be None for an empty list

• drop_fn – see drop_fn(). Passed from Control_Panel

Methods:

populate_list() Adds each item in Subject_List.subjects to the
list.

dropEvent(event) A trivial redefinition of QtWidgets.QListWidget.
dropEvent() that calls the parent dropEvent and
then calls drop_fn

Attributes:

staticMetaObject

populate_list()

Adds each item in Subject_List.subjects to the list.

dropEvent(event)
A trivial redefinition of QtWidgets.QListWidget.dropEvent() that calls the parent dropEvent and then
calls drop_fn

Parameters event – A QtCore.QEvent simply forwarded to the superclass.

staticMetaObject = <PySide2.QtCore.QMetaObject object at 0x7f4184e2a880>

class Pilot_Panel(pilot=None, subject_list=None, start_fn=None, ping_fn=None, create_fn=None)
Bases: PySide2.QtWidgets.QWidget

A little panel with

• the name of a pilot,

• A Pilot_Button to start and stop the task

• Add and remove buttons to create_subject() and Pilot_Panel.remove_subject()

Note: This class should not be instantiated except by Control_Panel

Parameters
• pilot (str) – The name of the pilot this panel controls

• subject_list (Subject_List) – The Subject_List we control

• start_fn (toggle_start()) – Passed by Control_Panel

• create_fn (Control_Panel.create_subject()) – Passed by Control_Panel

Variables
• layout (QtWidgets.QGridLayout) – Layout for UI elements

• button (Pilot_Button) – button used to control a pilot

214 Chapter 14. GUI

Autopilot Documentation, Release 0.5.0a1

Methods:

init_ui() Initializes UI elements - creates widgets and adds to
Pilot_Panel.layout .

remove_subject() Remove the currently selected subject in
Pilot_Panel.subject_list, and calls the
Control_Panel.update_db() method.

create_subject() Just calls Control_Panel.create_subject()
with our pilot as the argument

Attributes:

staticMetaObject

init_ui()

Initializes UI elements - creates widgets and adds to Pilot_Panel.layout . Called on init.

remove_subject()

Remove the currently selected subject in Pilot_Panel.subject_list, and calls the Control_Panel.
update_db() method.

create_subject()

Just calls Control_Panel.create_subject() with our pilot as the argument

staticMetaObject = <PySide2.QtCore.QMetaObject object at 0x7f4184e2a900>

class Pilot_Button(pilot=None, subject_list=None, start_fn=None, ping_fn=None)
Bases: PySide2.QtWidgets.QPushButton

A subclass of (toggled) QtWidgets.QPushButton that incorporates the style logic of a start/stop button - ie.
color, text.

Starts grayed out, turns green if contact with a pilot is made.

Parameters
• pilot (str) – The ID of the pilot that this button controls

• subject_list (Subject_List) – The Subject list used to determine which subject is start-
ing/stopping

• start_fn (toggle_start()) – The final resting place of the toggle_start method

Variables state (str) – The state of our pilot, reflected in our graphical properties. Mirrors state
, with an additional “DISCONNECTED” state for before contact is made with the pilot.

Methods:

toggle_start() Minor window dressing to call the start_fn() with
the appropriate pilot, subject, and whether the task is
starting or stopping

set_state(state) Set the button's appearance and state

Attributes:

14.3. widgets 215

https://docs.python.org/3/library/stdtypes.html#str

Autopilot Documentation, Release 0.5.0a1

staticMetaObject

toggle_start()

Minor window dressing to call the start_fn() with the appropriate pilot, subject, and whether the task is
starting or stopping

set_state(state)
Set the button’s appearance and state

Parameters state (str) – one of ``(‘IDLE’, ‘RUNNING’, ‘STOPPING’, ‘DISCONNECTED’)

Todo: There is some logic duplication in this class, ie. if the button state is changed it also emits a start/stop
signal to the pi, which is undesirable. This class needs to be reworked.

Returns:

staticMetaObject = <PySide2.QtCore.QMetaObject object at 0x7f4184e2a980>

14.3.6 list

Classes:

Drag_List() A QtWidgets.QListWidget that is capable of having
files dragged & dropped.

class Drag_List

Bases: PySide2.QtWidgets.QListWidget

A QtWidgets.QListWidget that is capable of having files dragged & dropped.

copied with much gratitude from stackoverflow

Primarily used in Sound_Widget to be able to drop sound files.

To use: connect fileDropped to a method, that method will receive a list of files dragged onto this widget.

Variables fileDropped (QtCore.Signal) – A Qt signal that takes a list

Attributes:

fileDropped(*args, **kwargs) Call self as a function.
staticMetaObject

Methods:

216 Chapter 14. GUI

https://stackoverflow.com/a/25614674

Autopilot Documentation, Release 0.5.0a1

dragEnterEvent(e) When files are dragged over us, if they have paths in
them, accept the event.

dragMoveEvent(event) If the dragEnterEvent was accepted, while the drag
is being moved within us, setDropAction to QtCore.
Qt.CopyAction

dropEvent(event) When the files are finally dropped, if they contain
paths, emit the list of paths through the fileDropped
signal.

fileDropped(*args, **kwargs)
Call self as a function.

dragEnterEvent(e)
When files are dragged over us, if they have paths in them, accept the event.

Parameters e (QtCore.QEvent) – containing the drag information.

dragMoveEvent(event)
If the dragEnterEvent was accepted, while the drag is being moved within us, setDropAction to QtCore.
Qt.CopyAction

Parameters event (QtCore.QEvent) – containing the drag information.

dropEvent(event)
When the files are finally dropped, if they contain paths, emit the list of paths through the fileDropped
signal.

Parameters event (QtCore.QEvent) – containing the drag information.

staticMetaObject = <PySide2.QtCore.QMetaObject object at 0x7f4184e2ab00>

14.4 dialog

Functions:

pop_dialog(message[, details, buttons, ...]) Convenience function to pop a :class:`.QtGui.QDialog
window to display a message.

pop_dialog(message: str, details: str = '', buttons: tuple = ('Ok',), modality: str = 'nonmodal', msg_type: str =
'info')→ PySide2.QtWidgets.QMessageBox

Convenience function to pop a :class:`.QtGui.QDialog window to display a message.

Note: This function does not call .exec_ on the dialog so that it can be managed by the caller.

14.4. dialog 217

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Autopilot Documentation, Release 0.5.0a1

Examples

box = pop_dialog(message=’Hey what up’, details=’i got something to tell you’, buttons = (‘Ok’, ‘Cancel’))

ret = box.exec_() if ret == box.Ok:

print(“user answered ‘Ok’”)

else: print(“user answered ‘Cancel’”)

Parameters
• message (str) – message to be displayed

• details (str) – Additional detailed to be added to the displayed message

• buttons (list) – A list specifying which QtWidgets.QMessageBox.StandardButton s to
display. Use a string matching the button name, eg. “Ok” gives QtWidgets.QMessageBox.
Ok

The full list of available buttons is:

['NoButton', 'Ok', 'Save', 'SaveAll', 'Open', 'Yes', 'YesToAll',
'No', 'NoToAll', 'Abort', 'Retry', 'Ignore', 'Close', 'Cancel',
'Discard', 'Help', 'Apply', 'Reset', 'RestoreDefaults',
'FirstButton', 'LastButton', 'YesAll', 'NoAll', 'Default',
'Escape', 'FlagMask', 'ButtonMask']

• modality (str) – Window modality to use, one of “modal”, “nonmodal” (default). Modal
windows block nonmodal windows don’t.

• msg_type (str) – “info” (default), “question”, “warning”, or “error” to use QtGui.
QMessageBox.information(), QtGui.QMessageBox.question(), QtGui.
QMessageBox.warning(), or QtGui.QMessageBox.error(), respectively

Returns QtWidgets.QMessageBox

218 Chapter 14. GUI

CHAPTER

FIFTEEN

HARDWARE

Classes that manage hardware logic.

Each hardware class should be able to operate independently - ie. not be dependent on a particular task class, etc. Other
than that there are very few design requirements:

• Every class should have a .release() method that releases any system resources in use by the object, eg. objects
that use pigpio must have their pigpio.pi client stopped; LEDs should be explicitly turned off.

• The very minimal class attributes are described in the Hardware metaclass.

• Hardware methods are typically called in their own threads, so care should be taken to make any long-running
operations internally threadsafe.

Note: This software was primarily developed for the Raspberry Pi, which has two types of numbering schemes ,
“board” numbering based on physical position (e.g. pins 1-40, in 2 rows of 20 pins) and “bcm” numbering based on
the broadcom chip numbering scheme (e.g. GPIO2, GPIO27).

Board numbering is easier to use, but pigpio , which we use as a bridge between Python and the GPIOs, uses the BCM
scheme. As such each class that uses the GPIOs takes a board number as its argument and converts it to a BCM number
in the __init__ method.

If there is sufficient demand to make this more flexible, we can implement an additional pref to set the numbering
scheme, but the current solution works without getting too muddy.

Data:

BOARD_TO_BCM Mapping from board (physical) numbering to BCM
numbering.

BCM_TO_BOARD The inverse of BOARD_TO_BCM .

Classes:

Hardware([name, group]) Generic class inherited by all hardware.

BOARD_TO_BCM = { 3: 2, 5: 3, 7: 4, 8: 14, 10: 15, 11: 17, 12: 18, 13: 27, 15:
22, 16: 23, 18: 24, 19: 10, 21: 9, 22: 25, 23: 11, 24: 8, 26: 7, 29: 5, 31: 6,
32: 12, 33: 13, 35: 19, 36: 16, 37: 26, 38: 20, 40: 21}

Mapping from board (physical) numbering to BCM numbering.

See this pinout.

Hardware objects take board numbered pins and convert them to BCM numbers for use with pigpio.

219

https://pinout.xyz/
http://abyz.me.uk/rpi/pigpio/
https://pinout.xyz/

Autopilot Documentation, Release 0.5.0a1

Type dict

BCM_TO_BOARD = { 2: 3, 3: 5, 4: 7, 5: 29, 6: 31, 7: 26, 8: 24, 9: 21, 10: 19,
11: 23, 12: 32, 13: 33, 14: 8, 15: 10, 16: 36, 17: 11, 18: 12, 19: 35, 20: 38,
21: 40, 22: 15, 23: 16, 24: 18, 25: 22, 26: 37, 27: 13}

The inverse of BOARD_TO_BCM .

Type dict

class Hardware(name=None, group=None, **kwargs)
Bases: object

Generic class inherited by all hardware. Should not be instantiated on its own (but it won’t do anything bad so
go nuts i guess).

Primarily for the purpose of defining necessary attributes.

Variables
• name (str) – unique name used to identify this object within its group.

• group (str) – hardware group, corresponds to key in prefs.json "HARDWARE":
{"GROUP": {"ID": {**params}}}

• is_trigger (bool) – Is this object a discrete event input device? or, will this device be
used to trigger some event? If True, will be given a callback by Task , and assign_cb()
must be redefined.

• pin (int) – The BCM pin used by this device, or None if no pin is used.

• type (str) – What is this device known as in .prefs? Not required.

• input (bool) – Is this an input device?

• output (bool) – Is this an output device?

Attributes:

is_trigger

pin

type

input

output

calibration Calibration used by the hardware object.

Methods:

220 Chapter 15. hardware

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Autopilot Documentation, Release 0.5.0a1

release() Every hardware device needs to redefine release(),
and must

assign_cb(trigger_fn) Every hardware device that is a trigger must re-
define this to accept a function (typically Task.
handle_trigger()) that is called when that trigger
is activated.

get_name() Usually Hardware is only instantiated with its pin
number, but we can get its name from prefs

init_networking([listens]) Spawn a Net_Node to Hardware.node for stream-
ing or networked command

is_trigger = False

pin = None

type = ''

input = False

output = False

logger: logging.Logger

release()

Every hardware device needs to redefine release(), and must

• Safely unload any system resources used by the object, and

• Return the object to a neutral state - eg. LEDs turn off.

When not redefined, a warning is given.

assign_cb(trigger_fn)
Every hardware device that is a trigger must redefine this to accept a function (typically Task.
handle_trigger()) that is called when that trigger is activated.

When not redefined, a warning is given.

get_name()

Usually Hardware is only instantiated with its pin number, but we can get its name from prefs

init_networking(listens=None, **kwargs)
Spawn a Net_Node to Hardware.node for streaming or networked command

Parameters
• listens (dict) – Dictionary mapping message keys to handling methods

• **kwargs – Passed to Net_Node

Returns:

property calibration: Optional[dict]

Calibration used by the hardware object.

Attempt to read from prefs.get('CALIBRATIONDIR')/group.name.json , if Hardware.group is
None, attempt to read from prefs.get('CALIBRATIONDIR')/name.json

Setting the attribute (over)writes the calibration to disk as a .json file

221

https://docs.python.org/3/library/logging.html#logging.Logger
https://docs.python.org/3/library/stdtypes.html#dict

Autopilot Documentation, Release 0.5.0a1

Will be different for each hardware type, subclasses should document this property separately (eg. by
overwriting Hardware.calibration.__doc__

Returns if calibration is found, a dictionary of calibration for each property. None if no calibra-
tion found

Return type (dict)

15.1 cameras

autopilot.hardware.Hardware autopilot.hardware.cameras.Camera

autopilot.hardware.cameras.Camera_CV

autopilot.hardware.cameras.Camera_Spinnaker

autopilot.hardware.cameras.PiCamera

autopilot.hardware.cameras.Directory_Writer

autopilot.hardware.cameras.Video_Writermultiprocessing.context.Processmultiprocessing.process.BaseProcess

Classes:

Camera([fps, timed, crop, rotate]) Metaclass for Camera objects.
PiCamera([camera_idx, sensor_mode, ...]) Interface to the Raspberry Pi Camera Module via picam-

era
Camera_CV([camera_idx]) Capture Video from a webcam with OpenCV
Camera_Spinnaker([serial, camera_idx]) Capture video from a FLIR brand camera with the Spin-

naker SDK.
Video_Writer(q, path[, fps, timestamps, blosc]) Encode frames as they are acquired in a separate process.

Functions:

list_spinnaker_cameras() List all available Spinnaker cameras and their
DeviceInformation

OPENCV_LAST_INIT_TIME = <Synchronized wrapper for c_double(0.0)>

Time the last OpenCV camera was initialized (seconds, from time.time()).

v4l2 has an extraordinarily obnoxious . . . feature – if you try to initialize two cameras at ~the same time, you will
get a neverending stream of informative error messages: VIDIOC_QBUF: Invalid argument

The workaround seems to be relatively simple, we just wait ~2 seconds if another camera was just initialized.

class Camera(fps=None, timed=False, crop=None, rotate: int = 0, **kwargs)
Bases: autopilot.hardware.Hardware

Metaclass for Camera objects. Should not be instantiated on its own.

Parameters
• fps (int) – Framerate of video capture

222 Chapter 15. hardware

https://docs.python.org/3/library/stdtypes.html#dict
https://www.raspberrypi.org/products/camera-module-v2/
https://picamera.readthedocs.io/en/latest/
https://picamera.readthedocs.io/en/latest/
https://docs.python.org/3/library/functions.html#int

Autopilot Documentation, Release 0.5.0a1

• timed (bool, int, float) – If False (default), camera captures indefinitely. If int or float, cap-
tures for this many seconds

• rotate (int) – Number of times to rotate image clockwise (default 0). Note that image rotation
should happen in _grab() or be otherwise implemented in each camera subclass, because
it’s a common enough operation many cameras have some optimized way of doing it.

• **kwargs –

Arguments to stream(), write(), and queue() can be passed as dictionaries, eg.:

stream={'to':'T', 'ip':'localhost'}

When the camera is instantiated and capture() is called, the class uses a series of methods that should be
overwritten in subclasses. Further details for each can be found in the relevant method documentation.

It is highly recommended to instantiate Cameras with a Hardware.name, as it is used in output_filename
and to identify the network stream

Three methods are required to be overwritten by all subclasses:

• init_cam() - required - used by cam , instantiating the camera object so that it can be queried and con-
figured

• _grab() - required - grab a frame from the cam

• _timestamp() - required - get a timestamp for the frame

The other methods are optional and depend on the particular camera:

• capture_init() - optional - any required routine to prepare the camera after it is instantiated but before
it begins to capture

• _process() - optional - the wrapper around a full acquisition cycle, including streaming, writing, and
queueing frames

• _write_frame() - optional - how to write an individual frame to disk

• _write_deinit() - optional - any required routine to finish writing to disk after acquisition

• capture_deinit() - optional - any required routine to stop acquisition but not release the camera instance.

Variables
• frame (tuple) – The current captured frame as a tuple (timestamp, frame).

• shape (tuple) – Shape of captured frames (height, width, channels)

• blosc (bool) – If True (default), use blosc compression when

• cam – The object used to interact with the camera

• fps (int) – Framerate of video capture

• timed (bool, int, float) – If False (default), camera captures indefinitely. If int or float,
captures for this many seconds

• q (Queue) – Queue that allows frames to be pulled by other objects

• queue_size (int) – How many frames should be buffered in the queue.

• initialized (threading.Event) – Called in init_cam() to indicate the camera has
been initialized

• stopping (threading.Event) – Called to signal that capturing should stop. when set,
ends the threaded capture loop

15.1. cameras 223

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/threading.html#threading.Event
https://docs.python.org/3/library/threading.html#threading.Event

Autopilot Documentation, Release 0.5.0a1

• capturing (threading.Event) – Set when camera is actively capturing

• streaming (threading.Event) – Set to indicate that the camera is streaming data over the
network

• writing (threading.Event) – Set to indicate that the camera is writing video locally

• queueing (threading.Event) – Indicates whether frames are being put into q

• indicating (threading.Event) – Set to indicate that capture progress is being indicated
in stdout by tqdm

Parameters
• fps
• timed
• crop (tuple) – (x, y of top left corner, width, height)

• **kwargs

Attributes:

input test documenting input
type what are we anyway?
cam Camera object.
output_filename Filename given to video writer.

Methods:

capture([timed]) Spawn a thread to begin capturing.
stream([to, ip, port, min_size]) Enable streaming frames on capture.
l_start(val) Begin capturing by calling Camera.capture()
l_stop(val) Stop capture by calling Camera.release()
write([output_filename, timestamps, blosc]) Enable writing frames locally on capture
queue([queue_size]) Enable stashing frames in a queue for a local con-

sumer.
init_cam() Method to initialize camera object
capture_init() Optional: Prepare cam after initialization, but before

capture
capture_deinit() Optional: Return cam to an idle state after capturing,

but before releasing
stop() Stop capture by setting stopping
release() Release resources held by Camera.

input = True

test documenting input

type = 'CAMERA'

what are we anyway?

Type (str)

capture(timed=None)
Spawn a thread to begin capturing.

224 Chapter 15. hardware

https://docs.python.org/3/library/threading.html#threading.Event
https://docs.python.org/3/library/threading.html#threading.Event
https://docs.python.org/3/library/threading.html#threading.Event
https://docs.python.org/3/library/threading.html#threading.Event
https://docs.python.org/3/library/threading.html#threading.Event
https://docs.python.org/3/library/stdtypes.html#str

Autopilot Documentation, Release 0.5.0a1

Parameters timed (None, int, float) – if None, record according to timed (default). If numeric,
record for timed seconds.

stream(to='T', ip=None, port=None, min_size=5, **kwargs)
Enable streaming frames on capture.

Spawns a Net_Node with Hardware.init_networking(), and creates a streaming queue with
Net_Node.get_stream() according to args.

Sets Camera.streaming

Parameters
• to (str) – ID of the recipient. Default ‘T’ for Terminal.

• ip (str) – IP of recipient. If None (default), ‘localhost’. If None and to is ‘T’, prefs.
get('TERMINALIP')

• port (int, str) – Port of recipient socket. If None (default), prefs.get('MSGPORT'). If
None and to is ‘T’, prefs.get('TERMINALPORT').

• min_size (int) – Number of frames to collect before sending (default: 5). use 1 to send
frames as soon as they are available, sacrificing the efficiency from compressing multiple
frames together

• **kwargs – passed to Hardware.init_networking() and thus to Net_Node

l_start(val)
Begin capturing by calling Camera.capture()

Parameters val – unused

l_stop(val)
Stop capture by calling Camera.release()

Parameters val – unused

write(output_filename=None, timestamps=True, blosc=True)
Enable writing frames locally on capture

Spawns a Video_Writer to encode video, sets writing

Parameters
• output_filename (str) – path and filename of the output video. extension should be .mp4,

as videos are encoded with libx264 by default.

• timestamps (bool) – if True, (timestamp, frame) tuples will be put in the _write_q. if
False, timestamps will be generated by Video_Writer (not recommended at all).

• blosc (bool) – if true, compress frames with blosc.pack_array() before putting in
_write_q.

queue(queue_size=128)
Enable stashing frames in a queue for a local consumer.

Other objects can get frames as they are acquired from q

Parameters queue_size (int) – max number of frames that can be held in q

property cam

Camera object.

If _cam hasn’t been initialized yet, use init_cam() to do so

15.1. cameras 225

Autopilot Documentation, Release 0.5.0a1

Returns Camera object, different for each camera.

property output_filename

Filename given to video writer.

If explicitly set, returns as expected.

If None, or path already exists while the camera isn’t capturing, a new filename is generated in the user
directory.

Returns (str) _output_filename

init_cam()

Method to initialize camera object

Must be overridden by camera subclass

Returns camera object

capture_init()

Optional: Prepare cam after initialization, but before capture

Returns None

capture_deinit()

Optional: Return cam to an idle state after capturing, but before releasing

Returns None

stop()

Stop capture by setting stopping

release()

Release resources held by Camera.

Must be overridden by subclass.

Does not raise exception in case some general camera release logic should be put here. . .

class PiCamera(camera_idx: int = 0, sensor_mode: int = 0, resolution: Tuple[int, int] = (1280, 720), fps: int =
30, format: str = 'rgb', *args, **kwargs)

Bases: autopilot.hardware.cameras.Camera

Interface to the Raspberry Pi Camera Module via picamera

Parameters of the picamera.PiCamera class can be set after initialization by modifying the PiCamera.cam
attribute, eg PiCamera().cam.exposure_mode = 'fixedfps' – see the picamera.PiCamera documenta-
tion for full documentation.

Note that some parameters, like resolution, can’t be changed after starting capture() .

The Camera Module is a slippery little thing, and fps and resolution are just requests to the camera, and
aren’t necessarily followed with 100% fidelity. The possible framerates and resolutions are determined by the
sensor_mode parameter, which by default tries to guess the best sensor mode based on the fps and resolution.
See the Sensor Modes documentation for more details.

This wrapper uses a subclass, PiCamera.PiCamera_Writer to capture frames decoded by the gpu directly
from the preallocated buffer object. Currently the restoration from the buffer assumes that RGB, or generally
shape[2] == 3, images are being captured. See this stackexchange post by Dave Jones, author of the picamera
module, for a strategy for capturing grayscale images quickly.

This class also currently uses the default Video_Writer object, but it could be more performant to use the
picamera.PiCamera.start_recording() method’s built-in ability to record video to a file — try it out!

226 Chapter 15. hardware

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://www.raspberrypi.org/products/camera-module-v2/
https://picamera.readthedocs.io/en/latest/
https://picamera.readthedocs.io/en/release-1.13/api_camera.html#picamera.PiCamera
https://picamera.readthedocs.io/en/release-1.13/api_camera.html#picamera.PiCamera
https://picamera.readthedocs.io/en/release-1.13/fov.html#camera-modes
https://raspberrypi.stackexchange.com/a/58941/112948
https://picamera.readthedocs.io/en/release-1.13/api_camera.html#picamera.PiCamera.start_recording

Autopilot Documentation, Release 0.5.0a1

Todo: Currently timestamps are constructed with datetime.datetime.now.isoformat(), which is not
altogether accurate. Timestamps should be gotten from the frame attribute, which depends on the clock_mode

References

• https://blog.robertelder.org/recording-660-fps-on-raspberry-pi-camera/

• Fast capture from the author of picamera - https://raspberrypi.stackexchange.com/a/58941/112948

• More on fast capture and processing, see last example in section - https://picamera.readthedocs.io/en/
release-1.12/recipes2.html#rapid-capture

Parameters
• camera_idx (int) – Index of picamera (default: 0, >=1 only supported on compute module)

• sensor_mode (int) – Sensor mode, default 0 detects automatically from resolution and fps,
note that sensor_mode will affect the available resolutions and framerates, see Sensor Modes
for more information

• resolution (tuple) – a tuple of (width, height) integers, but mind the note in the above docu-
mentation regarding the sensor_mode property and resolution

• fps (int) – frames per second, but again mind the note on sensor_mode

• format (str) – Format passed to :class`picamera.PiCamera.start_recording` one of ('rgb'
(default), 'grayscale') The 'grayscale' format uses the 'yuv' format, and ex-
tracts the luminance channel

• *args () – passed to superclass

• **kwargs () – passed to superclass

Attributes:

sensor_mode Sensor mode, default 0 detects automatically from
resolution and fps, note that sensor_mode will affect
the available resolutions and framerates, see Sensor
Modes for more information.

resolution A tuple of ints, (width, height).
fps Frames per second
rotation Rotation of the captured image, derived from

Camera.rotate * 90.

Methods:

init_cam() Initialize and return the picamera.PiCamera ob-
ject.

capture_init() Spawn a PiCamera.PiCamera_Writer ob-
ject to PiCamera._picam_writer and
start_recording() in the set format

capture_deinit() stop_recording() and close() the camera, re-
leasing its resources.

release() Release resources held by Camera.

15.1. cameras 227

https://picamera.readthedocs.io/en/release-1.13/api_camera.html#picamera.PiCamera.frame
https://picamera.readthedocs.io/en/release-1.13/api_camera.html#picamera.PiCamera.clock_mode
https://blog.robertelder.org/recording-660-fps-on-raspberry-pi-camera/
https://raspberrypi.stackexchange.com/a/58941/112948
https://picamera.readthedocs.io/en/release-1.12/recipes2.html#rapid-capture
https://picamera.readthedocs.io/en/release-1.12/recipes2.html#rapid-capture
https://picamera.readthedocs.io/en/release-1.13/fov.html#camera-modes
https://picamera.readthedocs.io/en/release-1.13/fov.html#camera-modes
https://picamera.readthedocs.io/en/release-1.13/fov.html#camera-modes
https://picamera.readthedocs.io/en/release-1.13/api_camera.html#picamera.PiCamera
https://picamera.readthedocs.io/en/release-1.13/api_camera.html#picamera.PiCamera.start_recording
https://picamera.readthedocs.io/en/release-1.13/api_camera.html#picamera.PiCamera.stop_recording
https://picamera.readthedocs.io/en/release-1.13/api_camera.html#picamera.PiCamera.close

Autopilot Documentation, Release 0.5.0a1

Classes:

PiCamera_Writer(resolution[, format]) Writer object for processing individual frames, see:
https://raspberrypi.stackexchange.com/a/58941/
112948

property sensor_mode: int

Sensor mode, default 0 detects automatically from resolution and fps, note that sensor_mode will affect the
available resolutions and framerates, see Sensor Modes for more information.

When set, if the camera has been initialized, will change the attribute in PiCamera.cam

Returns int

property resolution: Tuple[int, int]

A tuple of ints, (width, height).

Resolution can’t be changed while the camera is capturing.

See Sensor Modes for more information re: how resolution relates to picamera.PiCamera.sensor_mode

Returns tuple of ints, (width, height)

property fps: int

Frames per second

See Sensor Modes for more information re: how fps relates to picamera.PiCamera.sensor_mode

Returns int - fps

property rotation: int

Rotation of the captured image, derived from Camera.rotate * 90.

Must be one of (0, 90, 180, 270)

Rotation can be changed during capture

Returns int - Current rotation

init_cam()→ picamera.PiCamera
Initialize and return the picamera.PiCamera object.

Uses the stored camera_idx, resolution, fps, and sensor_mode attributes on init.

Returns picamera.PiCamera

capture_init()

Spawn a PiCamera.PiCamera_Writer object to PiCamera._picam_writer and start_recording()
in the set format

capture_deinit()

stop_recording() and close() the camera, releasing its resources.

release()

Release resources held by Camera.

Must be overridden by subclass.

Does not raise exception in case some general camera release logic should be put here. . .

228 Chapter 15. hardware

https://raspberrypi.stackexchange.com/a/58941/112948
https://raspberrypi.stackexchange.com/a/58941/112948
https://docs.python.org/3/library/functions.html#int
https://picamera.readthedocs.io/en/release-1.13/fov.html#camera-modes
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://picamera.readthedocs.io/en/release-1.13/fov.html#camera-modes
https://picamera.readthedocs.io/en/release-1.13/api_camera.html#picamera.PiCamera.sensor_mode
https://docs.python.org/3/library/functions.html#int
https://picamera.readthedocs.io/en/release-1.13/fov.html#camera-modes
https://picamera.readthedocs.io/en/release-1.13/api_camera.html#picamera.PiCamera.sensor_mode
https://docs.python.org/3/library/functions.html#int
https://picamera.readthedocs.io/en/release-1.13/api_camera.html#picamera.PiCamera
https://picamera.readthedocs.io/en/release-1.13/api_camera.html#picamera.PiCamera
https://picamera.readthedocs.io/en/release-1.13/api_camera.html#picamera.PiCamera
https://picamera.readthedocs.io/en/release-1.13/api_camera.html#picamera.PiCamera.start_recording
https://picamera.readthedocs.io/en/release-1.13/api_camera.html#picamera.PiCamera.stop_recording
https://picamera.readthedocs.io/en/release-1.13/api_camera.html#picamera.PiCamera.close

Autopilot Documentation, Release 0.5.0a1

class PiCamera_Writer(resolution: Tuple[int, int], format: str = 'rgb')
Bases: object

Writer object for processing individual frames, see: https://raspberrypi.stackexchange.com/a/58941/
112948

Parameters resolution (tuple) – (width, height) tuple used when making numpy array from
buffer

Variables
• grab_event (threading.Event) – Event set whenever a new frame is captured, cleared

by the parent class when the frame is consumed.

• frame (numpy.ndarray) – Captured frame

• timestamp (str) – Isoformatted timestamp of time of capture.

Methods:

write(buf) Reconstutute the buffer into a numpy array in
PiCamera_Writer.frame and make a times-
tamp in PiCamera_Writer.timestamp, then set
the PiCamera_Writer.grab_event

write(buf)
Reconstutute the buffer into a numpy array in PiCamera_Writer.frame and make a timestamp in
PiCamera_Writer.timestamp, then set the PiCamera_Writer.grab_event

Parameters buf () – Buffer given by PiCamera

class Camera_CV(camera_idx=0, **kwargs)
Bases: autopilot.hardware.cameras.Camera

Capture Video from a webcam with OpenCV

By default, OpenCV will select a suitable backend for the indicated camera. Some backends have difficulty
operating multiple cameras at once, so the performance of this class will be variable depending on camera type.

Note: OpenCV must be installed to use this class! A Prebuilt opencv binary is available for the raspberry pi, but
it doesn’t take advantage of some performance-enhancements available to OpenCV. Use autopilot.setup.
run_script opencv to compile OpenCV with these enhancements.

If your camera isn’t working and you’re using v4l2, to print debugging information you can run:

set the debug log level
echo 3 > /sys/class/video4linux/videox/dev_debug

check logs
dmesg

Parameters
• camera_idx (int) – The index of the desired camera

• **kwargs – Passed to the Camera metaclass.

Variables

15.1. cameras 229

https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://raspberrypi.stackexchange.com/a/58941/112948
https://raspberrypi.stackexchange.com/a/58941/112948
https://docs.python.org/3/library/threading.html#threading.Event
https://docs.python.org/3/library/stdtypes.html#str

Autopilot Documentation, Release 0.5.0a1

• camera_idx (int) – The index of the desired camera

• last_opencv_init (float) – See OPENCV_LAST_INIT_TIME

• last_init_lock (threading.Lock) – Lock for setting last_opencv_init

Attributes:

fps Attempts to get FPS with cv2.CAP_PROP_FPS, uses
30fps as a default

shape Attempts to get image shape from cv2.
CAP_PROP_FRAME_WIDTH and HEIGHT :returns:
(width, height) :rtype: tuple

backend capture backend used by OpenCV for this camera
v4l_info Device information from v4l2-ctl

Methods:

init_cam() Initializes OpenCV Camera
release() Release resources held by Camera.

property fps

Attempts to get FPS with cv2.CAP_PROP_FPS, uses 30fps as a default

Returns framerate

Return type int

property shape

Attempts to get image shape from cv2.CAP_PROP_FRAME_WIDTH and HEIGHT :returns: (width, height)
:rtype: tuple

property backend

capture backend used by OpenCV for this camera

Returns name of capture backend used by OpenCV for this camera

Return type str

init_cam()

Initializes OpenCV Camera

To avoid overlapping resource allocation requests, checks the last time any Camera_CV object was instan-
tiated and makes sure it has been at least 2 seconds since then.

Returns camera object

Return type cv2.VideoCapture

release()

Release resources held by Camera.

Must be overridden by subclass.

Does not raise exception in case some general camera release logic should be put here. . .

property v4l_info

Device information from v4l2-ctl

Returns Information for all devices available through v4l2

230 Chapter 15. hardware

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/threading.html#threading.Lock
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Autopilot Documentation, Release 0.5.0a1

Return type dict

class Camera_Spinnaker(serial=None, camera_idx=None, **kwargs)
Bases: autopilot.hardware.cameras.Camera

Capture video from a FLIR brand camera with the Spinnaker SDK.

Parameters
• serial (str) – Serial number of desired camera

• camera_idx (int) – If no serial provided, select camera by index. Using serial is HIGHLY
RECOMMENDED.

• **kwargs – passed to Camera metaclass

Note: PySpin and the Spinnaker SDK must be installed to use this class. Please use the install_pyspin.sh
script in setup

See the documentation for the Spinnaker SDK and PySpin here:

https://www.flir.com/products/spinnaker-sdk/

Variables
• serial (str) – Serial number of desired camera

• camera_idx (int) – If no serial provided, select camera by index. Using serial is
HIGHLY RECOMMENDED.

• system (PySpin.System) – The PySpin System object

• cam_list (PySpin.CameraList) – The list of PySpin Cameras available to the system

• nmap – A reference to the nodemap from the GenICam XML description of the device

• base_path (str) – The directory and base filename that images will be written to if object
is writing. eg:

base_path = ‘/home/user/capture_directory/capture_’ image_path = base_path + ‘im-
age1.png’

• img_opts (PySpin.PNGOption) – Options for saving .png images, made by write()

Attributes:

ATTR_TYPES Conversion from data types to pointer types
ATTR_TYPE_NAMES Conversion from data types to human-readable

names
RW_MODES bool, 'write':bool} descriptor
bin Camera Binning.
exposure Set Exposure of camera
fps Acquisition Framerate
frame_trigger Set camera to lead or follow hardware triggers
acquisition_mode Image acquisition mode
readable_attributes All device attributes that are currently readable with

get()
writable_attributes All device attributes that are currently writeable wth

set()
device_info Get all information about the camera

15.1. cameras 231

https://docs.python.org/3/library/stdtypes.html#dict
https://www.flir.com/products/spinnaker-sdk/
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Autopilot Documentation, Release 0.5.0a1

Methods:

init_cam() Initialize the Spinnaker Camera
capture_init() Prepare the camera for acquisition
capture_deinit() De-initializes the camera after acquisition
write([output_filename, timestamps, blosc]) Sets camera to save acquired images to a directory for

later encoding.
get(attr) Get a camera attribute.
set(attr, val) Set a camera attribute
list_options(name) List the possible values of a camera attribute.
release() Release all PySpin objects and wait on writer, if still

active.

ATTR_TYPES = {}

Conversion from data types to pointer types

ATTR_TYPE_NAMES = {}

Conversion from data types to human-readable names

RW_MODES = {}

bool, ‘write’:bool} descriptor

Type Conversion from read/write mode to {‘read’

init_cam()

Initialize the Spinnaker Camera

Initializes the camera, system, cam_list, node map, and the camera methods and attributes used by get()
and set()

Returns The Spinnaker camera object

Return type PySpin.Camera

capture_init()

Prepare the camera for acquisition

calls the camera’s BeginAcquisition method and populate shape

capture_deinit()

De-initializes the camera after acquisition

write(output_filename=None, timestamps=True, blosc=True)
Sets camera to save acquired images to a directory for later encoding.

For performance, rather than encoding during acquisition, save each image as a (lossless) .png image in a
directory generated by output_filename.

After capturing is complete, a Directory_Writer encodes the images to an x264 encoded .mp4 video.

Parameters
• output_filename (str) – Directory to write images to. If None (default), generated by
output_filename

• timestamps (bool) – Not used, timestamps are always appended to filenames.

• blosc (bool) – Not used, images are directly saved.

232 Chapter 15. hardware

Autopilot Documentation, Release 0.5.0a1

property bin

Camera Binning.

Attempts to bin on-device, and use averaging if possible. If averaging not available, uses summation.

Parameters tuple – tuple of integers, (Horizontal, Vertical binning)

Returns (Horizontal, Vertical binning)

Return type tuple

property exposure

Set Exposure of camera

Can be set with

• 'auto' - automatic exposure control. note that this will limit framerate

• float from 0-1 - exposure duration proportional to fps. eg. if fps = 10, setting exposure = 0.5 means
exposure will be set as 50ms

• float or int >1 - absolute exposure time in microseconds

Returns If exposure has been set, return set value. Otherwise return .get('ExposureTime')

Return type str, float

property fps

Acquisition Framerate

Set with integer. If set with None, ignored (superclass sets FPS to None on init)

Returns from cam.AcquisitionFrameRate.GetValue()

Return type int

property frame_trigger

Set camera to lead or follow hardware triggers

If 'lead', Camera will send TTL pulses from Line 2.

If 'follow', Camera will follow triggers from Line 3.

See also:

• https://www.flir.com/support-center/iis/machine-vision/application-note/
configuring-synchronized-capture-with-multiple-cameras

• https://www.flir.com/support-center/iis/machine-vision/knowledge-base/
what-external-iidc-trigger-modes-are-supported-by-my-camera/

property acquisition_mode

Image acquisition mode

One of

• 'continuous' - continuously acquire frame camera

• 'single' - acquire a single frame

• 'multi' - acquire a finite number of frames.

15.1. cameras 233

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://www.flir.com/support-center/iis/machine-vision/application-note/configuring-synchronized-capture-with-multiple-cameras
https://www.flir.com/support-center/iis/machine-vision/application-note/configuring-synchronized-capture-with-multiple-cameras
https://www.flir.com/support-center/iis/machine-vision/knowledge-base/what-external-iidc-trigger-modes-are-supported-by-my-camera/
https://www.flir.com/support-center/iis/machine-vision/knowledge-base/what-external-iidc-trigger-modes-are-supported-by-my-camera/

Autopilot Documentation, Release 0.5.0a1

Warning: Only 'continuous' has been tested.

property readable_attributes

All device attributes that are currently readable with get()

Returns A dictionary of attributes that are readable and their current values

Return type dict

property writable_attributes

All device attributes that are currently writeable wth set()

Returns A dictionary of attributes that are writeable and their current values

Return type dict

get(attr)
Get a camera attribute.

Any value in readable_attributes can be read. Attempts to get numeric values with .GetValue,
otherwise gets a string with .ToString, so be cautious with types.

If attr is a method (ie. in ._camera_methods, execute the method and return the value

Parameters attr (str) – Name of a readable attribute or executable method

Returns Value of attr

Return type float, int, str

set(attr, val)
Set a camera attribute

Any value in writeable_attributes can be set. If attribute has a .SetValue method, (ie. accepts
numeric values), attempt to use it, otherwise use .FromString.

Parameters
• attr (str) – Name of attribute to be set

• val (str, int, float) – Value to set attribute

list_options(name)
List the possible values of a camera attribute.

Parameters name (str) – name of attribute to query

Returns Dictionary with {available options: descriptions}

Return type dict

property device_info

Get all information about the camera

Note that this is distinct from camera attributes like fps, instead this is information like serial number,
version, firmware revision, etc.

Returns {feature name: feature value}

Return type dict

release()

Release all PySpin objects and wait on writer, if still active.

234 Chapter 15. hardware

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

Autopilot Documentation, Release 0.5.0a1

class Video_Writer(q, path, fps=None, timestamps=True, blosc=True)
Bases: multiprocessing.context.Process

Encode frames as they are acquired in a separate process.

Must call start() after initialization to begin encoding.

Encoding continues until ‘END’ is put in q.

Timestamps are saved in a .csv file with the same path as the video.

Parameters
• q (Queue) – Queue into which frames will be dumped

• path (str) – output path of video

• fps (int) – framerate of output video

• timestamps (bool) – if True (default), input will be of form (timestamp, frame). if False,
input will just be frames and timestamps will be generated as the frame is encoded (not
recommended)

• blosc (bool) – if True, frames in the q will be compresed with blosc. if False, uncompressed

Variables timestamps (list) – Timestamps for frames, written to .csv on completion of encoding

Methods:

run() Open a skvideo.io.FFmpegWriter and begin pro-
cessing frames from q

run()

Open a skvideo.io.FFmpegWriter and begin processing frames from q

Should not be called by itself, overwrites the multiprocessing.Process.run() method, so should call
Video_Writer.start()

Continue encoding until ‘END’ put in queue.

list_spinnaker_cameras()

List all available Spinnaker cameras and their DeviceInformation

Returns list of dictionaries of device information for each camera.

Return type list

15.2 gpio

autopilot.hardware.Hardware autopilot.hardware.gpio.GPIO

autopilot.hardware.gpio.Digital_In

autopilot.hardware.gpio.Digital_Out

autopilot.hardware.gpio.LED_RGB

autopilot.hardware.gpio.PWM

autopilot.hardware.gpio.Solenoid

Hardware that uses the GPIO pins of the Raspi. These classes rely on pigpio, whose daemon (pigpiod) must be

15.2. gpio 235

https://docs.python.org/3/library/queue.html#queue.Queue
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/multiprocessing.html#multiprocessing.Process.run
https://docs.python.org/3/library/stdtypes.html#list
http://abyz.me.uk/rpi/pigpio/

Autopilot Documentation, Release 0.5.0a1

running in the background – typically this is handled with a launch script/system daemon (see the launch_pilot.sh
script generated by setup_autopilot.py)

Autopilot uses a custom version of pigpio (https://github.com/sneakers-the-rat/pigpio) that returns isoformatted times-
tamps rather than tick numbers in callbacks. See the setup_pilot.sh script.

Note: Autopilot uses the “Board” rather than “Broadcom” numbering system, see the numbering note. GPIO ob-
jects convert internally between board and bcm numbers using GPIO.pin , GPIO.pin_bcm , BOARD_TO_BCM , and
BCM_TO_BOARD .

Note: This module does not include hardware that uses the GPIO pins over a specific protocol like i2c

Data:

TRIGGER_MAP Maps user input descriptions of triggers to the corre-
sponding pigpio object.

INVERSE_TRIGGER_MAP Inverse of TRIGGER_MAP.
PULL_MAP Maps user input descriptions of internal resistor

pullups/downs to the corresponding pigpio object.
INVERSE_PULL_MAP Inverse of PULL_MAP, mapping pigpio objects for inter-

nal resistor pullups/downs to their canonical form ('U',
'D', None for pullup, pulldown, or no pull)

ENABLED False if pigpio cannot be imported -- and GPIO devices
cannot be used.

Functions:

clear_scripts([max_scripts]) Stop and delete all scripts running on the pigpio client.

Classes:

GPIO([pin, polarity, pull, trigger]) Metaclass for hardware that uses GPIO.
Digital_Out([pin, pulse_width, polarity]) TTL/Digital logic out through a GPIO pin.
Digital_In(pin[, event, record, max_events]) Record digital input and call one or more callbacks on

logic transition.
PWM(pin[, range]) PWM output from GPIO.
LED_RGB([pins, r, g, b, polarity, blink]) An RGB LED, wrapper around three PWM objects.
Solenoid(pin[, polarity, duration, vol]) Solenoid valve for water delivery.

TRIGGER_MAP = {0: 1, 1: 0, 'B': 2, 'D': 1, 'U': 0, (0, 1): 2}

Maps user input descriptions of triggers to the corresponding pigpio object.

INVERSE_TRIGGER_MAP = {0: 'U', 1: 'D', 2: 'B'}

Inverse of TRIGGER_MAP. Used to assign canonical references to triggers – ie. it is possible to take multiple
params (1, True, ‘U’) -> pigpio trigger objects, but there is one preferred way to refer to a pigpio object.

PULL_MAP = {None: 0, 0: 1, 1: 2, 'D': 1, 'U': 2}

Maps user input descriptions of internal resistor pullups/downs to the corresponding pigpio object.

236 Chapter 15. hardware

https://github.com/sneakers-the-rat/pigpio

Autopilot Documentation, Release 0.5.0a1

INVERSE_PULL_MAP = {0: None, 1: 'D', 2: 'U'}

Inverse of PULL_MAP, mapping pigpio objects for internal resistor pullups/downs to their canonical form (‘U’,
‘D’, None for pullup, pulldown, or no pull)

ENABLED = True

False if pigpio cannot be imported – and GPIO devices cannot be used.

True if pigpio can be imported

clear_scripts(max_scripts=256)
Stop and delete all scripts running on the pigpio client.

To be called, eg. between tasks to ensure none are left hanging by badly behaved GPIO devices

Parameters max_scripts (int) – maximum number of scripts allowed by pigpio. Set in pigpio.c
and not exported to the python module, so have to hardcode it again here, default for pigpio fork
is 256

class GPIO(pin=None, polarity=1, pull=None, trigger=None, **kwargs)
Bases: autopilot.hardware.Hardware

Metaclass for hardware that uses GPIO. Should not be instantiated on its own.

Handles initializing pigpio and wraps some of its commonly used methods

Parameters
• pin (int) – The Board-numbered GPIO pin of this object.

• polarity (int) – Logic direction. if 1: on=High=1, off=Low=0; if 0: off=Low=0, on=High=1

• pull (str, int) – state of pullup/down resistor. Can be set as ‘U’/’D’ or 1/0 to pull up/down.
See PULL_MAP

• trigger (str, int, bool) – whether callbacks are triggered on rising (‘U’, 1, True), falling (‘D’,
0, False), or both edges (‘B’, (0,1))

• kwargs – passed to the Hardware superclass.

Variables
• pig (pigpio.pi) – An object that manages connection to the pigpio daemon. See docs at

http://abyz.me.uk/rpi/pigpio/python.html

• CONNECTED (bool) – Whether the connection to pigpio was successful

• pigpiod – Reference to the pigpiod process launched by external.start_pigpiod()

• pin (int) – The Board-numbered GPIO pin of this object.

• pin_bcm (int) – The BCM number of the connected pin – used by pigpio. Converted from
pin passed as argument on initialization, which is assumed to be the board number.

• pull (str, int) – state of pullup/down resistor. Can be set as ‘U’/’D’ or 1/0 to pull
up/down

• polarity (int) – Logic direction. if 1: on=High=1, off=Low=0; if 0: off=Low=0,
on=High=1

• on (int) – if polarity == 1, high/1. if polarity == 0, low/0

• off (int) – if polarity == 1, low/0. if polarity == 0, high/1

• trigger (str, int, bool) – whether callbacks are triggered on rising (‘U’, 1, True),
falling (‘D’, 0, False), or both edges (‘B’, (0,1))

15.2. gpio 237

https://raspberrypi.stackexchange.com/a/12967
http://abyz.me.uk/rpi/pigpio/python.html
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://raspberrypi.stackexchange.com/a/12967
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

Autopilot Documentation, Release 0.5.0a1

• trigger_edge – The pigpio object representing RISING_EDGE, FALLING_EDGE,
BOTH_EDGES. Set by :attr`.trigger`

Methods:

init_pigpio() Create a socket connection to the pigpio daemon and
set as GPIO.pig

release() Release the connection to the pigpio daemon.

Attributes:

pin //raspberrypi.stackexchange.com/a/12967>`_ GPIO
pin.

state Instantaneous state of GPIO pin, on (True) or off
(False)

pull State of internal pullup/down resistor.
polarity on=High=1, off=Low=0; if 0: off=Low=0,

on=High=1.
trigger Maps strings (('U',1,True), ('D',0,False),

('B',[0,1])) to pigpio edge types (RISING_EDGE,
FALLING_EDGE, EITHER_EDGE), respectively.

init_pigpio()→ bool
Create a socket connection to the pigpio daemon and set as GPIO.pig

Returns True if connection was successful, False otherwise

Return type bool

property pin

//raspberrypi.stackexchange.com/a/12967>`_ GPIO pin.

When assigned, also updates pin_bcm with the BCM-numbered pin.

Type `Board-numbered <https

property state: bool

Instantaneous state of GPIO pin, on (True) or off (False)

Returns bool

property pull

State of internal pullup/down resistor.

See PULL_MAP for possible values.

Returns ‘U’/’D’/None for pulled up, down or not set.

Return type int

property polarity

on=High=1, off=Low=0; if 0: off=Low=0, on=High=1.

When set, updates on and off accordingly

Type Logic direction. if 1

238 Chapter 15. hardware

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

Autopilot Documentation, Release 0.5.0a1

property trigger

Maps strings ((‘U’,1,True), (‘D’,0,False), (‘B’,[0,1])) to pigpio edge types (RISING_EDGE,
FALLING_EDGE, EITHER_EDGE), respectively.

Type dict

release()

Release the connection to the pigpio daemon.

Note: the Hardware metaclass will call this method on object deletion.

class Digital_Out(pin=None, pulse_width=100, polarity=1, **kwargs)
Bases: autopilot.hardware.gpio.GPIO

TTL/Digital logic out through a GPIO pin.

Parameters
• pin (int) – The Board-numbered GPIO pin of this object

• pulse_width (int) – Width of digital output pulse() (us). range: 1-100

• polarity (bool) – Whether ‘on’ is High (1, default) and pulses bring the voltage High, or vice
versa (0)

Variables
• scripts (dict) – maps script IDs to pigpio script handles

• pigs_function (bytes) – when using pigpio scripts, what function is used to set the value
of the output? (eg. ‘w’ for digital out, ‘gdc’ for pwm, more info here: http://abyz.me.uk/rpi/
pigpio/pigs.html)

• script_counter (itertools.count) – generate script IDs if not explicitly given to
series(). generated IDs are of the form ‘series_#’

Attributes:

output

type

pigs_function

Methods:

15.2. gpio 239

https://docs.python.org/3/library/stdtypes.html#dict
https://raspberrypi.stackexchange.com/a/12967
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#bytes
http://abyz.me.uk/rpi/pigpio/pigs.html
http://abyz.me.uk/rpi/pigpio/pigs.html

Autopilot Documentation, Release 0.5.0a1

set(value[, result]) Set pin logic level.
turn([direction]) Change output state using on/off parlance.
toggle() If pin is High, set Low, and vice versa.
pulse([duration]) Send a timed on pulse.
store_series(id, **kwargs) Create, and store a pigpio script for a series of output

values to be called by series()
series([id, delete]) Execute a script that sets the pin to a series of values

for a series of durations.
delete_script(script_id) spawn a thread to delete a script with id script_id
delete_all_scripts() Stop and delete all scripts
stop_script([id]) Stops a running pigpio script
release() Stops and deletes all scripts, sets to off, and calls

GPIO.release()

output = True

type = 'DIGITAL_OUT'

pigs_function = b'w'

set(value: bool, result: bool = True)→ bool
Set pin logic level.

Default uses pigpio.pi.write(), but can be overwritten by inheriting classes

Stops the last running script when called.

Parameters
• value (int, bool) – (1, True) to set High, (0, False) to set Low.

• result (bool) – If True (default), wait for response from pigpiod to give an error code. If
False, don’t wait, but also don’t receive confirmation that the pin was written to

turn(direction='on')
Change output state using on/off parlance. logic direction varies based on Digital_Out.polarity

Stops the last running script when called.

Parameters direction (str, bool) – ‘on’, 1, or True to turn to on and vice versa for off

toggle()

If pin is High, set Low, and vice versa.

Stops the last running script when called.

pulse(duration=None)
Send a timed on pulse.

Parameters duration (int) – If None (default), uses duration, otherwise duration of pulse from
1-100us.

store_series(id, **kwargs)
Create, and store a pigpio script for a series of output values to be called by series()

Parameters
• id (str) – shorthand key used to call this series with series()

• kwargs – passed to _series_script()

240 Chapter 15. hardware

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Autopilot Documentation, Release 0.5.0a1

series(id=None, delete=None, **kwargs)
Execute a script that sets the pin to a series of values for a series of durations.

See _series_script() for series parameterization.

Ideally one would use store_series() and use the returned id to call this function. Otherwise, this
method calls store_series() and runs it.

Parameters
• id (str, int) – ID of the script, if not already created, created with store_script(). If

None (default), an ID is generated with script_counter of the form 'script_#'

• kwargs – passed to _series_script()

delete_script(script_id)
spawn a thread to delete a script with id script_id

This is a ‘soft’ deletion – it checks if the script is running, and waits for up to 10 seconds before actually
deleting it.

The script is deleted from the pigpio daemon, from script_handles and from scripts

Parameters script_id (str) – a script ID in Digital_Out.script_handles

delete_all_scripts()

Stop and delete all scripts

This is a “hard” deletion – the script will be immediately stopped if it’s running.

stop_script(id=None)
Stops a running pigpio script

Parameters id (str, none) – If None, stops the last run script. if str, stops script with that id.

release()

Stops and deletes all scripts, sets to off, and calls GPIO.release()

pig: Optional[pigpio.pi]

logger: logging.Logger

class Digital_In(pin, event=None, record=True, max_events=256, **kwargs)
Bases: autopilot.hardware.gpio.GPIO

Record digital input and call one or more callbacks on logic transition.

Parameters
• pin (int) – Board-numbered GPIO pin.

• event (threading.Event) – For callbacks assigned with assign_cb() with evented =
True, set this event whenever the callback is triggered. Can be used to handle stage transition
logic here instead of the Task object, as is typical.

• record (bool) – Whether all logic transitions should be recorded as a list of (‘EVENT’,
‘Timestamp’) tuples.

• max_events (int) – Maximum size of the events deque

• **kwargs – passed to GPIO

15.2. gpio 241

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/logging.html#logging.Logger
https://raspberrypi.stackexchange.com/a/12967
https://docs.python.org/3/library/threading.html#threading.Event

Autopilot Documentation, Release 0.5.0a1

Sets the internal pullup/down resistor to Digital_In.off and Digital_In.trigger to Digital_In.on upon
instantiation.

Note: pull and trigger are set by polarity on initialization in digital inputs, unlike other GPIO classes. They are
not mutually synchronized however, ie. after initialization if any one of these attributes are changed, the other
two will remain the same.

Variables
• pig (pigpio.pi()) – The pigpio connection.

• pin (int) – Broadcom-numbered pin, converted from the argument given on instantiation

• callbacks (list) – A list of :meth:`pigpio.callback`s kept to clear them on exit

• polarity (int) – Logic direction, if 1: off=0, on=1, pull=low, trigger=high and vice versa
for 0

• events (list) – if record is True, a deque of (‘EVENT’, ‘TIMESTAMP’) tuples of length
max_events

Attributes:

is_trigger

type

input

Methods:

assign_cb(callback_fn[, add, evented, ...]) Sets callback_fn to be called when Digital_In.
trigger is detected.

clear_cb() Tries to call .cancel() on each of the callbacks in
callbacks

record_event(pin, level, timestamp) On either direction of logic transition, record the time
release() Clears any callbacks and calls GPIO.release()

is_trigger = True

type = 'DIGI_IN'

input = True

assign_cb(callback_fn, add=True, evented=False, manual_trigger=None)
Sets callback_fn to be called when Digital_In.trigger is detected.

callback_fn must accept three parameters:

• GPIO (int, 0-31): the BCM number of the pin that was triggered

• level (0-2):

– 0: change to low (falling)

– 1: change to high (rising)

242 Chapter 15. hardware

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list

Autopilot Documentation, Release 0.5.0a1

– 2: no change (watchdog timeout)

• timestamp (str): If using the Autopilot version of pigpio, an isoformatted timestamp

Parameters
• callback_fn (callable) – The function to be called when triggered

• add (bool) – Are we adding another callback? If False, the previous callbacks are cleared.

• evented (bool) – Should triggering this event also set the internal event? Note that
Digital_In.event must have been passed.

• manual_trigger (‘U’, ‘D’, ‘B’) – Override Digital_In.trigger if needed.

clear_cb()

Tries to call .cancel() on each of the callbacks in callbacks

record_event(pin, level, timestamp)
On either direction of logic transition, record the time

Parameters
• pin (int) – BCM numbered pin passed from pigpio

• level (bool) – High/Low status of current pin

• timestamp (str) – isoformatted timestamp

release()

Clears any callbacks and calls GPIO.release()

pig: Optional[pigpio.pi]

logger: logging.Logger

class PWM(pin, range=255, **kwargs)
Bases: autopilot.hardware.gpio.Digital_Out

PWM output from GPIO.

Parameters
• pin (int) – Board numbered GPIO pin

• range (int) – Maximum value of PWM duty-cycle. Default 255.

• **kwargs – passed to Digital_Out

Attributes:

output

type

pigs_function

range Maximum value of PWM dutycycle.
polarity Logic direction.

Methods:

15.2. gpio 243

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/logging.html#logging.Logger

Autopilot Documentation, Release 0.5.0a1

set(value) Sets PWM duty cycle normalized to polarity and
transformed by _clean_value()

release() Turn off and call Digital_Out.release()

output = True

type = 'PWM'

pigs_function = b'pwm'

set(value)
Sets PWM duty cycle normalized to polarity and transformed by _clean_value()

Stops the last running script

Parameters value (int, float) –

• if int > 1, sets value (or PWM.range-value if PWM.polarity is inverted).

• if 0 <= float <= 1, transforms to a proportion of range (inverted if needed as well).

property range

Maximum value of PWM dutycycle.

Doesn’t set duration of PWM, but set values will be divided by this range. eg. if range == 200, calling
PWM.set(100)() would result in a 50% duty cycle

Parameters (int) – 25-40000

property polarity

Logic direction.

• if 1: on=High=:attr:~PWM.range, off=Low=0;

• if 0: off=Low=0, on=High=:attr:~PWM.range.

When set, updates on and off

release()

Turn off and call Digital_Out.release()

Returns:

pig: Optional[pigpio.pi]

logger: logging.Logger

class LED_RGB(pins=None, r=None, g=None, b=None, polarity=1, blink=True, **kwargs)
Bases: autopilot.hardware.gpio.Digital_Out

An RGB LED, wrapper around three PWM objects.

Parameters
• pins (list) – A list of (board) pin numbers. Either pins OR all r, g, b must be passed.

• r (int) – Board number of Red pin - must be passed with g and b

• g (int) – Board number of Green pin - must be passed with r and b

• b (int) – Board number of Blue pin - must be passed with r and g:

• polarity (0, 1) – 0: common anode (low turns LED on) 1: common cathode (low turns LED
off)

244 Chapter 15. hardware

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/logging.html#logging.Logger

Autopilot Documentation, Release 0.5.0a1

• blink (bool) – Flash RGB at the end of init to show we’re alive and bc it’s real cute.

• **kwargs – passed to Digital_Out

Variables channels (dict) – The three PWM objects, {‘r’:PWM, . . . etc}

Attributes:

output

type

range Returns: dict: ranges for each of the LED_RGB.
channels

pin Dict of the board pin number of each channel, ``{'r' :
self.channels['r'].pin, .

pin_bcm Dict of the broadcom pin number of each channel,
``{'r' : self.channels['r'].pin_bcm, .

pull State of internal pullup/down resistor.

Methods:

set([value, r, g, b]) Set the color of the LED.
toggle() If pin is High, set Low, and vice versa.
pulse([duration]) Send a timed on pulse.
flash (duration[, frequency, colors]) Specify a color series by total duration and flash fre-

quency.
release() Release each channel and stop pig without calling su-

perclass.

output = True

type = 'LEDS'

property range: dict

Returns: dict: ranges for each of the LED_RGB.channels

set(value=None, r=None, g=None, b=None)
Set the color of the LED.

Can either pass

• a full (R, G, B) tuple to value,

• a single value that is applied to each channel,

• if value is not passed, individual r, g, or b values can be passed (any combination can be set in a
single call)

Stops the last run script

Parameters
• value (int, float, tuple, list) – If list or tuple, an (R, G, B) color. If float or int, applied to

each color channe. Can be set with floats 0-1, or ints >= 1 (See PWM.range). If None, use
r, g, and b.

• r (float, int) – value to set red channel

15.2. gpio 245

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

Autopilot Documentation, Release 0.5.0a1

• g (float, int) – value to set green channel

• b (float, int) – value to set blue channel

pig: Optional[pigpio.pi]

logger: logging.Logger

toggle()

If pin is High, set Low, and vice versa.

Stops the last running script when called.

pulse(duration=None)
Send a timed on pulse.

Parameters duration (int) – If None (default), uses duration, otherwise duration of pulse from
1-100us.

flash(duration, frequency=10, colors=((1, 1, 1), (0, 0, 0)))
Specify a color series by total duration and flash frequency.

Largely a convenience function for on/off flashes.

Parameters
• duration (int, float) – Duration of flash in ms.

• frequency (int, float) – Frequency of flashes in Hz

• colors (list) –

A list of RGB values 0-255 like:

[[255,255,255],[0,0,0]]

release()

Release each channel and stop pig without calling superclass.

property pin

Dict of the board pin number of each channel, {'r' : self.channels['r'].pin, ... }

property pin_bcm

Dict of the broadcom pin number of each channel, {'r' : self.channels['r'].pin_bcm, ... }

property pull

State of internal pullup/down resistor.

See PULL_MAP for possible values.

Returns ‘U’/’D’/None for pulled up, down or not set.

Return type int

class Solenoid(pin, polarity=1, duration=20, vol=None, **kwargs)
Bases: autopilot.hardware.gpio.Digital_Out

Solenoid valve for water delivery.

Parameters
• pin (int) – Board pin number, converted to BCM on init.

• polarity (0, 1) – Whether HIGH opens the port (1) or closes it (0)

246 Chapter 15. hardware

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/logging.html#logging.Logger
https://docs.python.org/3/library/functions.html#int

Autopilot Documentation, Release 0.5.0a1

• duration (int, float) – duration of open, ms.

• vol (int, float) – desired volume of reward in uL, must have computed calibration results, see
calibrate_ports()

• **kwargs – passed to Digital_Out

Only NC solenoids should be used, as there is no way to guarantee that a pin will maintain its voltage when it is
released, and you will spill water all over the place.

Variables
• calibration (dict) – Dict with with line coefficients fitting volume to open

duration, see calibrate_ports(). Retrieved from prefs, specifically prefs.
get('PORT_CALIBRATION')[name]

• mode ('DURATION', 'VOLUME') – Whether open duration is given in ms, or computed from
calibration

• duration (int, float) – Duration of valve opening, in ms. When set, creates a script
‘open’ that is used to open the valve for a precise amount of time

Attributes:

output

type

DURATION_MIN Minimum allowed duration in ms
duration

Methods:

dur_from_vol(vol) Given a desired volume, compute an open duration.
open([duration]) Open the valve.

pig: Optional[pigpio.pi]

logger: logging.Logger

output = True

type = 'SOLENOID'

DURATION_MIN = 2

Minimum allowed duration in ms

property duration

dur_from_vol(vol)
Given a desired volume, compute an open duration.

Must have calibration available in prefs, see calibrate_ports().

Parameters vol (float, int) – desired reward volume in uL

Returns computed opening duration for given volume

Return type int

15.2. gpio 247

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/logging.html#logging.Logger
https://docs.python.org/3/library/functions.html#int

Autopilot Documentation, Release 0.5.0a1

open(duration=None)
Open the valve.

Uses the ‘open’ script created when assigning duration.

Parameters duration (float) – If provided, open for this duration instead of the duration stored
on instantiation.

15.3 i2c

Classes:

I2C_9DOF([accel, gyro, mag, gyro_hpf, ...]) A Sparkfun 9DOF combined accelerometer, magne-
tometer, and gyroscope.

MLX90640([fps, integrate_frames, interpolate]) A MLX90640 Temperature sensor.

class I2C_9DOF(accel: bool = True, gyro: bool = True, mag: bool = True, gyro_hpf: float = 0.2, accel_range=16,
kalman_mode: str = 'both', invert_gyro=False, *args, **kwargs)

Bases: autopilot.hardware.Hardware

A Sparkfun 9DOF combined accelerometer, magnetometer, and gyroscope.

Sensor Datasheet: https://cdn.sparkfun.com/assets/learn_tutorials/3/7/3/LSM9DS1_Datasheet.pdf

Hardware Datasheet: https://github.com/sparkfun/9DOF_Sensor_Stick

Documentation on calculating position values: https://arxiv.org/pdf/1704.06053.pdf

This device uses I2C, so must be connected accordingly:

• VCC: 3.3V (pin 2)

• Ground: (any ground pin

• SDA: I2C.1 SDA (pin 3)

• SCL: I2C.1 SCL (pin 5)

This class uses code from the Adafruit Circuitfun library, modified to use pigpio

Note: use this for processing?? https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6111698/

Parameters
• accel (bool) – Whether the accelerometer should be made active (default: True)

• gyro (bool) – Whether the gyroscope should be made active (default: True) – accel must be
true if gyro is true

• mag (bool) – Whether the magnetomete should be made active (default: True)

• gyro_hpf (int, float) – Highpass filter cutoff for onboard gyroscope filter. One of
GYRO_HPF_CUTOFF (default: 4), or False to disable

• kalman_mode (‘both’, ‘accel’, None) – Whether to use a kalman filter that integrates ac-
celerometer and gyro readings (‘both’, default), a kalman filter with just the accelerometer
values (‘accel’), or just return the raw calculated orientation values from rotation

248 Chapter 15. hardware

https://www.sparkfun.com/products/13944
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://www.sparkfun.com/products/13944
https://cdn.sparkfun.com/assets/learn_tutorials/3/7/3/LSM9DS1_Datasheet.pdf
https://github.com/sparkfun/9DOF_Sensor_Stick
https://arxiv.org/pdf/1704.06053.pdf
https://github.com/adafruit/Adafruit_CircuitPython_LSM9DS1
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6111698/

Autopilot Documentation, Release 0.5.0a1

• invert_gyro (list, tuple) – if not False (default), a list/tuple of the numerical axis index to
invert on the gyroscope. eg. passing (1, 2) will invert the y and z axes.

Attributes:

ACCELRANGE_2G

ACCELRANGE_16G

ACCELRANGE_4G

ACCELRANGE_8G

MAGGAIN_4GAUSS

MAGGAIN_8GAUSS

MAGGAIN_12GAUSS

MAGGAIN_16GAUSS

GYROSCALE_245DPS

GYROSCALE_500DPS

GYROSCALE_2000DPS

GYRO_HPF_CUTOFF Highpass-filter cutoff frequencies (keys, in Hz)
mapped to binary flag.

accel_range The accelerometer range.
mag_gain The magnetometer gain.
gyro_scale The gyroscope scale.
gyro_filter Set the high-pass filter for the gyroscope.
gyro_polarity

acceleration The calibrated x, y, z acceleration in m/s^2
magnetic The magnetometer X, Y, Z axis values as a 3-tuple of

gauss values.
gyro The gyroscope X, Y, Z axis values as a 3-tuple of de-

grees/second values.
rotation Return roll (rotation around x axis) and pitch (rota-

tion around y axis) computed from the accelerometer
temperature Returns: float: Temperature in Degrees C

Methods:

calibrate([what, samples, sample_dur]) Calibrate sensor readings to correct for bias and scale
errors

ACCELRANGE_2G = 0

ACCELRANGE_16G = 8

15.3. i2c 249

Autopilot Documentation, Release 0.5.0a1

ACCELRANGE_4G = 16

ACCELRANGE_8G = 24

MAGGAIN_4GAUSS = 0

MAGGAIN_8GAUSS = 32

MAGGAIN_12GAUSS = 64

MAGGAIN_16GAUSS = 96

GYROSCALE_245DPS = 0

GYROSCALE_500DPS = 8

GYROSCALE_2000DPS = 24

GYRO_HPF_CUTOFF = {0.1: 9, 0.2: 8, 0.5: 7, 1: 6, 2: 5, 4: 4, 8: 3, 15: 2,
30: 1, 57: 0}

Highpass-filter cutoff frequencies (keys, in Hz) mapped to binary flag.

Note: the frequency of a given binary flag is dependent on the output frequency (952Hz by default,
changing frequency is not currently exposed in this object). See Table 52 of the sensor datasheet for more.

property accel_range

The accelerometer range. Must be one of: - I2C_9DOF.ACCELRANGE_2G - I2C_9DOF.ACCELRANGE_4G -
I2C_9DOF.ACCELRANGE_8G - I2C_9DOF.ACCELRANGE_16G

property mag_gain

The magnetometer gain. Must be a value of: - I2C_9DOF.MAGGAIN_4GAUSS - I2C_9DOF.
MAGGAIN_8GAUSS - I2C_9DOF.MAGGAIN_12GAUSS - I2C_9DOF.MAGGAIN_16GAUSS

property gyro_scale

The gyroscope scale. Must be a value of: - I2C_9DOF.GYROSCALE_245DPS - I2C_9DOF.
GYROSCALE_500DPS - I2C_9DOF.GYROSCALE_2000DPS

property gyro_filter: Union[int, float, bool]

Set the high-pass filter for the gyroscope.

Note: the frequency of a given binary flag is dependent on the output frequency (952Hz by default,
changing frequency is not currently exposed in this object). See Table 52 of the sensor datasheet for more.

Parameters gyro_filter (int, float, False) – Filter frequency (in GYRO_HPF_CUTOFF) or False to
disable

Returns current HPF cutoff or False if disabled

Return type float, bool

property gyro_polarity

250 Chapter 15. hardware

https://cdn.sparkfun.com/assets/learn_tutorials/3/7/3/LSM9DS1_Datasheet.pdf
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://cdn.sparkfun.com/assets/learn_tutorials/3/7/3/LSM9DS1_Datasheet.pdf
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool

Autopilot Documentation, Release 0.5.0a1

property acceleration

The calibrated x, y, z acceleration in m/s^2

Returns x, y, z acceleration

Return type accel (tuple)

property magnetic

The magnetometer X, Y, Z axis values as a 3-tuple of gauss values.

Returns x, y, z gauss values

Return type (tuple)

property gyro

The gyroscope X, Y, Z axis values as a 3-tuple of degrees/second values.

property rotation

Return roll (rotation around x axis) and pitch (rotation around y axis) computed from the accelerometer

Uses transform.geometry.IMU_Orientation to fuse accelerometer and gyroscope with Kalman filter

Returns np.ndarray - [roll, pitch]

property temperature

Returns: float: Temperature in Degrees C

calibrate(what: str = 'accelerometer', samples: int = 10000, sample_dur: Optional[float] = None)→ dict
Calibrate sensor readings to correct for bias and scale errors

Note: Currently only calibrating the accelerometer is implemented.

The accelerometer is calibrated by rotating the sensor slowly in all three rotational dimensions in such a way
that minimizes linear acceleration (not due to gravity). A perfect sensor would output a sphere of points
centered at 0

Parameters
• what (str) – which sensor is to be calibrated (currentlty only “accelerometer” implemented)

• samples (int) – number of samples that should be used to compute the calibration

• sample_dur (float) – number of seconds to sample for, overrides samples if not None
(default)

Returns calibration dictionary (also saved to disk using Hardware.calibration)

Return type dict

logger: logging.Logger

class MLX90640(fps=64, integrate_frames=64, interpolate=3, **kwargs)
Bases: autopilot.hardware.cameras.Camera

A MLX90640 Temperature sensor.

Parameters
• fps (int) – Acquisition framerate, must be one of MLX90640.ALLOWED_FPS

• integrate_frames (int) – Number of frames to average over

• interpolate (int) – Interpolation multiplier – 3 “increases the resolution” 3x

15.3. i2c 251

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/logging.html#logging.Logger

Autopilot Documentation, Release 0.5.0a1

• **kwargs – passed to Camera

Variables
• shape (tuple) – :attr:`~MLX90640.SHAPE_SENSOR

• integrate_frames (int) – Number of frames to average over

• interpolate (int) – Interpolation multiplier – 3 “increases the resolution” 3x

• _grab_event (threading.Event) – capture thread sets every time it gets a frame, _grab
waits every time, keeps us from returning same frame twice

This device uses I2C, so must be connected accordingly:

• VCC: 3.3V (pin 2)

• Ground: (any ground pin

• SDA: I2C.1 SDA (pin 3)

• SCL: I2C.1 SCL (pin 5)

Uses a modified version of the MLX90640 Library that is capable of outputting 64fps. You must install the
library separately, see the setup_mlx90640.sh script.

Capture works a bit differently from other Cameras – the capture_init() method spawns a
_threaded_capture() thread, which continually puts frames in the _frames array which serves as a
ring buffer. The _grab() method then awaits the _grab_event to be set by the capture thread, and when it is
set returns the mean across frames of the ring buffer.

Note: The setup script modifies the systemwide i2c baudrate to 1MHz, which may interfere with
other I2C devices. It can be returned to 400kHz (default) by editing /config/boot.txt to read
dtparam=i2c_arm_baudrate=400000

Attributes:

type what are we anyway?
ALLOWED_FPS FPS must be one of these
SHAPE_SENSOR (H, W) Output shape of this sensor is always the

same.
fps

integrate_frames

interpolate

Methods:

init_cam() Set the camera object to use our MLX90640.fps
capture_init() Spawn a _threaded_capture() thread
interpolate_frame(frame) Interpolate frame according to interpolate using

scipy.interpolate.griddata()
release() Stops the capture thread, cleans up the camera, and

calls the superclass release method.

252 Chapter 15. hardware

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/threading.html#threading.Event
https://github.com/sneakers-the-rat/mlx90640-library

Autopilot Documentation, Release 0.5.0a1

type = 'MLX90640'

what are we anyway?

Type (str)

ALLOWED_FPS = (1, 2, 4, 8, 16, 32, 64)

FPS must be one of these

SHAPE_SENSOR = (32, 24)

(H, W) Output shape of this sensor is always the same. May differ from MLX90640.shape if interpolate
>1

logger: logging.Logger

property fps

property integrate_frames

property interpolate

init_cam()

Set the camera object to use our MLX90640.fps

capture_init()

Spawn a _threaded_capture() thread

interpolate_frame(frame)
Interpolate frame according to interpolate using scipy.interpolate.griddata()

Parameters frame (numpy.ndarray) – Frame to interpolate

Returns Interpolated Frame

Return type (numpy.ndarray)

release()

Stops the capture thread, cleans up the camera, and calls the superclass release method.

15.4 usb

Hardware that uses USB

Classes:

Wheel([mouse_idx, fs, thresh, thresh_type, ...]) A continuously measured mouse wheel.
Scale([model, vendor_id, product_id])

class Wheel(mouse_idx=0, fs=10, thresh=100, thresh_type='dist', start=True, digi_out=False, mode='vel_total',
integrate_dur=5)

Bases: autopilot.hardware.Hardware

A continuously measured mouse wheel.

Uses a USB computer mouse.

15.4. usb 253

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/logging.html#logging.Logger

Autopilot Documentation, Release 0.5.0a1

Warning: ‘vel’ thresh_type not implemented

Parameters
• mouse_idx (int)

• fs (int)

• thresh (int)

• thresh_type (‘dist’)

• start (bool)

• digi_out (Digital_Out, bool)

• mode (‘vel_total’)

• integrate_dur (int)

Attributes:

input

type

trigger

THRESH_TYPES

MODES

MOVE_DTYPE

Methods:

start()

check_thresh (move) Updates thresh_val and checks whether it's
above/below threshold

calc_move(move[, thresh_type]) Calculate distance move depending on type (x, y, to-
tal dist)

thresh_trig()

assign_cb(trigger_fn) Every hardware device that is a trigger must re-
define this to accept a function (typically Task.
handle_trigger()) that is called when that trigger
is activated.

l_measure(value) Task has signaled that we need to start measuring
movements for a trigger

l_clear(value) Stop measuring!
l_stop(value) Stop measuring and clear system resources :Parame-

ters: value ()
release() Every hardware device needs to redefine release(),

and must

254 Chapter 15. hardware

Autopilot Documentation, Release 0.5.0a1

input = True

type = 'Wheel'

trigger = False

THRESH_TYPES = ['dist', 'x', 'y', 'vel']

MODES = ('vel_total', 'steady', 'dist', 'timed')

MOVE_DTYPE = [('vel', 'i4'), ('dir', 'U5'), ('timestamp', 'f8')]

start()

check_thresh(move)
Updates thresh_val and checks whether it’s above/below threshold

Parameters move (np.array) – Structured array with fields (‘vel’, ‘dir’, ‘timestamp’)

Returns:

calc_move(move, thresh_type=None)
Calculate distance move depending on type (x, y, total dist)

Parameters
• move ()
• thresh_type ()

Returns:

thresh_trig()

assign_cb(trigger_fn)
Every hardware device that is a trigger must redefine this to accept a function (typically Task.
handle_trigger()) that is called when that trigger is activated.

When not redefined, a warning is given.

l_measure(value)
Task has signaled that we need to start measuring movements for a trigger

Parameters value ()
l_clear(value)

Stop measuring!

Parameters value ()
Returns:

l_stop(value)
Stop measuring and clear system resources :Parameters: value ()
Returns:

release()

Every hardware device needs to redefine release(), and must

• Safely unload any system resources used by the object, and

• Return the object to a neutral state - eg. LEDs turn off.

15.4. usb 255

Autopilot Documentation, Release 0.5.0a1

When not redefined, a warning is given.

logger: logging.Logger

class Scale(model='stamps.com', vendor_id=None, product_id=None)
Bases: autopilot.hardware.Hardware

Note: Not implemented, working on using a digital scale to make weighing faster.

Parameters
• model
• vendor_id
• product_id

Attributes:

MODEL

MODEL = {'stamps.com': {'product_id': 27251, 'vendor_id': 5190}}

logger: logging.Logger

256 Chapter 15. hardware

https://docs.python.org/3/library/logging.html#logging.Logger
https://docs.python.org/3/library/logging.html#logging.Logger

CHAPTER

SIXTEEN

NETWORKING

Classes for network communication.

There are two general types of network objects -

• autopilot.networking.Station and its children are independent processes that should only be instantiated once
per piece of hardware. They are used to distribute messages between Net_Node s, forward messages up
the networking tree, and responding to messages that don’t need any input from the Pilot or Terminal.

• Net_Node is a pop-in networking class that can be given to any other object that wants to send or receive
messages.

The Message object is used to serialize and pass messages. When sent, messages are JSON serialized (with some
special magic to compress/encode numpy arrays) and sent as zmq multipart messages.

Each serialized message, when sent, can have n frames of the format:

[hop_0, hop_1, ... hop_n, final_recipient, serialized_message]

Or, messages can have multiple “hops” (a typical message will have one ‘hop’ specified by the to field), the second to
last frame is always the final intended recipient, and the final frame is the serialized message. Note that the to field
of a Message object will always be the final recipient even if a list is passed for to when sending. This lets Station
objects efficiently forward messages without deserializing them at every hop.

Functions:

serialize_array(array) Pack an array with blosc.pack_array() and serialize
with base64.b64encode()

serialize_array(array)
Pack an array with blosc.pack_array() and serialize with base64.b64encode()

Parameters array (numpy.ndarray) – Array to serialize

Returns {‘NUMPY_ARRAY’: base-64 encoded, blosc-compressed array.}

Return type dict

257

https://docs.python.org/3/library/base64.html#base64.b64encode
https://docs.python.org/3/library/base64.html#base64.b64encode
https://docs.python.org/3/library/stdtypes.html#dict

Autopilot Documentation, Release 0.5.0a1

16.1 station

autopilot.networking.station.Pilot_Station

autopilot.networking.station.Station

autopilot.networking.station.Terminal_Station

multiprocessing.context.Processmultiprocessing.process.BaseProcess

Classes:

Station([id, push_ip, push_port, push_id, ...]) Independent networking class used for messaging be-
tween computers.

Terminal_Station(pilots) Station object used by Terminal objects.
Pilot_Station() Station object used by Pilot objects.

class Station(id: Optional[str] = None, push_ip: Optional[str] = None, push_port: Optional[int] = None,
push_id: Optional[str] = None, pusher: bool = False, listen_port: Optional[int] = None, listens:
Optional[Dict[str, Callable]] = None)

Bases: multiprocessing.context.Process

Independent networking class used for messaging between computers.

These objects send and handle networking.Message s by using a dictionary of listens, or methods that are
called to respond to different types of messages.

Each sent message is given an ID, and a thread is spawned to periodically resend it (up until some time-to-live,
typically 5 times) until confirmation is received.

By default, the only listen these objects have is l_confirm(), which responds to message confirmations. Ac-
cordingly, listens should be added by using dict.update() rather than reassigning the attribute.

Station objects can be made with or without a pusher, a zmq.DEALER socket that connects to the zmq.ROUTER
socket of an upstream Station object.

This class can be instantiated on its own if all of the required arguments are supplied, but the intended pattern of
use is to subclass it with any custom listen methods for handling message types and other logic that would be
specific for an agent type that uses it.

Note: This object will likely be deprecated in v0.5.0, as the gains of a separate messaging process are not as
great as the complications caused by having two different kinds of networking object in the system. In the future
we will move to having a single type of networking object that can either be spawned as a separate process or as
a thread.

Args are similar to the documented Attributes, and so only those that differ from attributes are documented here

Parameters pusher (bool) – If True, create a zmq.DEALER socket connected to push_ip,
push_port, and push_id. (Default: False).

Variables
• context (zmq.Context) – zeromq context

• loop (tornado.ioloop.IOLoop) – a tornado ioloop

• pusher (zmq.Socket) – pusher socket - a dealer socket that connects to other routers

258 Chapter 16. networking

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/stdtypes.html#dict.update
https://pyzmq.readthedocs.io/en/latest/api/zmq.html#zmq.Context
https://www.tornadoweb.org/en/stable/ioloop.html#tornado.ioloop.IOLoop
https://pyzmq.readthedocs.io/en/latest/api/zmq.html#zmq.Socket

Autopilot Documentation, Release 0.5.0a1

• push_ip (str) – If we have a dealer, IP to push messages to

• push_port (str) – If we have a dealer, port to push messages to

• push_id (str) – identity of the Router we push to

• listener (zmq.Socket) – The main router socket to send/recv messages

• listen_port (str) – Port our router listens on

• logger (logging.Logger) – Used to log messages and network events.

• id (str) – What are we known as? What do we set our identity as?

• ip (str) – Device IP

• listens (dict) – Dictionary of functions to call for different types of messages. keys match
the Message.key.

• senders (dict) – Identities of other sockets (keys, ie. directly connected) and their state
(values) if they keep one

• push_outbox (dict) – Messages that have been sent but have not been confirmed to our
Station.pusher

• send_outbox (dict) – Messages that have been sent but have not been confirmed to our
Station.listener

• timers (dict) – dict of threading.Timer s that will check in on outbox messages

• msg_counter (itertools.count) – counter to index our sent messages

• file_block (threading.Event) – Event to signal when a file is being received.

Attributes:

repeat_interval

Methods:

run() A zmq.Context and tornado.IOLoop are
spawned, the listener and optionally the pusher are
instantiated and connected to handle_listen()
using on_recv() .

prepare_message(to, key, value[, repeat, flags]) If a message originates with us, a Message class is
instantiated, given an ID and the rest of its attributes.

send([to, key, value, msg, repeat, flags]) Send a message via our listener , ROUTER socket.
push ([to, key, value, msg, repeat, flags]) Send a message via our pusher , DEALER socket.
repeat() Periodically (according to repeat_interval) re-

send messages that haven't been confirmed
l_confirm(msg) Confirm that a message was received.
l_stream(msg) Reconstitute the original stream of messages and call

their handling methods
l_kill(msg) Terminal wants us to die :(
handle_listen(msg) Upon receiving a message, call the appropriate listen

method in a new thread.
get_ip() Find our IP address
release()

16.1. station 259

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://pyzmq.readthedocs.io/en/latest/api/zmq.html#zmq.Socket
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/logging.html#logging.Logger
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/threading.html#threading.Timer
https://docs.python.org/3/library/threading.html#threading.Event
https://pyzmq.readthedocs.io/en/latest/api/zmq.html#zmq.Context
https://pyzmq.readthedocs.io/en/latest/api/zmq.eventloop.zmqstream.html#zmq.eventloop.zmqstream.ZMQStream.on_recv

Autopilot Documentation, Release 0.5.0a1

repeat_interval = 5.0

loop: Optional[tornado.ioloop.IOLoop]

pusher: Union[bool, zmq.sugar.socket.Socket]

run()

A zmq.Context and tornado.IOLoop are spawned, the listener and optionally the pusher are instantiated
and connected to handle_listen() using on_recv() .

The process is kept open by the tornado.IOLoop .

prepare_message(to, key, value, repeat=True, flags=None)
If a message originates with us, a Message class is instantiated, given an ID and the rest of its attributes.

Parameters
• flags
• repeat
• to (str) – The identity of the socket this message is to

• key (str) – The type of message - used to select which method the receiver uses to process
this message.

• value – Any information this message should contain. Can be any type, but must be JSON
serializable.

send(to=None, key=None, value=None, msg=None, repeat=True, flags=None)
Send a message via our listener , ROUTER socket.

Either an already created Message should be passed as msg, or at least to and key must be provided for a
new message created by prepare_message() .

A threading.Timer is created to resend the message using repeat() unless repeat is False.

Parameters
• flags
• to (str) – The identity of the socket this message is to

• key (str) – The type of message - used to select which method the receiver uses to process
this message.

• value – Any information this message should contain. Can be any type, but must be JSON
serializable.

• msg (.Message) – An already created message.

• repeat (bool) – Should this message be resent if confirmation is not received?

push(to=None, key=None, value=None, msg=None, repeat=True, flags=None)
Send a message via our pusher , DEALER socket.

Unlike send() , to is not required. Every message is always sent to push_id . to can be included to send
a message further up the network tree to a networking object we’re not directly connected to.

Either an already created Message should be passed as msg, or at least key must be provided for a new
message created by prepare_message() .

A threading.Timer is created to resend the message using repeat() unless repeat is False.

Parameters

260 Chapter 16. networking

https://www.tornadoweb.org/en/stable/ioloop.html#tornado.ioloop.IOLoop
https://docs.python.org/3/library/functions.html#bool
https://pyzmq.readthedocs.io/en/latest/api/zmq.html#zmq.Socket
https://pyzmq.readthedocs.io/en/latest/api/zmq.html#zmq.Context
https://pyzmq.readthedocs.io/en/latest/api/zmq.eventloop.zmqstream.html#zmq.eventloop.zmqstream.ZMQStream.on_recv
https://docs.python.org/3/library/threading.html#threading.Timer
https://docs.python.org/3/library/threading.html#threading.Timer

Autopilot Documentation, Release 0.5.0a1

• flags
• to (str) – The identity of the socket this message is to. If not included, sent to push_id()

.

• key (str) – The type of message - used to select which method the receiver uses to process
this message.

• value – Any information this message should contain. Can be any type, but must be JSON
serializable.

• msg (.Message) – An already created message.

• repeat (bool) – Should this message be resent if confirmation is not received?

repeat()

Periodically (according to repeat_interval) resend messages that haven’t been confirmed

TTL is decremented, and messages are resent until their TTL is 0.

l_confirm(msg)
Confirm that a message was received.

Parameters msg (Message) – A confirmation message - note that this message has its own
unique ID, so the value of this message contains the ID of the message that is being con-
firmed

l_stream(msg)
Reconstitute the original stream of messages and call their handling methods

The msg should contain an inner_key that indicates the key, and thus the handling method.

Parameters msg (dict) – Compressed stream sent by Net_Node._stream()

l_kill(msg: autopilot.networking.message.Message)
Terminal wants us to die :(

Stop the Station.loop

Parameters msg (Message)

handle_listen(msg: List[bytes])
Upon receiving a message, call the appropriate listen method in a new thread.

If the message is to us, send confirmation.

If the message is not to us, attempt to forward it.

Parameters msg (str) – JSON Message.serialize() d message.

get_ip()

Find our IP address

returns (str): our IPv4 address.

release()

class Terminal_Station(pilots)
Bases: autopilot.networking.station.Station

Station object used by Terminal objects.

Spawned without a pusher.

Listens

16.1. station 261

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#bytes

Autopilot Documentation, Release 0.5.0a1

Key Method Description
‘PING’ l_ping() We are asked to confirm that we are alive
‘INIT’ l_init() Ask all pilots to confirm that they are alive
‘CHANGE’ l_change() Change a parameter on the Pi
‘STOPALL’ l_stopall() Stop all pilots and plots
‘KILL’ l_kill() Terminal wants us to die :(
‘DATA’ l_data() Stash incoming data from a Pilot
‘STATE’ l_state() A Pilot has changed state
‘HANDSHAKE’ l_handshake() A Pi is telling us it’s alive and its IP
‘FILE’ l_file() The pi needs some file from us

Parameters pilots (dict) – The Terminal.pilots dictionary.

Attributes:

plot_timer

sent_plot

Methods:

start_plot_timer() Start a timer that controls how often streamed video
frames are sent to gui.Video plots.

l_ping(msg) We are asked to confirm that we are alive
l_init(msg) Ask all pilots to confirm that they are alive
l_change(msg) Change a parameter on the Pi
l_stopall(msg) Stop all pilots and plots
l_data(msg) Stash incoming data from a Pilot
l_continuous(msg) Handle the storage of continuous data
l_state(msg) A Pilot has changed state.
l_handshake(msg) A Pi is telling us it's alive and its IP.
l_file(msg) A Pilot needs some file from us.

plot_timer = None

sent_plot = {}

pusher: Union[bool, zmq.sugar.socket.Socket]

loop: Optional[tornado.ioloop.IOLoop]

start_plot_timer()

Start a timer that controls how often streamed video frames are sent to gui.Video plots.

l_ping(msg: autopilot.networking.message.Message)
We are asked to confirm that we are alive

Respond with a blank ‘STATE’ message.

Parameters msg (Message)

262 Chapter 16. networking

https://docs.python.org/3/library/functions.html#bool
https://pyzmq.readthedocs.io/en/latest/api/zmq.html#zmq.Socket
https://www.tornadoweb.org/en/stable/ioloop.html#tornado.ioloop.IOLoop

Autopilot Documentation, Release 0.5.0a1

l_init(msg: autopilot.networking.message.Message)
Ask all pilots to confirm that they are alive

Sends a “PING” to everyone in the pilots dictionary.

Parameters msg (Message)

l_change(msg: autopilot.networking.message.Message)
Change a parameter on the Pi

Warning: Not Implemented

Parameters msg (Message)

l_stopall(msg: autopilot.networking.message.Message)
Stop all pilots and plots

Parameters msg (Message)

l_data(msg: autopilot.networking.message.Message)
Stash incoming data from a Pilot

Just forward this along to the internal terminal object (‘_T’) and a copy to the relevant plot.

Parameters msg (Message)

l_continuous(msg: autopilot.networking.message.Message)
Handle the storage of continuous data

Forwards all data on to the Terminal’s internal Net_Node, send to Plot according to update rate in prefs.
get('DRAWFPS')

Parameters msg (Message) – A continuous data message

l_state(msg: autopilot.networking.message.Message)
A Pilot has changed state.

Stash in ‘state’ field of pilot dict and send along to _T

Parameters msg (Message)

l_handshake(msg: autopilot.networking.message.Message)
A Pi is telling us it’s alive and its IP.

Send along to _T

Parameters msg (Message)

l_file(msg: autopilot.networking.message.Message)
A Pilot needs some file from us.

Send it back after base64.b64encode() ing it.

Todo: Split large files into multiple messages. . .

Parameters msg (Message) – The value field of the message should contain some relative path
to a file contained within prefs.get(‘SOUNDDIR’) . eg. ‘/songs/sadone.wav’ would return
‘os.path.join(prefs.get(‘SOUNDDIR’)/songs.sadone.wav’

16.1. station 263

Autopilot Documentation, Release 0.5.0a1

class Pilot_Station

Bases: autopilot.networking.station.Station

Station object used by Pilot objects.

Spawned with a pusher connected back to the Terminal .

Listens

Key Method Description
‘STATE’ ‘CO-
HERE’ ‘PING’
‘START’
‘STOP’
‘PARAM’
‘FILE’

l_state()
l_cohere()
l_ping()
l_start()
l_stop()
l_change()
l_file()

Pilot has changed state Make sure our data and the Terminal’s
match. The Terminal wants to know if we’re listening We are
being sent a task to start We are being told to stop the current task
The Terminal is changing some task parameter We are receiving
a file

Attributes:

Methods:

l_noop(msg)

l_state(msg) Pilot has changed state
l_cohere(msg) Send our local version of the data table so the termi-

nal can double check
l_ping([msg]) The Terminal wants to know our status
l_start(msg) We are being sent a task to start
l_stop(msg) Tell the pi to stop the task
l_change(msg) The terminal is changing a parameter
l_file(msg) We are receiving a file.
l_continuous(msg) Forwards continuous data sent by children back to ter-

minal.
l_child(msg) Tell one or more children to start running a task.
l_forward(msg) Just forward the message to the pi.

pusher: Union[bool, zmq.sugar.socket.Socket]

l_noop(msg)

l_state(msg: autopilot.networking.message.Message)
Pilot has changed state

Stash it and alert the Terminal

Parameters msg (Message)

l_cohere(msg: autopilot.networking.message.Message)
Send our local version of the data table so the terminal can double check

Warning: Not Implemented

264 Chapter 16. networking

https://docs.python.org/3/library/functions.html#bool
https://pyzmq.readthedocs.io/en/latest/api/zmq.html#zmq.Socket

Autopilot Documentation, Release 0.5.0a1

Parameters msg (Message)

l_ping(msg: Optional[autopilot.networking.message.Message] = None)
The Terminal wants to know our status

Push back our current state.

Parameters msg (Message)

l_start(msg: autopilot.networking.message.Message)
We are being sent a task to start

If we need any files, request them.

Then send along to the pilot.

Parameters msg (Message) – value will contain a dictionary containing a task description.

loop: Optional[tornado.ioloop.IOLoop]

l_stop(msg: autopilot.networking.message.Message)
Tell the pi to stop the task

Parameters msg (Message)

l_change(msg: autopilot.networking.message.Message)
The terminal is changing a parameter

Warning: Not implemented

Parameters msg (Message)

l_file(msg: autopilot.networking.message.Message)
We are receiving a file.

Decode from b64 and save. Set the file_block.

Parameters msg (Message) – value will have ‘path’ and ‘file’, where the path determines where
in prefs.get(‘SOUNDDIR’) the b64 encoded ‘file’ will be saved.

l_continuous(msg: autopilot.networking.message.Message)
Forwards continuous data sent by children back to terminal.

Continuous data sources from this pilot should be streamed directly to the terminal.

Parameters msg (Message) – Continuous data message

l_child(msg: autopilot.networking.message.Message)
Tell one or more children to start running a task.

By default, the key argument passed to self.send is ‘START’. However, this can be overriden by providing
the desired string as msg.value[‘KEY’].

This checks the pref CHILDID to get the names of one or more children. If that pref is a string, sends the
message to just that child. If that pref is a list, sends the message to each child in the list.

Parameters msg () – A message to send to the child or children.

Returns nothing

16.1. station 265

https://docs.python.org/3/library/typing.html#typing.Optional
https://www.tornadoweb.org/en/stable/ioloop.html#tornado.ioloop.IOLoop

Autopilot Documentation, Release 0.5.0a1

l_forward(msg: autopilot.networking.message.Message)
Just forward the message to the pi.

16.2 node

Classes:

Net_Node(id, upstream, port, listens[, ...]) Drop in networking object to be given to any sub-object
behind some external-facing Station object.

class Net_Node(id: str, upstream: str, port: int, listens: Dict[str, Callable], instance: bool = True, upstream_ip:
str = 'localhost', router_port: Optional[int] = None, daemon: bool = True, expand_on_receive:
bool = True)

Bases: object

Drop in networking object to be given to any sub-object behind some external-facing Station object.

To minimize the complexity of the network topology, the typical way to use ``Net_Node``s is through a
Station ROUTER, rather than

addressing each other directly. Practically, this means that all messages are sent first to the parent networking.
Station object, which then handles them, forwards them, etc. This proved to be horribly misguided and will
be changed in v0.5.0 to support simplified messaging to a agent_id.netnode_id address. Until then the
networking modules will be in a bit of flux.

To receive messages directly at this Net_Node, pass the router_port which will bind a zmq.ROUTER socket,
and messages will be handled as regular ‘listens’ Note that Net_Nodes assume that they are the final recipients
of messages, and so don’t handle forwarding messages (unless a listen method explicitly does so), and will
automatically deserialize them on receipt.

Note: Listen methods currently receive only the value of a message, this will change in v0.5.0, where they will
receive the full message like networking.Station objects.

Parameters
• id (str) – What are we known as? What do we set our identity as?

• upstream (str) – The identity of the ROUTER socket used by our upstream Station object.

• port (int) – The port that our upstream ROUTER socket is bound to

• listens (dict) – Dictionary of functions to call for different types of messages. keys match
the Message.key.

• instance (bool) – Should the node try and use the existing zmq context and tornado loop?

• upstream_ip (str) – If this Net_Node is being used on its own (ie. not behind a Station),
it can directly connect to another node at this IP. Otherwise use ‘localhost’ to connect to a
station.

• router_port (int) – Typically, Net_Nodes only have a single Dealer socket and receive mes-
sages from their encapsulating Station, but if you want to take this node offroad and use it
independently, an int here binds a Router to the port.

• daemon (bool) – Run the IOLoop thread as a daemon (default: True)

266 Chapter 16. networking

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#object

Autopilot Documentation, Release 0.5.0a1

Variables
• context (zmq.Context) – zeromq context

• loop (tornado.ioloop.IOLoop) – a tornado ioloop

• sock (zmq.Socket) – Our DEALER socket.

• id (str) – What are we known as? What do we set our identity as?

• upstream (str) – The identity of the ROUTER socket used by our upstream Station
object.

• port (int) – The port that our upstream ROUTER socket is bound to

• listens (dict) – Dictionary of functions to call for different types of messages. keys match
the Message.key.

• outbox (dict) – Messages that have been sent but have not been confirmed

• timers (dict) – dict of threading.Timer s that will check in on outbox messages

• logger (logging.Logger) – Used to log messages and network events.

• msg_counter (itertools.count) – counter to index our sent messages

• loop_thread (threading.Thread) – Thread that holds our loop. initialized with dae-
mon=True

Attributes:

repeat_interval

ip Find our IP address

Methods:

init_networking() Creates socket, connects to specified port on local-
host, and starts the threaded_loop() as a daemon
thread.

threaded_loop() Run in a thread, either starts the IOLoop, or if it is
already started (ie.

handle_listen(msg) Upon receiving a message, call the appropriate listen
method in a new thread and send confirmation it was
received.

send([to, key, value, msg, repeat, flags, ...]) Send a message via our sock , DEALER socket.
repeat() Periodically (according to repeat_interval) re-

send messages that haven't been confirmed
l_confirm(value) Confirm that a message was received.
l_stream(msg) Reconstitute the original stream of messages and call

their handling methods
prepare_message(to, key, value, repeat[, ...]) Instantiate a Message class, give it an ID and the rest

of its attributes.
get_stream(id, key[, min_size, upstream, ...]) Make a queue that another object can dump data into

that sends on its own socket.
release()

16.2. node 267

https://pyzmq.readthedocs.io/en/latest/api/zmq.html#zmq.Context
https://www.tornadoweb.org/en/stable/ioloop.html#tornado.ioloop.IOLoop
https://pyzmq.readthedocs.io/en/latest/api/zmq.html#zmq.Socket
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/threading.html#threading.Timer
https://docs.python.org/3/library/logging.html#logging.Logger
https://docs.python.org/3/library/threading.html#threading.Thread

Autopilot Documentation, Release 0.5.0a1

repeat_interval = 5

context: zmq.sugar.context.Context

loop: tornado.ioloop.IOLoop

closing: threading.Event

listens: Dict[str, Callable]

id: str

upstream: str

port: int

router: Optional[zmq.sugar.socket.Socket]

loop_thread: Optional[threading.Thread]

senders: Dict[bytes, str]

init_networking()

Creates socket, connects to specified port on localhost, and starts the threaded_loop() as a daemon
thread.

threaded_loop()

Run in a thread, either starts the IOLoop, or if it is already started (ie. running in another thread), breaks.

handle_listen(msg: List[bytes])
Upon receiving a message, call the appropriate listen method in a new thread and send confirmation it was
received.

Note: Unlike Station.handle_listen() , only the Message.value is given to listen methods. This
was initially intended to simplify these methods, but this might change in the future to unify the messaging
system.

Parameters msg (list) – JSON Message.serialize() d message.

send(to: Optional[Union[str, list]] = None, key: Optional[str] = None, value: Optional[Any] = None, msg:
Optional[autopilot.networking.message.Message] = None, repeat: bool = False, flags=None, force_to:
bool = False, blosc: bool = False)

Send a message via our sock , DEALER socket.

to is not required.

• If the node doesn’t have a router, (or the recipient is not in the Net_Node.senders dict) every message
is always sent to upstream . to can be included to send a message further up the network tree to a
networking object we’re not directly connected to.

• If the node has a router, since messages can only be sent on router sockets after the recipient has first
sent us a message, if the to is in the senders dict, it will be directly sent via Net_Node.router

• If the force_to arg is True, send to the to recipient directly via the dealer Net_Node.sock

• If to is a list, or is intended to be sent as a multihop message with an explicit path, then networking
objects will attempt to forward it along that path (disregarding implicit topology).

268 Chapter 16. networking

https://pyzmq.readthedocs.io/en/latest/api/zmq.html#zmq.Context
https://www.tornadoweb.org/en/stable/ioloop.html#tornado.ioloop.IOLoop
https://docs.python.org/3/library/threading.html#threading.Event
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://pyzmq.readthedocs.io/en/latest/api/zmq.html#zmq.Socket
https://docs.python.org/3/library/threading.html#threading.Thread
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Autopilot Documentation, Release 0.5.0a1

Either an already created Message should be passed as msg, or at least key must be provided for a new
message created by prepare_message() .

A threading.Timer is created to resend the message using repeat() unless repeat is False.

Parameters
• to (str, list) – The identity of the socket this message is to. If not included, sent to
upstream() .

• key (str) – The type of message - used to select which method the receiver uses to process
this message.

• value – Any information this message should contain. Can be any type, but must be JSON
serializable.

• msg (.Message) – An already created message.

• repeat (bool) – Should this message be resent if confirmation is not received?

• flags (dict)

• force_to (bool) – If we really really want to use the ‘to’ field to address messages (eg. node
being used for direct communication), overrides default behavior of sending to upstream.

• blosc (bool) – Tell the message to compress its serialized contents with blosc

repeat()

Periodically (according to repeat_interval) resend messages that haven’t been confirmed

TTL is decremented, and messages are resent until their TTL is 0.

l_confirm(value)
Confirm that a message was received.

Parameters value (str) – The ID of the message we are confirming.

l_stream(msg)
Reconstitute the original stream of messages and call their handling methods

The msg should contain an inner_key that indicates the key, and thus the handling method.

Parameters msg (dict) – Compressed stream sent by Net_Node._stream()

prepare_message(to, key, value, repeat, flags=None, blosc: bool = False)
Instantiate a Message class, give it an ID and the rest of its attributes.

Parameters
• flags
• repeat
• to (str) – The identity of the socket this message is to

• key (str) – The type of message - used to select which method the receiver uses to process
this message.

• value – Any information this message should contain. Can be any type, but must be JSON
serializable.

• blosc (bool) – Whether or not the message should be compressed with blosc

16.2. node 269

https://docs.python.org/3/library/threading.html#threading.Timer
https://docs.python.org/3/library/functions.html#bool

Autopilot Documentation, Release 0.5.0a1

get_stream(id, key, min_size=5, upstream=None, port=None, ip=None, subject=None, q_size:
Optional[int] = None)

Make a queue that another object can dump data into that sends on its own socket. Smarter handling of
continuous data than just hitting ‘send’ a shitload of times. :returns: Place to dump ur data :rtype: Queue

property ip: str

Find our IP address

Todo: this is a copy of the Station.get_ip() method – unify this in v0.5.0

returns (str): our IPv4 address.

release()

16.3 Message

Classes:

Message([msg, expand_arrays, blosc]) A formatted message that takes value, sends it to id,
who should call the listen method indicated by the key.

class Message(msg=None, expand_arrays=False, blosc: bool = True, **kwargs)
Bases: object

A formatted message that takes value, sends it to id, who should call the listen method indicated by the key.

Additional message behavior can be indicated by passing flags

Numpy arrays given in the value field are automatically serialized and deserialized when sending and receiving
using bas64 encoding and blosc compression.

id, to, sender, and key are required attributes, but any other key-value pair passed on init is added to the message’s
attributes and included in the message. All arguments not indicated in the signature are passed in as kwargs and
stored as attributes.

Can be indexed and set like a dictionary (message[‘key’], etc.)

Variables
• id (str) – ID that uniquely identifies a message. format {sender.id}_{number}

• to (str) – ID of socket this message is addressed to

• sender (str) – ID of socket where this message originates

• key (str) – Type of message, used to select a listen method to process it

• value – Body of message, can be any type but must be JSON serializable.

• timestamp (str) – Timestamp of message creation

• ttl (int) – Time-To-Live, each message is sent this many times at max, each send decre-
ments ttl.

• flags (dict) – Flags determine additional message behavior. If a flag has no value asso-
ciated with it, add it as a key with None as the value (eg. self.flags[‘MINPRINT’] = None),
the value doesn’t matter.

270 Chapter 16. networking

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict

Autopilot Documentation, Release 0.5.0a1

– MINPRINT - don’t print the value in logs (eg. when a large array is being sent)

– NOREPEAT - sender will not seek, and recipients will not attempt to send message receipt
confirmations

– NOLOG - don’t log this message! for streaming, or other instances where the constant print-
ing of the logger is performance prohibitive

Parameters
• msg (str) – A serialized message made with serialize(). Optional – can be passed rather

than the message attributes themselves if, for example, we’re receiving and reconstituting
this message.

• expand_arrays (bool) – If given a serialized message, if True, expand and deserialize the
arrays. Otherwise leave serialized. For speed of message forwarding – don’t deserialize if
we’re just forwarding this message.

• blosc (bool) – If True (default), When serializing arrays, also compress with blosc. Stored
as a flag

• *args
• **kwargs

Methods:

__getitem__(key)
Parameters key

__setitem__(key, value)
Parameters

• key

expand() Don't decompress numpy arrays by default for faster
IO, explicitly expand them when needed

__delitem__(key)
Parameters key

__contains__(key)
Parameters key

get_timestamp() Get a Python timestamp
validate() Checks if id, to, sender, and key are all defined.
serialize() Serializes all attributes in __dict__ using json.

__getitem__(key)

Parameters key
__setitem__(key, value)

Parameters
• key
• value

expand()

Don’t decompress numpy arrays by default for faster IO, explicitly expand them when needed

16.3. Message 271

Autopilot Documentation, Release 0.5.0a1

Returns
__delitem__(key)

Parameters key
__contains__(key)

Parameters key
get_timestamp()

Get a Python timestamp

Returns Isoformatted timestamp from datetime

Return type str

validate()

Checks if id, to, sender, and key are all defined.

Returns Does message have all required attributes set?

Return type bool (True)

serialize()

Serializes all attributes in __dict__ using json.

Returns JSON serialized message.

Return type str

272 Chapter 16. networking

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

CHAPTER

SEVENTEEN

STIM

17.1 managers

This is a scrappy first draft of a stimulus manager that will be built out to incorporate arbitrary stimulus logic. For now
you can subclass Stim_Manager and redefine next_stim

Todo: Make this more general, for more than just sounds.

Functions:

init_manager(stim)

Classes:

Stim_Manager([stim]) Yield sounds according to some set of rules.
Proportional(stim) Present groups of stimuli with a particular frequency.
Bias_Correction([mode, thresh, window]) Basic Bias correction module.

init_manager(stim)

class Stim_Manager(stim=None)
Bases: object

Yield sounds according to some set of rules.

Currently implemented:

• correction trials - If a subject continually answers to one side incorrectly, keep the correct answer on
the other side until they answer in that direction

• bias correction - above some bias threshold, skew the correct answers to the less-responded side

Variables
• stimuli (dict) – Dictionary of instantiated stimuli like:

{'L': [Tone1, Tone2, ...], 'R': [Tone3, Tone4, ...]}

• target ('L', 'R') – What is the correct port?

• distractor ('L', 'R') – What is the incorrect port?

273

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#dict

Autopilot Documentation, Release 0.5.0a1

• response ('L', 'R') – What was the last response?

• correct (0, 1) – Was the last response correct?

• last_stim – What was the last stim? (one of self.stimuli)

• correction (bool) – Are we doing correction trials?

• correction_trial (bool) – Is this a correction trial?

• last_was_correction (bool) – Was the last trial a correction trial?

• correction_pct (float) – proportion of trials that are correction trials

• bias – False, or a bias correction mode.

Parameters stim (dict) –

Dictionary describing sound stimuli, in a format like:

{
'L': [{'type':'tone',...},{...}],
'R': [{'type':'tone',...},{...}]
}

Methods:

274 Chapter 17. stim

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float

Autopilot Documentation, Release 0.5.0a1

do_correction([correction_pct]) Called to set correction trials to True and correction
percent.

do_bias(**kwargs) Instantiate a Bias_Correction module
init_sounds(sound_dict) Instantiate sound objects, using the 'type' value to

choose an object from autopilot.get('sound')
.

set_triggers(trig_fn) Give a callback function to all of our stimuli for when
the stimulus ends.

make_punishment(type, duration)

Warning:
Not
Im-
ple-
mented

play_punishment()

Warning:
Not
Im-
ple-
mented

next_stim() Compute and return the next stimulus
compute_correction() If self.correction is true, compute correction trial

logic during next_stim.
update(response, correct) At the end of a trial, update the status of our internal

variables with the outcome of the trial.
end() End all of our stim.

do_correction(correction_pct=0.5)
Called to set correction trials to True and correction percent.

Parameters correction_pct (float) – Proportion of trials that should randomly be set to be cor-
rection trials.

do_bias(**kwargs)
Instantiate a Bias_Correction module

Parameters kwargs – parameters to initialize Bias_Correction with.

init_sounds(sound_dict)
Instantiate sound objects, using the ‘type’ value to choose an object from autopilot.get('sound') .

Parameters sound_dict (dict) –

a dictionary like:: { ‘L’: [{‘type’:’tone’,. . . },{. . . }], ‘R’: [{‘type’:’tone’,. . . },{. . . }] }

set_triggers(trig_fn)
Give a callback function to all of our stimuli for when the stimulus ends.

17.1. managers 275

Autopilot Documentation, Release 0.5.0a1

Note: Stimuli need a set_trigger method.

Parameters trig_fn (callable) – A function to be given to stimuli via set_trigger

make_punishment(type, duration)

Warning: Not Implemented

Parameters
• type
• duration

play_punishment()

Warning: Not Implemented

next_stim()

Compute and return the next stimulus

If we are doing correction trials, compute that.

Same thing with bias correction.

Otherwise, randomly select a stimulus to present.

Returns (‘L’/’R’ Target, ‘L’/’R’ distractor, Stimulus to present)

compute_correction()

If self.correction is true, compute correction trial logic during next_stim.

• If the last trial was a correction trial and the response to it wasn’t correct, return True

• If the last trial was a correction trial and the response was correct, return False

• If the last trial as not a correction trial, but a randomly generated float is less than correction_pct,
return True.

Returns whether this trial should be a correction trial.

Return type bool

update(response, correct)
At the end of a trial, update the status of our internal variables with the outcome of the trial.

Parameters
• response (‘L’, ‘R’) – How the subject responded

• correct (0, 1) – Whether the response was correct.

end()

End all of our stim. Stim should have an .end() method of their own

276 Chapter 17. stim

https://docs.python.org/3/library/functions.html#bool

Autopilot Documentation, Release 0.5.0a1

class Proportional(stim)

Bases: autopilot.stim.managers.Stim_Manager

Present groups of stimuli with a particular frequency.

Frequencies do not need to add up to 1, groups will be selected with the frequency (fre-
quency)/(sum(frequencies)).

Parameters stim (dict) – Dictionary with the structure:

{'manager': 'proportional',
'type': 'sounds',
'groups': (

{'name':'group_name',
'frequency': 0.2,
'sounds':{

'L': [{Tone1_params}, {Tone2_params}...],
'R': [{Tone3_params}, {Tone4_params}...]

}
},
{'name':'second_group',
'frequency': 0.8,
'sounds':{

'L': [{Tone1_params}, {Tone2_params}...],
'R': [{Tone3_params}, {Tone4_params}...]

}
})

}

Variables
• stimuli (dict) – A dictionary of stimuli organized into groups

• groups (dict) – A dictionary mapping group names to frequencies

Parameters stim (dict) –

Dictionary describing sound stimuli, in a format like:

{
'L': [{'type':'tone',...},{...}],
'R': [{'type':'tone',...},{...}]
}

Methods:

init_sounds_grouped(sound_stim) Instantiate sound objects similarly to
Stim_Manager, just organizes them into groups.

init_sounds_individual(sound_stim) Initialize sounds with individually set presentation
frequencies.

store_groups(stim) store groups and frequencies
set_triggers(trig_fn) Give a callback function to all of our stimuli for when

the stimulus ends.
next_stim() Compute and return the next stimulus

init_sounds_grouped(sound_stim)

Instantiate sound objects similarly to Stim_Manager, just organizes them into groups.

17.1. managers 277

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

Autopilot Documentation, Release 0.5.0a1

Parameters sound_stim (tuple, list) – an iterator like:

(
{'name':'group_name',
'frequency': 0.2,
'sounds': {

'L': [{Tone1_params}, {Tone2_params}...],
'R': [{Tone3_params}, {Tone4_params}...]

}
},
{'name':'second_group',
'frequency': 0.8,
'sounds':{

'L': [{Tone1_params}, {Tone2_params}...],
'R': [{Tone3_params}, {Tone4_params}...]

}
})

init_sounds_individual(sound_stim)

Initialize sounds with individually set presentation frequencies.

Todo: This method reflects the need for managers to have a unified schema, which will be built in a future
release of Autopilot.

Parameters sound_stim (dict) – Dictionary of {‘side’:[sound_params]} to generate sound stim-
uli

Returns:

store_groups(stim)

store groups and frequencies

set_triggers(trig_fn)
Give a callback function to all of our stimuli for when the stimulus ends.

Note: Stimuli need a set_trigger method.

Parameters trig_fn (callable) – A function to be given to stimuli via set_trigger

next_stim()

Compute and return the next stimulus

If we are doing correction trials, compute that.

Same thing with bias correction.

Otherwise, randomly select a stimulus to present, weighted by its group frequency.

Returns (‘L’/’R’ Target, ‘L’/’R’ distractor, Stimulus to present)

class Bias_Correction(mode='thresholded_linear', thresh=0.2, window=100)
Bases: object

278 Chapter 17. stim

https://docs.python.org/3/library/functions.html#object

Autopilot Documentation, Release 0.5.0a1

Basic Bias correction module. Modifies the threshold of random stimulus choice based on history of biased
responses.

Variables
• responses (collections.deque) – History of prior responses

• targets (collections.deque) – History of prior targets.

Parameters
• mode – One of the following:

– ‘thresholded linear’ [above some threshold, do linear bias correction] eg. if response rate
65% left, make correct be right 65% of the time

• thresh (float) – threshold above chance, ie. 0.2 means has to be 70% biased in window

• window (int) – number of trials to calculate bias over

Methods:

next_bias() Compute the next bias depending on self.mode
thresholded_linear() If we are above the threshold, linearly correct the rate

of presentation to favor the rarely responded side.
update(response, target) Store some new response and target values

next_bias()

Compute the next bias depending on self.mode

Returns Some threshold Stim_Manager uses to decide left vs right.

Return type float

thresholded_linear()

If we are above the threshold, linearly correct the rate of presentation to favor the rarely responded side.

eg. if response rate 65% left, make correct be right 65% of the time

Returns 0.5-bias, where bias is the difference between the mean response and mean target.

Return type float

update(response, target)
Store some new response and target values

Parameters
• response (‘R’, ‘L’) – Which side the subject responded to

• target (‘R’, ‘L’) – The correct side.

17.1. managers 279

https://docs.python.org/3/library/collections.html#collections.deque
https://docs.python.org/3/library/collections.html#collections.deque
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

Autopilot Documentation, Release 0.5.0a1

17.2 sound

Module for generating and playing sounds.

This module contains the following files:

sounds.py : Defines classes for generating sounds jackclient.py : Define the interface to the jack client
pyoserver.py : Defines the interface to the pyo server

The use of pyoserver is discouraged in favor of jackclient. This is controlled by the pref AUDIOSERVER.

17.2.1 jackclient

Client that dumps samples directly to the jack client with the jack package.

Note: The latest version of raspiOS (bullseye) causes a lot of problems with the Jack audio that we have not figured
out a workaround for. If you intend to use sound, we recommend sticking with Buster for now (available from their
legacy downloads section).

Data:

SERVER After initializing, JackClient will register itself with this
variable.

FS Sampling rate of the active server
BLOCKSIZE Blocksize, or the amount of samples processed by jack

per each JackClient.process() call.
QUEUE Queue to be loaded with frames of BLOCKSIZE audio.
Q_LOCK Lock that enforces a single writer to the QUEUE at a

time.
CONTINUOUS Event that (when set) signals the sound server should

play some sound continuously rather than remain silent
by default (eg.

CONTINUOUS_QUEUE Queue that
CONTINUOUS_LOOP Event flag that is set when frames dropped into the CON-

TINUOUS_QUEUE should be looped (eg.

Classes:

JackClient([name, outchannels, ...]) Client that dumps frames of audio directly into a running
jackd client.

SERVER = None

After initializing, JackClient will register itself with this variable.

Type JackClient
FS = 192000

Sampling rate of the active server

Type int

280 Chapter 17. stim

https://jackclient-python.readthedocs.io/en/0.4.5/index.html#module-jack
https://www.raspberrypi.com/software/operating-systems/#raspberry-pi-os-legacy
https://docs.python.org/3/library/functions.html#int

Autopilot Documentation, Release 0.5.0a1

BLOCKSIZE = 1024

Blocksize, or the amount of samples processed by jack per each JackClient.process() call.

Type int

QUEUE = None

Queue to be loaded with frames of BLOCKSIZE audio.

Type multiprocessing.Queue

PLAY = <multiprocessing.synchronize.Event object at 0x7f41b9c73dc0>

Event used to trigger loading samples from QUEUE, ie. playing.

Type multiprocessing.Event

STOP = <multiprocessing.synchronize.Event object at 0x7f41799d5d60>

Event that is triggered on the end of buffered audio.

Note: NOT an event used to stop audio.

Type multiprocessing.Event

Q_LOCK = None

Lock that enforces a single writer to the QUEUE at a time.

Type multiprocessing.Lock

CONTINUOUS = None

Event that (when set) signals the sound server should play some sound continuously rather than remain silent by
default (eg. play a background sound).

Type multiprocessing.Event

CONTINUOUS_QUEUE = None

Queue that

Type multiprocessing.Queue

CONTINUOUS_LOOP = None

Event flag that is set when frames dropped into the CONTINUOUS_QUEUE should be looped (eg. in the case
of stationary background noise), otherwise they are played and then discarded (ie. the sound is continuously
generating and submitting samples)

Type multiprocessing.Event

class JackClient(name='jack_client', outchannels: Optional[list] = None, debug_timing: bool = False,
play_q_size: int = 2048, disable_gc=False)

Bases: multiprocessing.context.Process

Client that dumps frames of audio directly into a running jackd client.

See the process() method to see how the client works in detail, but as a narrative overview:

• The client interacts with a running jackd daemon, typically launched with external.start_jackd() The
jackd process is configured with the JACKDSTRING pref, which by default is built from other parameters
like the FS sampling rate et al.

• multiprocessing.Event objects are used to synchronize state within the client, eg. the play event signals
that the client should begin to pull frames from the sound queue

17.2. sound 281

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/multiprocessing.html#multiprocessing.Queue
https://docs.python.org/3/library/multiprocessing.html#multiprocessing.Event
https://docs.python.org/3/library/multiprocessing.html#multiprocessing.Event
https://docs.python.org/3/library/multiprocessing.html#multiprocessing.Lock
https://docs.python.org/3/library/multiprocessing.html#multiprocessing.Event
https://docs.python.org/3/library/multiprocessing.html#multiprocessing.Queue
https://docs.python.org/3/library/multiprocessing.html#multiprocessing.Event
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/multiprocessing.html#multiprocessing.Event

Autopilot Documentation, Release 0.5.0a1

• multiprocessing.Queue objects are used to send samples to the client, specifically chunks samples with
length BLOCKSIZE

• The general pattern of using both together is to load a queue with chunks of samples and then set the play
event.

• Jackd will call the process method repeatedly, within which this class will check the state of the event
flags and pull from the appropriate queues to load the samples into jackd’s audio buffer

When first initialized, sets module level variables above, which are the public hooks to use the client. Within
autopilot, the module-level variables are used, but if using the jackclient or sound system outside of a typical
autopilot context, you can instantiate a JackClient and then pass it to sounds as jack_client.

Parameters
• name (str) – name of client, default “jack_client”

• outchannels (list) – Optionally manually pass outchannels rather than getting from prefs.
A list of integers corresponding to output channels to initialize. if None (default), get
'OUTCHANNELS' from prefs

• play_q_size (int) – Number of frames that can be buffered (with buffer()) at a time

• disable_gc (bool) – If True, turn off garbage collection in the jack client process (experi-
mental)

Variables
• q (Queue) – Queue that stores buffered frames of audio

• q_lock (Lock) – Lock that manages access to the Queue

• play_evt (multiprocessing.Event) – Event used to trigger loading samples from
QUEUE, ie. playing.

• stop_evt (multiprocessing.Event) – Event that is triggered on the end of buffered au-
dio.

• quit_evt (multiprocessing.Event) – Event that causes the process to be terminated.

• client (jack.Client) – Client to interface with jackd

• blocksize (int) – The blocksize - ie. samples processed per JackClient.process()
call.

• fs (int) – Sampling rate of client

• zero_arr (numpy.ndarray) – cached array of zeroes used to fill jackd pipe when not pro-
cessing audio.

• continuous_cycle (itertools.cycle) – cycle of frames used for continuous sounds

• mono_output (bool) – True or False depending on if the number of output channels is 1
or >1, respectively. detected and set in JackClient.boot_server() , initialized to True
(which is hopefully harmless)

Parameters name
Attributes:

play_started set after the first frame of a sound is buffered, used
to keep track internally when sounds are started and
stopped.

282 Chapter 17. stim

https://docs.python.org/3/library/multiprocessing.html#multiprocessing.Queue
https://docs.python.org/3/library/multiprocessing.html#multiprocessing.Queue
https://docs.python.org/3/library/multiprocessing.html#multiprocessing.Lock
https://docs.python.org/3/library/multiprocessing.html#multiprocessing.Event
https://docs.python.org/3/library/multiprocessing.html#multiprocessing.Event
https://docs.python.org/3/library/multiprocessing.html#multiprocessing.Event
https://jackclient-python.readthedocs.io/en/0.4.5/index.html#jack.Client
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

Autopilot Documentation, Release 0.5.0a1

Methods:

boot_server() Called by JackClient.run() to boot the server
upon starting the process.

run() Start the process, boot the server, start processing
frames and wait for the end.

quit() Set the JackClient.quit_evt
process(frames) Process a frame of audio.
write_to_outports(data) Write the sound in data to the outport(s).

play_started

set after the first frame of a sound is buffered, used to keep track internally when sounds are started and
stopped.

boot_server()

Called by JackClient.run() to boot the server upon starting the process.

Activates the client and connects it to the physical speaker outputs as determined by
prefs.get(‘OUTCHANNELS’).

This is the interpretation of OUTCHANNELS: * empty string

‘mono’ audio: the same sound is always played to all channels. Connect a single virtual outport
to every physical channel. If multi-channel sound is provided, raise an error.

• a single int (example: J) This is equivalent to [J]. The first virtual outport will be connected to phys-
ical channel J. Note this is NOT the same as ‘mono’, because only one speaker plays, instead of
all speakers.

• a list (example: [I, J]) The first virtual outport will be connected to physical channel I. The second
virtual outport will be connected to physical channel J. And so on. If 1-dimensional sound is
provided, play the same to all speakers (like mono mode). If multi-channel sound is provided and
the number of channels is different form the length of this list, raise an error.

jack.Client s can’t be kept alive, so this must be called just before processing sample starts.

run()

Start the process, boot the server, start processing frames and wait for the end.

quit()

Set the JackClient.quit_evt

process(frames)
Process a frame of audio.

If the JackClient.play_evt is not set, fill port buffers with zeroes.

Otherwise, pull frames of audio from the JackClient.q until it’s empty.

When it’s empty, set the JackClient.stop_evt and clear the JackClient.play_evt .

Parameters frames – number of frames (samples) to be processed. unused. passed by jack client

write_to_outports(data)
Write the sound in data to the outport(s).

If self.mono_output:
If data is 1-dimensional: Write that data to the single outport, which goes to all speakers.

17.2. sound 283

https://jackclient-python.readthedocs.io/en/0.4.5/index.html#jack.Client

Autopilot Documentation, Release 0.5.0a1

Otherwise, raise an error.

If not self.mono_output:
If data is 1-dimensional: Write that data to every outport

If data is 2-dimensional: Write one column to each outport, raising an error if there is a different
number of columns than outports.

17.2.2 pyoserver

Functions:

pyo_server([debug]) Returns a booted and started pyo audio server

pyo_server(debug=False)
Returns a booted and started pyo audio server

Warning: Use of pyo is generally discouraged due to dropout issues and the general opacity of the module.

Parameters debug (bool) – If true, setVerbosity of pyo server to 8.

17.2.3 base - sound

Base classes for sound objects, depending on the selected audio backend. Use the 'AUDIOSERVER' pref to select, or
else use the default_sound_class() function.

Classes:

Sound([fs, duration]) Dummy metaclass for sound base-classes.
Pyo_Sound() Metaclass for pyo sound objects.
Jack_Sound([jack_client]) Base class for sounds that use the JackClient audio

server.

Functions:

get_sound_class([server_type]) Get the default sound class as defined by
'AUDIOSERVER'

class Sound(fs: int = None, duration: float = None, **kwargs)
Bases: autopilot.stim.stim.Stim

Dummy metaclass for sound base-classes. Allows Sounds to be used without a backend to, eg. synthesize
waveforms and the like.

Placeholder pending a full refactoring of class structure

Attributes:

284 Chapter 17. stim

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

Autopilot Documentation, Release 0.5.0a1

PARAMS

type

server_type

Methods:

get_nsamples() given our fs and duration, how many samples do we
need?

PARAMS = []

type = None

server_type = 'dummy'

table: Optional[numpy.ndarray]

get_nsamples()

given our fs and duration, how many samples do we need?

literally:

np.ceil((self.duration/1000.)*self.fs).astype(int)

class Pyo_Sound

Bases: autopilot.stim.stim.Stim

Metaclass for pyo sound objects.

Note: Use of pyo is generally discouraged due to dropout issues and the general opacity of the module. As such
this object is intentionally left undocumented.

Methods:

play()

table_wrap(audio[, duration]) Records a PyoAudio generator into a sound table, re-
turns a tableread object which can play the audio with
.out()

set_trigger(trig_fn)
Parameters trig_fn

play()

table_wrap(audio, duration=None)
Records a PyoAudio generator into a sound table, returns a tableread object which can play the audio with
.out()

Parameters

17.2. sound 285

Autopilot Documentation, Release 0.5.0a1

• audio
• duration

set_trigger(trig_fn)

Parameters trig_fn
class Jack_Sound(jack_client: Optional[autopilot.stim.sound.jackclient.JackClient] = None, **kwargs)

Bases: autopilot.stim.stim.Stim

Base class for sounds that use the JackClient audio server.

Variables
• PARAMS (list) – List of strings of parameters that need to be defined for this sound

• type (str) – Human readable name of sound type

• duration (float) – Duration of sound in ms

• amplitude (float) – Amplitude of sound as proportion of 1 (eg 0.5 is half amplitude)

• table (numpy.ndarray) – A Numpy array of samples

• chunks (list) – table split up into chunks of BLOCKSIZE

• trigger (callable) – A function that is called when the sound completes

• nsamples (int) – Number of samples in the sound

• padded (bool) – Whether the sound had to be padded with zeros when split into chunks (ie.
sound duration was not a multiple of BLOCKSIZE).

• fs (int) – sampling rate of client from jackclient.FS

• blocksize (int) – blocksize of client from jackclient.BLOCKSIZE

• server (Jack_Client) – Current Jack Client

• q (multiprocessing.Queue) – Audio Buffer queue from jackclient.QUEUE

• q_lock (multiprocessing.Lock) – Audio Buffer lock from jackclient.Q_LOCK

• play_evt (multiprocessing.Event) – play event from jackclient.PLAY

• stop_evt (multiprocessing.Event) – stop event from jackclient.STOP

• buffered (bool) – has this sound been dumped into the q ?

• buffered_continuous (bool) – Has the sound been dumped into the continuous_q?

Initialize a new Jack_Sound

This sets sound-specific parameters to None, set jack-specific parameters to their equivalents in jackclient, ini-
tializes some other flags and a logger.

Attributes:

PARAMS list of strings of parameters to be defined
type string human readable name of sound
server_type type of server, always 'jack' for Jack_Sound s.

Methods:

286 Chapter 17. stim

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/multiprocessing.html#multiprocessing.Queue
https://docs.python.org/3/library/multiprocessing.html#multiprocessing.Lock
https://docs.python.org/3/library/multiprocessing.html#multiprocessing.Event
https://docs.python.org/3/library/multiprocessing.html#multiprocessing.Event
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Autopilot Documentation, Release 0.5.0a1

init_sound() Abstract method to initialize sound.
chunk([pad]) Split our table up into a list of Jack_Sound.

blocksize chunks.
set_trigger(trig_fn) Set a trigger function to be called when the stop_evt

is set.
wait_trigger() Wait for the stop_evt trigger to be set for at least a

second after the sound should have ended.
get_nsamples() given our fs and duration, how many samples do we

need?
quantize_duration([ceiling]) Extend or shorten a sound so that it is a multiple of

jackclient.BLOCKSIZE
buffer() Dump chunks into the sound queue.
buffer_continuous() Dump chunks into the continuous sound queue for

looping.
play() Play ourselves.
play_continuous([loop]) Play the sound continuously.
iter_continuous() Continuously yield frames of audio.
stop_continuous() Stop playing a continuous sound
end() Release any resources held by this sound

PARAMS = []

list of strings of parameters to be defined

Type list

type = None

string human readable name of sound

Type str

server_type = 'jack'

type of server, always ‘jack’ for Jack_Sound s.

Type str

abstract init_sound()

Abstract method to initialize sound. Should set the table attribute

Todo: ideally should standardize by returning an array, but pyo objects don’t return arrays necessarily. . .

chunk(pad=True)
Split our table up into a list of Jack_Sound.blocksize chunks.

Parameters
• pad (bool) – If the sound is not evenly divisible into chunks,

• pad with zeros (True, default)

• with its continuous sound
set_trigger(trig_fn)

Set a trigger function to be called when the stop_evt is set.

Parameters trig_fn (callable) – Some callable

17.2. sound 287

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Autopilot Documentation, Release 0.5.0a1

wait_trigger()

Wait for the stop_evt trigger to be set for at least a second after the sound should have ended.

Call the trigger when the event is set.

get_nsamples()

given our fs and duration, how many samples do we need?

literally:

np.ceil((self.duration/1000.)*self.fs).astype(int)

quantize_duration(ceiling=True)
Extend or shorten a sound so that it is a multiple of jackclient.BLOCKSIZE

Parameters ceiling (bool) – If true, extend duration, otherwise decrease duration.

buffer()

Dump chunks into the sound queue.

After the last chunk, a None is put into the queue. This tells the jack server that the sound is over and that
it should clear the play flag.

buffer_continuous()

Dump chunks into the continuous sound queue for looping.

Continuous shoulds should always have full frames - ie. the number of samples in a sound should be a
multiple of jackclient.BLOCKSIZE.

This method will call quantize_duration() to force duration such that the sound has full frames.

An exception will be raised if the sound has been padded.

play()

Play ourselves.

If we’re not buffered, be buffered.

Otherwise, set the play event and clear the stop event.

If we have a trigger, set a Thread to wait on it.

play_continuous(loop=True)
Play the sound continuously.

Sound will be paused if another sound has its ‘play’ method called.

Currently - only looping is implemented: the full sound is loaded by the jack client and repeated indefinitely.

In the future, sound generation methods will be refactored as python generators so sounds can be continu-
ously generated and played.

Parameters loop (bool) – whether the sound will be stored by the jack client and looped (True),
or whether the sound will be continuously streamed (False, not implemented)

Returns:

todo:

merge into single play method that changes behavior if continuous or not

288 Chapter 17. stim

Autopilot Documentation, Release 0.5.0a1

iter_continuous()→ Generator
Continuously yield frames of audio. If this method is not overridden, just wraps table in a itertools.
cycle object and returns from it.

Returns A single frame of audio

Return type np.ndarray

stop_continuous()

Stop playing a continuous sound

Should be merged into a general stop method

end()

Release any resources held by this sound

get_sound_class(server_type: Optional[str] = None)→ Union[Type[autopilot.stim.sound.base.Sound],
Type[autopilot.stim.sound.base.Jack_Sound], Type[autopilot.stim.sound.base.Pyo_Sound]]

Get the default sound class as defined by 'AUDIOSERVER'

This function is also a convenience class for testing whether a particular audio backend is available

Returns:

17.2.4 sounds

This module defines classes to generate different sounds.

These classes are currently implemented: * Tone : a sinuosoidal pure tone * Noise : a burst of white noise * File : read
from a file * Speech * Gap

The behavior of this module depends on prefs.get(‘AUDIOSERVER’). * If this is ‘jack’, or True:

Then import jack, define Jack_Sound, and all sounds inherit from that.

• If this is ‘pyo’: Then import pyo, define PyoSound, and all sounds inherit from that.

• If this is ‘docs’: Then import both jack and pyo, define both Jack_Sound and PyoSound, and all sounds inherit
from object.

• Otherwise: Then do not import jack or pyo, or define either Jack_Sound or PyoSound, and all sounds inherit
from object.

Todo: Implement sound level and filter calibration

Classes:

Tone(frequency, duration[, amplitude]) The Humble Sine Wave
Noise(duration[, amplitude, channel]) Generates a white noise burst with specified parameters
File(path[, amplitude]) A .wav file.
Gap(duration, **kwargs) A silent sound that does not pad its final chunk -- used

for creating precise silent gaps in a continuous noise.
Gammatone(frequency, duration[, amplitude, ...]) Gammatone filtered noise, using timeseries.

Gammatone -- see that class for the filter documentation.

Data:

17.2. sound 289

https://docs.python.org/3/library/typing.html#typing.Generator
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/typing.html#typing.Type

Autopilot Documentation, Release 0.5.0a1

STRING_PARAMS These parameters should be given string columns rather
than float columns.

Functions:

int_to_float(audio) Convert 16 or 32 bit integer audio to 32 bit float.

class Tone(frequency, duration, amplitude=0.01, **kwargs)
Bases: autopilot.stim.sound.base.Sound

The Humble Sine Wave

Parameters
• frequency (float) – frequency of sin in Hz

• duration (float) – duration of the sin in ms

• amplitude (float) – amplitude of the sound as a proportion of 1.

• **kwargs – extraneous parameters that might come along with instantiating us

Attributes:

PARAMS

type

Methods:

init_sound() Create a sine wave table using pyo or numpy, depend-
ing on the server type.

PARAMS = ['frequency', 'duration', 'amplitude']

type = 'Tone'

init_sound()

Create a sine wave table using pyo or numpy, depending on the server type.

table: Optional[numpy.ndarray]

class Noise(duration, amplitude=0.01, channel=None, **kwargs)
Bases: autopilot.stim.sound.base.Sound

Generates a white noise burst with specified parameters

The type attribute is always “Noise”.

Initialize a new white noise burst with specified parameters.

The sound itself is stored as the attribute self.table. This can be 1-dimensional or 2-dimensional, depending on
channel. If it is 2-dimensional, then each channel is a column.

Parameters
• duration (float) – duration of the noise

290 Chapter 17. stim

Autopilot Documentation, Release 0.5.0a1

• amplitude (float) – amplitude of the sound as a proportion of 1.

• channel (int or None) – which channel should be used If 0, play noise from the first channel
If 1, play noise from the second channel If None, send the same information to all channels
(“mono”)

• **kwargs – extraneous parameters that might come along with instantiating us

Attributes:

PARAMS

type

Methods:

init_sound() Defines self.table, the waveform that is played.
iter_continuous() Continuously yield frames of audio.

PARAMS = ['duration', 'amplitude', 'channel']

type = 'Noise'

init_sound()

Defines self.table, the waveform that is played.

The way this is generated depends on self.server_type, because parameters like the sampling rate cannot be
known otherwise.

The sound is generated and then it is “chunked” (zero-padded and divided into chunks). Finally
self.initialized is set True.

iter_continuous()→ Generator
Continuously yield frames of audio. If this method is not overridden, just wraps table in a itertools.
cycle object and returns from it.

Returns A single frame of audio

Return type np.ndarray

table: Optional[numpy.ndarray]

class File(path, amplitude=0.01, **kwargs)
Bases: autopilot.stim.sound.base.Sound

A .wav file.

Todo: Generalize this to other audio types if needed.

Parameters
• path (str) – Path to a .wav file relative to the prefs.get(‘SOUNDDIR’)

• amplitude (float) – amplitude of the sound as a proportion of 1.

• **kwargs – extraneous parameters that might come along with instantiating us

17.2. sound 291

https://docs.python.org/3/library/typing.html#typing.Generator

Autopilot Documentation, Release 0.5.0a1

Attributes:

PARAMS

type

Methods:

init_sound() Load the wavfile with scipy.io.wavfile , convert-
ing int to float as needed.

PARAMS = ['path', 'amplitude']

type = 'File'

init_sound()

Load the wavfile with scipy.io.wavfile , converting int to float as needed.

Create a sound table, resampling sound if needed.

table: Optional[numpy.ndarray]

class Gap(duration, **kwargs)
Bases: autopilot.stim.sound.base.Sound

A silent sound that does not pad its final chunk – used for creating precise silent gaps in a continuous noise.

Parameters duration (float) – duration of gap in ms

Variables gap_zero (bool) – True if duration is zero, effectively do nothing on play.

Attributes:

type

PARAMS

Methods:

init_sound() Create and chunk an array of zeros according to Gap.
duration

chunk([pad]) If gap is not duration == 0, call parent chunk.
buffer()

play()

type = 'Gap'

PARAMS = ['duration']

table: Optional[numpy.ndarray]

292 Chapter 17. stim

https://docs.scipy.org/doc/scipy/reference/io.html#module-scipy.io.wavfile
https://docs.scipy.org/doc/scipy/reference/io.html#module-scipy.io.wavfile
https://docs.python.org/3/library/functions.html#bool

Autopilot Documentation, Release 0.5.0a1

init_sound()

Create and chunk an array of zeros according to Gap.duration

chunk(pad=False)
If gap is not duration == 0, call parent chunk. :Parameters: pad (bool) – unused, passed to parent chunk

buffer()

play()

class Gammatone(frequency: float, duration: float, amplitude: float = 0.01, channel: Optional[int] = None,
filter_kwargs: Optional[dict] = None, **kwargs)

Bases: autopilot.stim.sound.sounds.Noise

Gammatone filtered noise, using timeseries.Gammatone – see that class for the filter documentation.

Parameters
• frequency (float) – Center frequency of filter, in Hz

• duration (float) – Duration of sound, in ms

• amplitude (float) – Amplitude scaling of sound (absolute value 0-1, default is .01)

• filter_kwargs (dict) – passed on to timeseries.Gammatone

Attributes:

type

PARAMS

type = 'Gammatone'

PARAMS = ['frequency', 'duration', 'amplitude', 'channel']

table: Optional[numpy.ndarray]

STRING_PARAMS = ['path', 'type', 'speaker', 'vowel', 'token', 'consonant']

These parameters should be given string columns rather than float columns.

Bother Jonny to do this better bc it’s really bad.

int_to_float(audio)
Convert 16 or 32 bit integer audio to 32 bit float.

Parameters audio (numpy.ndarray) – a numpy array of audio

Returns Audio that has been rescaled and converted to a 32 bit float.

Return type numpy.ndarray

17.2. sound 293

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#dict

Autopilot Documentation, Release 0.5.0a1

294 Chapter 17. stim

CHAPTER

EIGHTEEN

TASKS

18.1 task

Classes:

Task(*args, **kwargs) Generic Task metaclass

class Task(*args, **kwargs)
Bases: object

Generic Task metaclass

Variables
• PARAMS (collections.OrderedDict) – Params to define task, like:

PARAMS = odict()
PARAMS['reward'] = {'tag':'Reward Duration (ms)',

'type':'int'}
PARAMS['req_reward'] = {'tag':'Request Rewards',

'type':'bool'}

• HARDWARE (dict) – dict for necessary hardware, like:

HARDWARE = {
'POKES':{

'L': hardware.Beambreak, ...
},
'PORTS':{

'L': hardware.Solenoid, ...
}

}

• PLOT (dict) – Dict of plotting parameters, like:

PLOT = {
'data': {

'target' : 'point',
'response' : 'segment',
'correct' : 'rollmean'

},
'chance_bar' : True, # Draw a red bar at 50%

(continues on next page)

295

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/collections.html#collections.OrderedDict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

Autopilot Documentation, Release 0.5.0a1

(continued from previous page)

'roll_window' : 50 # number of trials to roll window over
}

• Trial_Data (tables.IsDescription) – Data table description, like:

class TrialData(tables.IsDescription):
trial_num = tables.Int32Col()
target = tables.StringCol(1)
response = tables.StringCol(1)
correct = tables.Int32Col()
correction = tables.Int32Col()
RQ_timestamp = tables.StringCol(26)
DC_timestamp = tables.StringCol(26)
bailed = tables.Int32Col()

• STAGE_NAMES (list) – List of stage method names

• stage_block (threading.Event) – Signal when task stages complete.

• punish_stim (bool) – Do a punishment stimulus

• stages (iterator) – Some generator or iterator that continuously returns the next stage
method of a trial

• triggers (dict) – Some mapping of some pin to callback methods

• pins (dict) – Dict to store references to hardware

• pin_id (dict) – Reverse dictionary, pin numbers back to pin letters.

• punish_block (threading.Event) – Event to mark when punishment is occuring

• logger (logging.Logger) – gets the ‘main’ logger for now.

Parameters
• subject (str) – Name of subject running the task

• current_trial (int) – Current trial number, default 0

• *args ()
• **kwargs ()

Attributes:

PARAMS

HARDWARE

STAGE_NAMES

PLOT

Classes:

TrialData()

296 Chapter 18. tasks

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/threading.html#threading.Event
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/threading.html#threading.Event
https://docs.python.org/3/library/logging.html#logging.Logger

Autopilot Documentation, Release 0.5.0a1

Methods:

init_hardware() Use the HARDWARE dict that specifies what we
need to run the task alongside the HARDWARE sub-
dict in prefs to tell us how they're plugged in to the
pi

set_reward([vol, duration, port]) Set the reward value for each of the 'PORTS'.
handle_trigger(pin[, level, tick]) All GPIO triggers call this function with the pin num-

ber, level (high, low), and ticks since booting pigpio.
set_leds([color_dict]) Set the color of all LEDs at once.
flash_leds() flash lights for punish_dir
end() Release all hardware objects

PARAMS = OrderedDict()

HARDWARE = {}

STAGE_NAMES = []

PLOT = {}

class TrialData

Bases: tables.description.IsDescription

Attributes:

columns

columns = { 'session': Int32Col(shape=(), dflt=0, pos=None), 'trial_num':
Int32Col(shape=(), dflt=0, pos=None)}

init_hardware()

Use the HARDWARE dict that specifies what we need to run the task alongside the HARDWARE subdict
in prefs to tell us how they’re plugged in to the pi

Instantiate the hardware, assign it Task.handle_trigger() as a callback if it is a trigger.

set_reward(vol=None, duration=None, port=None)
Set the reward value for each of the ‘PORTS’.

Parameters
• vol (float, int) – Volume of reward in uL

• duration (float) – Duration to open port in ms

• port (None, Port_ID) – If None, set everything in ‘PORTS’, otherwise only set port

handle_trigger(pin, level=None, tick=None)
All GPIO triggers call this function with the pin number, level (high, low), and ticks since booting pigpio.

Calls any trigger assigned to the pin in self.triggers , unless during punishment (returns).

Parameters
• pin (int) – BCM Pin number

• level (bool) – True, False high/low

18.1. task 297

Autopilot Documentation, Release 0.5.0a1

• tick (int) – ticks since booting pigpio

set_leds(color_dict=None)
Set the color of all LEDs at once.

Parameters color_dict (dict) – If None, turn LEDs off, otherwise like:

{‘pin’: [R,G,B], ‘pin2: [R,G,B]}

flash_leds()

flash lights for punish_dir

end()

Release all hardware objects

18.2 children

Sub-tasks that serve as children to other tasks.

Note: The Child agent will be formalized in an upcoming release, until then these classes remain relatively undocu-
mented as their design will likely change.

Classes:

Child() Just a placeholder class for now to work with
autopilot.get()

Wheel_Child([stage_block, fs, thresh])

Video_Child([cams, stage_block, start_now])
Parameters cams (dict, list) --

Transformer(transform[, operation, node_id, ...])
Parameters

• transform

class Child

Bases: object

Just a placeholder class for now to work with autopilot.get()

class Wheel_Child(stage_block=None, fs=10, thresh=100, **kwargs)
Bases: autopilot.tasks.children.Child

Attributes:

STAGE_NAMES

PARAMS

HARDWARE

298 Chapter 18. tasks

https://docs.python.org/3/library/functions.html#object

Autopilot Documentation, Release 0.5.0a1

Methods:

noop()

end()

STAGE_NAMES = ['collect']

PARAMS = OrderedDict([('fs', {'tag': 'Velocity Reporting Rate (Hz)', 'type':
'int'}), ('thresh', {'tag': 'Distance Threshold', 'type': 'int'})])

HARDWARE = { 'OUTPUT': <class 'autopilot.hardware.gpio.Digital_Out'>, 'WHEEL':
<class 'autopilot.hardware.usb.Wheel'>}

noop()

end()

class Video_Child(cams=None, stage_block=None, start_now=True, **kwargs)
Bases: autopilot.tasks.children.Child

Parameters cams (dict, list) –

Should be a dictionary of camera parameters or a list of dicts. Dicts should have, at least:

{
'type': 'string_of_camera_class',
'name': 'name_of_camera_in_task',
'param1': 'first_param'

}

Attributes:

PARAMS

Methods:

start()

stop()

noop()

PARAMS = OrderedDict([('cams', { 'tag': 'Dictionary of camera params, or list of
dicts', 'type': ('dict', 'list')})])

start()

stop()

noop()

18.2. children 299

Autopilot Documentation, Release 0.5.0a1

class Transformer(transform, operation: str = 'trigger', node_id=None, return_id='T', return_ip=None,
return_port=None, return_key=None, router_port=None, stage_block=None,
value_subset=None, forward_id=None, forward_ip=None, forward_port=None,
forward_key=None, forward_what='both', **kwargs)

Bases: autopilot.tasks.children.Child

Parameters
• transform
• operation (str) – either

– “trigger”, where the last transform is a Condition

and a trigger is returned to sender only when the return value of the transformation changes,
or * “stream”, where each result of the transformation is returned to sender

• return_id
• return_ip
• return_port
• return_key
• router_port (None, int) – If not None (default), spawn the node with a route port to receieve

• stage_block
• value_subset (str) – Optional - subset a value from from a dict/list sent to l_process()

• forward_what (str) – one of ‘input’, ‘output’, or ‘both’ (default) that determines what is
forwarded

• **kwargs
Methods:

noop()

l_process(value)

forward([input, output])

noop()

l_process(value)

forward(input=None, output=None)

300 Chapter 18. tasks

https://docs.python.org/3/library/stdtypes.html#str

Autopilot Documentation, Release 0.5.0a1

18.3 free_water

Classes:

Free_Water([stage_block, current_trial, ...]) Randomly light up one of the ports, then dispense water
when the subject pokes there

class Free_Water(stage_block=None, current_trial=0, reward=50, allow_repeat=False, **kwargs)
Bases: autopilot.tasks.task.Task

Randomly light up one of the ports, then dispense water when the subject pokes there

Two stages:

• waiting for response, and

• reporting the response afterwards

Variables
• target ('L', 'C', 'R') – The correct port

• trial_counter (itertools.count) – Counts trials starting from current_trial specified
as argument

• triggers (dict) – Dictionary mapping triggered pins to callable methods.

• num_stages (int) – number of stages in task (2)

• stages (itertools.cycle) – iterator to cycle indefinitely through task stages.

Parameters
• stage_block (threading.Event) – used to signal to the carrying Pilot that the current trial

stage is over

• current_trial (int) – If not zero, initial number of trial_counter

• reward (int) – ms to open solenoids

• allow_repeat (bool) – Whether the correct port is allowed to repeat between trials

• **kwargs

Attributes:

STAGE_NAMES

PARAMS

DATA

HARDWARE

PLOT

Classes:

18.3. free_water 301

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/threading.html#threading.Event

Autopilot Documentation, Release 0.5.0a1

TrialData()

Methods:

water(*args, **kwargs) First stage of task - open a port if it's poked.
response() Just have to alert the Terminal that the current trial

has ended and turn off any lights.
end() When shutting down, release all hardware objects

and turn LEDs off.

STAGE_NAMES = ['water', 'response']

PARAMS = OrderedDict([('reward', {'tag': 'Reward Duration (ms)', 'type': 'int'}),
('allow_repeat', {'tag': 'Allow Repeated Ports?', 'type': 'bool'})])

DATA = { 'target': {'plot': 'target', 'type': 'S1'}, 'timestamp': {'type':
'S26'}, 'trial_num': {'type': 'i32'}}

class TrialData

Bases: tables.description.IsDescription

Attributes:

columns

columns = { 'target': StringCol(itemsize=1, shape=(), dflt=b'', pos=None),
'timestamp': StringCol(itemsize=26, shape=(), dflt=b'', pos=None), 'trial_num':
Int32Col(shape=(), dflt=0, pos=None)}

HARDWARE = { 'LEDS': { 'C': <class 'autopilot.hardware.gpio.LED_RGB'>, 'L': <class
'autopilot.hardware.gpio.LED_RGB'>, 'R': <class 'autopilot.hardware.gpio.LED_RGB'>},
'POKES': { 'C': <class 'autopilot.hardware.gpio.Digital_In'>, 'L': <class
'autopilot.hardware.gpio.Digital_In'>, 'R': <class
'autopilot.hardware.gpio.Digital_In'>}, 'PORTS': { 'C': <class
'autopilot.hardware.gpio.Solenoid'>, 'L': <class
'autopilot.hardware.gpio.Solenoid'>, 'R': <class
'autopilot.hardware.gpio.Solenoid'>}}

PLOT = {'data': {'target': 'point'}}

water(*args, **kwargs)
First stage of task - open a port if it’s poked.

Returns
Data dictionary containing:

'target': ('L', 'C', 'R') - correct response
'timestamp': isoformatted timestamp
'trial_num': number of current trial

Return type dict

302 Chapter 18. tasks

https://docs.python.org/3/library/stdtypes.html#dict

Autopilot Documentation, Release 0.5.0a1

response()

Just have to alert the Terminal that the current trial has ended and turn off any lights.

end()

When shutting down, release all hardware objects and turn LEDs off.

18.4 graduation

Object that implement Graduation criteria to move between different tasks in a protocol.

Classes:

Graduation([id]) Base Graduation object.
Accuracy([threshold, window]) Graduate stage based on percent accuracy over some

window of trials.
NTrials(n_trials[, current_trial]) Graduate after doing n trials

class Graduation(id: Optional[str] = None)
Bases: autopilot.root.Autopilot_Object

Base Graduation object.

All Graduation objects need to populate PARAMS, COLS, and define an update method.

Attributes:

PARAMS list of parameters to be defined
COLS list of any data columns that this object should be

given.

Methods:

update(row)
Parameters

:class:`~tables.tableextension.Row`
-- Trial row

PARAMS = []

list of parameters to be defined

Type list

COLS = []

list of any data columns that this object should be given.

Type list

abstract update(row: Row)

Parameters :class:`~tables.tableextension.Row` – Trial row

18.4. graduation 303

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list

Autopilot Documentation, Release 0.5.0a1

class Accuracy(threshold=0.75, window=500, **kwargs)
Bases: autopilot.tasks.graduation.Graduation

Graduate stage based on percent accuracy over some window of trials.

Parameters
• threshold (float) – Accuracy above this threshold triggers graduation

• window (int) – number of trials to consider in the past.

• **kwargs – should have ‘correct’ corresponding to the corrects/incorrects of the past.

Attributes:

PARAMS list of parameters to be defined
COLS list of any data columns that this object should be

given.

Methods:

update(row) Get 'correct' from the row object.

PARAMS = ['threshold', 'window']

list of parameters to be defined

Type list

COLS = ['correct']

list of any data columns that this object should be given.

Type list

update(row)
Get ‘correct’ from the row object. If this trial puts us over the threshold, return True, else False.

Parameters row (Row) – Trial row

Returns Did we _graduate this time or not?

Return type bool

class NTrials(n_trials, current_trial=0, **kwargs)
Bases: autopilot.tasks.graduation.Graduation

Graduate after doing n trials

Variables counter (itertools.count) – Counts the trials.

Parameters
• n_trials (int) – Number of trials to _graduate after

• current_trial (int) – If not starting from zero, start from here

• **kwargs
Attributes:

PARAMS list of parameters to be defined

Methods:

304 Chapter 18. tasks

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool

Autopilot Documentation, Release 0.5.0a1

update(row) If we're past n_trials in this trial, return True, else
False.

PARAMS = ['n_trials', 'current_trial']

list of parameters to be defined

Type list

update(row)
If we’re past n_trials in this trial, return True, else False.

Parameters row – ignored

Returns Did we _graduate or not?

Return type bool

18.5 nafc

Classes:

Nafc([stage_block, stim, reward, ...]) A Two-alternative forced choice task.

class Nafc(stage_block=None, stim=None, reward=50, req_reward=False, punish_stim=False, punish_dur=100,
correction=False, correction_pct=50.0, bias_mode=False, bias_threshold=20, stim_light=True,
**kwargs)

Bases: autopilot.tasks.task.Task

A Two-alternative forced choice task.

(can’t have number as first character of class.)

Stages
• request - compute stimulus, set request trigger in center port.

• discrim - respond to input, set reward/punishment triggers on target/distractor ports

• reinforcement - deliver reward/punishment, end trial.

Variables
• target ("L", "R") – Correct response

• distractor ("L", "R") – Incorrect response

• stim – Current stimulus

• response ("L", "R") – Response to discriminand

• correct (0, 1) – Current trial was correct/incorrect

• correction_trial (bool) – If using correction trials, last trial was a correction trial

• trial_counter (itertools.count) – Which trial are we on?

• discrim_playing (bool) – Is the stimulus playing?

• bailed (0, 1) – Subject answered before stimulus was finished playing.

18.5. nafc 305

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Autopilot Documentation, Release 0.5.0a1

• current_stage (int) – As each stage is reached, update for asynchronous event reference

Parameters
• stage_block (threading.Event) – Signal when task stages complete.

• stim (dict) –

Stimuli like:

"sounds": {
"L": [{"type": "Tone", ...}],
"R": [{"type": "Tone", ...}]

}

• reward (float) – duration of solenoid open in ms

• req_reward (bool) – Whether to give a water reward in the center port for requesting trials

• punish_stim (bool) – Do a white noise punishment stimulus

• punish_dur (float) – Duration of white noise in ms

• correction (bool) – Should we do correction trials?

• correction_pct (float) – (0-1), What proportion of trials should randomly be correction tri-
als?

• bias_mode (False, “thresholded_linear”) – False, or some bias correction type (see
managers.Bias_Correction)

• bias_threshold (float) – If using a bias correction mode, what threshold should bias be cor-
rected for?

• current_trial (int) – If starting at nonzero trial number, which?

• stim_light (bool) – Should the LED be turned blue while the stimulus is playing?

• **kwargs

Attributes:

STAGE_NAMES

PARAMS

PLOT

HARDWARE

Classes:

TrialData Trialwise Data for a Two-Alternative Forced Choice
Task

Methods:

306 Chapter 18. tasks

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/threading.html#threading.Event

Autopilot Documentation, Release 0.5.0a1

request(*args, **kwargs) Stage 0: compute stimulus, set request trigger in cen-
ter port.

discrim(*args, **kwargs) Stage 1: respond to input, set reward/punishment
triggers on target/distractor ports

reinforcement(*args, **kwargs) Stage 2 - deliver reward/punishment, end trial.
punish () Flash lights, play punishment sound if set
respond(pin) Set self.response
stim_start() mark discrim_playing = true
stim_end() called by stimulus callback
flash_leds() flash lights for punish_dir

STAGE_NAMES = ['request', 'discrim', 'reinforcement']

PARAMS = OrderedDict([('reward', {'tag': 'Reward Duration (ms)', 'type': 'int'}),
('req_reward', {'tag': 'Request Rewards', 'type': 'bool'}), ('punish_stim',
{'tag': 'White Noise Punishment', 'type': 'bool'}), ('punish_dur', {'tag':
'Punishment Duration (ms)', 'type': 'int'}), ('correction', {'tag': 'Correction
Trials', 'type': 'bool'}), ('correction_pct', { 'depends': {'correction': True},
'tag': '% Correction Trials', 'type': 'int'}), ('bias_mode', { 'tag': 'Bias
Correction Mode', 'type': 'list', 'values': { 'None': 0, 'Proportional': 1,
'Thresholded Proportional': 2}}), ('bias_threshold', { 'depends': {'bias_mode':
2}, 'tag': 'Bias Correction Threshold (%)', 'type': 'int'}), ('stim', {'tag':
'Sounds', 'type': 'sounds'})])

PLOT = { 'chance_bar': True, 'data': {'correct': 'rollmean', 'response':
'segment', 'target': 'point'}, 'roll_window': 50}

pydantic model TrialData

Bases: autopilot.data.models.protocol.Trial_Data

Trialwise Data for a Two-Alternative Forced Choice Task

{
"title": "TrialData",
"description": "Trialwise Data for a Two-Alternative Forced Choice Task",
"type": "object",
"properties": {
"group": {
"title": "Group",
"description": "Path of the parent step group",
"type": "string"

},
"session": {
"title": "Session",
"description": "Current training session, increments every time the␣

→˓task is started",
"type": "integer"

},
"session_uuid": {
"title": "Session Uuid",
"description": "Each session gets a unique uuid, regardless of the␣

→˓session integer, to enable independent addressing of sessions when session␣
→˓numbers might overlap (eg. reassignment)",

(continues on next page)

18.5. nafc 307

Autopilot Documentation, Release 0.5.0a1

(continued from previous page)

"type": "string"
},
"trial_num": {
"title": "Trial Num",
"description": "Trial data is grouped within, well, trials, which␣

→˓increase (rather than resetting) across sessions within a task",
"datajoint": {
"key": true

},
"type": "integer"

},
"target": {
"title": "Target",
"description": "Which side is the correct side this trial",
"datajoint": {
"datatype": "enum",
"kwargs": {
"args": [

"L",
"R"

]
}

},
"enum": [

"L",
"R"

],
"type": "string"

},
"response": {
"title": "Response",
"description": "The side that was poked",
"datajoint": {
"datatype": "enum",
"kwargs": {
"args": [

"L",
"R"

]
}

},
"enum": [

"L",
"R"

],
"type": "string"

},
"correct": {
"title": "Correct",
"description": "Whether the subject's response matched the target",
"type": "boolean"

},

(continues on next page)

308 Chapter 18. tasks

Autopilot Documentation, Release 0.5.0a1

(continued from previous page)

"correction": {
"title": "Correction",
"description": "Whether this trial was a correction trial or not",
"type": "boolean"

},
"RQ_timestamp": {
"title": "Rq Timestamp",
"description": "The time where the stimulus was presented and the␣

→˓trial was requested",
"type": "string",
"format": "date-time"

},
"DC_timestamp": {
"title": "Dc Timestamp",
"description": "The time when the subject responded",
"type": "string",
"format": "date-time"

},
"bailed": {
"title": "Bailed",
"description": "Whether the subject bailed the trial from a timeout or␣

→˓any other reason they did not finish",
"type": "boolean"

}
},
"required": [

"session",
"trial_num",
"target",
"response",
"correct",
"correction",
"RQ_timestamp",
"DC_timestamp",
"bailed"

]
}

Fields
• DC_timestamp (datetime.datetime)

• RQ_timestamp (datetime.datetime)

• bailed (bool)

• correct (bool)

• correction (bool)

• response (Literal['L', 'R'])

• target (Literal['L', 'R'])

18.5. nafc 309

Autopilot Documentation, Release 0.5.0a1

field target: Literal['L', 'R'] [Required]

Which side is the correct side this trial

field response: Literal['L', 'R'] [Required]

The side that was poked

field correct: bool [Required]

Whether the subject’s response matched the target

field correction: bool [Required]

Whether this trial was a correction trial or not

field RQ_timestamp: datetime.datetime [Required]

The time where the stimulus was presented and the trial was requested

field DC_timestamp: datetime.datetime [Required]

The time when the subject responded

field bailed: bool [Required]

Whether the subject bailed the trial from a timeout or any other reason they did not finish

HARDWARE = { 'LEDS': {'C': 'LED_RGB', 'L': 'LED_RGB', 'R': 'LED_RGB'}, 'POKES':
{'C': 'Digital_In', 'L': 'Digital_In', 'R': 'Digital_In'}, 'PORTS': {'C':
'Solenoid', 'L': 'Solenoid', 'R': 'Solenoid'}}

request(*args, **kwargs)
Stage 0: compute stimulus, set request trigger in center port.

Returns
With fields:

{
'target': self.target,
'trial_num' : self.current_trial,
'correction': self.correction_trial,
'type': stimulus type,
**stim.PARAMS
}

Return type data (dict)

discrim(*args, **kwargs)
Stage 1: respond to input, set reward/punishment triggers on target/distractor ports

Returns
With fields:: { ‘RQ_timestamp’: datetime.datetime.now().isoformat(), ‘trial_num’:

self.current_trial, }

Return type data (dict)

reinforcement(*args, **kwargs)
Stage 2 - deliver reward/punishment, end trial.

Returns
With fields:

310 Chapter 18. tasks

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

Autopilot Documentation, Release 0.5.0a1

{
'DC_timestamp': datetime.datetime.now().isoformat(),
'response': self.response,
'correct': self.correct,
'bailed': self.bailed,
'trial_num': self.current_trial,
'TRIAL_END': True
}

Return type data (dict)

punish()

Flash lights, play punishment sound if set

respond(pin)
Set self.response

Parameters pin – Pin to set response to

stim_start()

mark discrim_playing = true

stim_end()

called by stimulus callback

set outside lights blue

flash_leds()

flash lights for punish_dir

18.5. nafc 311

https://docs.python.org/3/library/stdtypes.html#dict

Autopilot Documentation, Release 0.5.0a1

312 Chapter 18. tasks

CHAPTER

NINETEEN

TRANSFORMATIONS

Data transformations.

Composable transformations from one representation of data to another. Used as the lubricant and glue between hard-
ware objects. Some hardware objects disagree about the way information should be represented – eg. cameras are very
partial to letting position information remain latent in a frame of a video, but some other object might want the actual
[x,y] coordinates. Transformations help negotiate (but don’t resolve their irreparably different worldviews :()

Transformations are organized by modality, but this API is quite immature.

Transformations have a process method that accepts and returns a single object. They must also define the format of
their inputs and outputs (format_in and format_out). That API is also a sketch.

The __add__() method allows transforms to be combined, eg.:

from autopilot import transform as t
transform_me = t.Image.DLC('model_directory')
transform_me += t.selection.DLCSlice('point')
transform_me.process(frame)
... etcetera

Todo: This is a first draft of this module and it purely synchronous at the moment. It will be expanded to . . . * support
multiple asynchronous processing rhythms * support automatic value coercion * make recursion checks – make sure
a child hasn’t already been added to a processing chain. * idk participate at home! list your own shortcomings of this
module, don’t be shy it likes it.

Functions:

make_transform(transforms) Make a transform from a list of iterator specifications.

make_transform(transforms: Union[List[dict], Tuple[dict]])→ autopilot.transform.transforms.Transform
Make a transform from a list of iterator specifications.

Parameters transforms (list) –

A list of Transform s and parameterizations in the form:

[
{'transform': Transform,
'args': (arg1, arg2,), # optional
'kwargs': {'key1':'val1', ...}, # optional
{'transform': ...}

]

313

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict

Autopilot Documentation, Release 0.5.0a1

Returns Transform

Data transformations.

Experimental module.

Reusable transformations from one representation of data to another. eg. converting frames of a video to locations of
objects, or locations of objects to area labels

Todo: This is a preliminary module and it purely synchronous at the moment. It will be expanded to . . . * support
multiple asynchronous processing rhythms * support automatic value coercion

The following design features need to be added * recursion checks – make sure a child hasn’t already been added to a
processing chain.

Classes:

TransformRhythm(value)
ivar FIFO First-in-first-out, process in-

puts as they are received, poten-
tially slowing down the transforma-
tion pipeline

Transform(rhythm, *args, **kwargs) Metaclass for data transformations

class TransformRhythm(value)
Bases: enum.Enum

Variables
• FIFO – First-in-first-out, process inputs as they are received, potentially slowing down the

transformation pipeline

• FILO – First-in-last-out, process the most recent input, ignoring previous (lossy transforma-
tion)

Attributes:

FIFO

FILO

FIFO = 1

FILO = 2

class Transform(rhythm: autopilot.transform.transforms.TransformRhythm = <TransformRhythm.FILO: 2>,
*args, **kwargs)

Bases: object

Metaclass for data transformations

Each subclass should define the following

• process() - a method that takes the input of the transoformation as its single argument and returns the
transformed output

314 Chapter 19. Transformations

https://docs.python.org/3/library/enum.html#enum.Enum
https://docs.python.org/3/library/functions.html#object

Autopilot Documentation, Release 0.5.0a1

• format_in - a dict that specifies the input format

• format_out - a dict that specifies the output format

Parameters rhythm (TransformRhythm) – A rhythm by which the transformation object processes
its inputs

Variables (class (child) – Transform): Another Transform object chained after this one

Attributes:

rhythm

format_in

format_out

parent If this Transform is in a chain of transforms, the trans-
form that precedes it

Methods:

process(input)

reset() If a transformation is stateful, reset state.
check_compatible(child) Check that this Transformation's format_out is

compatible with another's format_in
__add__(other) Add another Transformation in the chain to make a

processing pipeline

property rhythm: autopilot.transform.transforms.TransformRhythm

property format_in: dict

property format_out: dict

property parent: Optional[autopilot.transform.transforms.Transform]

If this Transform is in a chain of transforms, the transform that precedes it

Returns Transform , None if no parent.

process(input)

reset()

If a transformation is stateful, reset state.

check_compatible(child: autopilot.transform.transforms.Transform)

Check that this Transformation’s format_out is compatible with another’s format_in

Todo: Check for types that can be automatically coerced into one another and set _coercion to appro-
priate function

Parameters child (Transform) – Transformation to check compatibility

Returns bool

315

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

Autopilot Documentation, Release 0.5.0a1

__add__(other)
Add another Transformation in the chain to make a processing pipeline

Parameters other (Transformation) – The transformation to be chained

19.1 Coercion

placeholder. . . objects to make type and shape coercion seamless. . . .

19.2 Geometry

Classes:

Distance([pairwise, n_dim, metric, squareform]) Given an n_samples x n_dimensions array, compute
pairwise or mean distances

Angle([abs, degrees]) Get angle between line formed by two points and hori-
zontal axis

IMU_Orientation([use_kalman, invert_gyro]) Compute absolute orientation (roll, pitch) from ac-
celerometer and gyroscope measurements (eg from
hardware.i2c.I2C_9DOF)

Rotate([dims, rotation_type, degrees, ...]) Rotate in 3 dimensions using scipy.spatial.
transform.Rotation

Spheroid([target, source, fit]) Fit and transform 3d coordinates according to some
spheroid.

Order_Points([closeness_threshold]) Order x-y coordinates into a line, such that each point
(row) in an array is ordered next to its nearest points

Linefit_Prasad([return_metrics]) Given an ordered series of x/y coordinates (see
Order_Points), use D.Prasad et al.'s parameter-free
line fitting algorithm to make a simplified, fitted line.

class Distance(pairwise: bool = False, n_dim: int = 2, metric: str = 'euclidean', squareform: bool = True,
*args, **kwargs)

Bases: autopilot.transform.transforms.Transform

Given an n_samples x n_dimensions array, compute pairwise or mean distances

Parameters
• pairwise (bool) – If False (default), return mean distance. if True, return all distances

• n_dim (int) – number of dimensions (input array will be filtered like input[:,0:n_dim]

• metric (str) – any metric acceptable to :func:`scipy.spatial.distance.pdist

• squareform (bool) – if pairwise is True, if True return square distance matrix, otherwise
return compressed distance matrix (dist(X[i], X[j] = y[i*j])

• *args
• **kwargs

Attributes:

316 Chapter 19. Transformations

https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.transform.Rotation.html#scipy.spatial.transform.Rotation
https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.transform.Rotation.html#scipy.spatial.transform.Rotation
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

Autopilot Documentation, Release 0.5.0a1

format_in

format_out

Methods:

process(input)

format_in = {'type': <class 'numpy.ndarray'>}

format_out = {'type': <class 'numpy.ndarray'>}

process(input: numpy.ndarray)

class Angle(abs=True, degrees=True, *args, **kwargs)
Bases: autopilot.transform.transforms.Transform

Get angle between line formed by two points and horizontal axis

Attributes:

format_in

format_out

Methods:

process(input)

format_in = {'type': <class 'numpy.ndarray'>}

format_out = {'type': <class 'float'>}

process(input)

class IMU_Orientation(use_kalman: bool = True, invert_gyro: bool = False, *args, **kwargs)
Bases: autopilot.transform.transforms.Transform

Compute absolute orientation (roll, pitch) from accelerometer and gyroscope measurements (eg from hardware.
i2c.I2C_9DOF)

Uses a timeseries.Kalman filter, and implements [PPT+18] to fuse the sensors

Can be used with accelerometer data only, or with combined accelerometer/gyroscope data for greater accuracy

Parameters
• invert_gyro (bool) – if the gyroscope’s orientation is inverted from accelerometer measure-

ment, multiply gyro readings by -1 before using

• use_kalman (bool) – Whether to use kalman filtering (True, default), or return raw trigono-
metric transformation of accelerometer readings (if provided, gyroscope readings will be
ignored)

19.2. Geometry 317

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Autopilot Documentation, Release 0.5.0a1

Variables kalman (transform.timeseries.Kalman) – If use_kalman == True , the Kalman
Filter.

References

[PPT+18] [ABCO15]

Methods:

process(accelgyro)
Parameters accelgyro (tuple, numpy.

ndarray) -- tuple of (accelerome-
ter[x,y,z], gyro[x,y,z]) readings as ar-
rays, or

process(accelgyro: Union[Tuple[numpy.ndarray, numpy.ndarray], numpy.ndarray])→ numpy.ndarray

Parameters accelgyro (tuple, numpy.ndarray) – tuple of (accelerometer[x,y,z], gyro[x,y,z])
readings as arrays, or an array of just accelerometer[x,y,z]

Returns filtered [roll, pitch] calculations in degrees

Return type numpy.ndarray

class Rotate(dims='xyz', rotation_type='euler', degrees=True, inverse='', rotation=None, *args, **kwargs)
Bases: autopilot.transform.transforms.Transform

Rotate in 3 dimensions using scipy.spatial.transform.Rotation

Parameters
• dims (“xyz”) – string specifying which axes the rotation will be around, eg "xy" , "xyz"`

• rotation_type (str) – Format of rotation input, must be one available to the Rotation class
(but currently only euler angles are supported)

• degrees (bool) – whether to output rotation in degrees (True, default) or radians

• inverse (“xyz”) – dimensions in the “rotation” input to Rotate.process() to inverse before
applying rotation

• rotation (tuple, list, numpy.ndarray, None) – If supplied, use the same rotation for all
processed data. If None, Rotate.process() will expect a tuple of (data, rotation).

Methods:

process(input)
Parameters input (tuple, numpy.

ndarray) -- a tuple of (input[x,y,z],
rotation[x,y,z]) where input is to be
rotated

process(input)

318 Chapter 19. Transformations

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.transform.Rotation.html#scipy.spatial.transform.Rotation
https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.transform.Rotation.html#scipy.spatial.transform.Rotation

Autopilot Documentation, Release 0.5.0a1

Parameters input (tuple, numpy.ndarray) – a tuple of (input[x,y,z], rotation[x,y,z]) where in-
put is to be rotated according to the axes in rotation (indicated in Rotate.dims). If only
an input array is provided, a static rotation array must have been provided in the constructor
(otherwise the most recent rotation will be used)

Returns numpy.ndarray - rotated input array

class Spheroid(target=(1, 1, 1, 0, 0, 0), source: tuple = (None, None, None, None, None, None), fit:
Optional[numpy.ndarray] = None, *args, **kwargs)

Bases: autopilot.transform.transforms.Transform

Fit and transform 3d coordinates according to some spheroid.

Eg. for calibrating accelerometer readings by transforming them from their uncalibrated spheroid to the expected
sphere with radius == 9.8m/s/s centered at (0,0,0).

Does not estimate/correct for rotation of the spheroid.

Examples

Calibrate an accelerometer by transforming
readings to a 9.8-radius sphere centered at 0
>>> sphere = Spheroid(target=(9.8,9.8,9.8,0,0,0))

take some readings...
imagine we're taking them from some sensor idk
say our sensor slightly exaggerates gravity
in the z-axis...
>>> readings = np.array((0.,0.,10.5))

fit our object (need >>1 sample)
>>> sphere.fit(readings)

transform to proper gravity
>>> sphere.process(readings)
[0., 0., 9.8]

Parameters
• target (tuple) – parameterization of spheroid to transform to, if none is passed, transform to

unit circle centered at (0,0,0). parameterized as:

(a, # radius of x dimension

b, # radius of y dimension c, # radius of z dimension x, # x-offset y, # y-offset z) # z-offset

• source (tuple) – parameterization of spheroid to transform from in the same 6-tuple form as
target, if None is passed, assume we will use Spheroid.fit()

• fit (None, numpy.ndarray) – Initialize with values to fit, if None assume fit will be called
later.

19.2. Geometry 319

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Optional

Autopilot Documentation, Release 0.5.0a1

References

• https://jekel.me/2020/Least-Squares-Ellipsoid-Fit/

• http://www.juddzone.com/ALGORITHMS/least_squares_3D_ellipsoid.html

Methods:

fit(points, **kwargs) Fit a spheroid from a set of noisy measurements
process(input) Transform input (x,y,z) points such that points in

source are mapped to those in target
generate(n[, which, noise]) Generate random points from the ellipsoid

fit(points, **kwargs)
Fit a spheroid from a set of noisy measurements

updates the _scale and _offset private arrays used to manipulate input data

Note: It’s usually important to pass bounds to scipy.optimize.curve_fit() !!! passed as a 2-tuple
of ((min_a, min_b, ...), (max_a, max_b...)) In particular such that a, b, and c are positive. If
no bounds are passed, assume at least that much.

Parameters
• points (numpy.ndarray) – (M, 3) array of points to fit

• **kwargs () – passed on to scipy.optimize.curve_fit()

Returns parameters of fit ellipsoid (a,b,c,x,y,z)

Return type tuple

process(input: numpy.ndarray)
Transform input (x,y,z) points such that points in source are mapped to those in target

Parameters input (numpy.ndarray) – x, y, and z coordinates

Returns coordinates transformed according to the spheroid requested

Return type numpy.ndarray

generate(n: int, which: str = 'source', noise: float = 0)
Generate random points from the ellipsoid

Parameters
• n (int) – number of points to generate

• which (‘str’) – which spheroid to generate from? (‘source’ - default, or ‘target’)

• noise (float) – noise to add to points

Returns (n, 3) array of generated points

Return type numpy.ndarray

320 Chapter 19. Transformations

https://jekel.me/2020/Least-Squares-Ellipsoid-Fit/
http://www.juddzone.com/ALGORITHMS/least_squares_3D_ellipsoid.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.curve_fit.html#scipy.optimize.curve_fit
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.curve_fit.html#scipy.optimize.curve_fit
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float

Autopilot Documentation, Release 0.5.0a1

class Order_Points(closeness_threshold: float = 1, **kwargs)
Bases: autopilot.transform.transforms.Transform

Order x-y coordinates into a line, such that each point (row) in an array is ordered next to its nearest points

Useful for when points are extracted from an image, but need to be treated as a line rather than disordered points!

Starting with a point, find the nearest point and add that to a deque. Once all points are found on the ‘forward
pass’, start the initial point again goind the ‘other direction.’

The threshold parameter tunes the (percentile) distance consecutive points may be from one another. The default
threshold of 1 will connect all the points but won’t necessarily find a very compact line. Lower thresholds make
more sensible lines, but may miss points depending on how line-like the initial points are.

Note that the first point chosen (first in the input array) affects the line that is formed with the points do not form
an unambiguous line. I am not surehow to arbitrarily specify a point to start from, but would love to hear what
people want!

Examples

0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0
threshold = 1

0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0
threshold = 0.25

Parameters closeness_threshold (float) – The percentile of distances beneath which to consider
connecting points, from 0 to 1. Eg. 0.5 would allow points that are closer than 50% of all
distances between all points to be connected. Default is 1, which allows all points to be connected.

Methods:

19.2. Geometry 321

https://docs.python.org/3/library/functions.html#float

Autopilot Documentation, Release 0.5.0a1

process(input)
Parameters input (numpy.ndarray) --

an n x 2 array of x/y points

process(input: numpy.ndarray)→ numpy.ndarray

Parameters input (numpy.ndarray) – an n x 2 array of x/y points

Returns numpy.ndarray Array of points, reordered into a line

class Linefit_Prasad(return_metrics: bool = False, **kwargs)
Bases: autopilot.transform.transforms.Transform

Given an ordered series of x/y coordinates (see Order_Points), use D.Prasad et al.’s parameter-free line fitting
algorithm to make a simplified, fitted line.

Optimized from the original MATLAB code, including precomputing some of the transformation matrices. The
attribute names are from the original, and due to the nature of code transcription doesn’t follow some of Autopi-
lot’s usual structural style.

Parameters return_metrics (bool)

Examples

0 25 50 75 100 125 150 175 200

50

25

0

25

50

ordered points

0 25 50 75 100 125 150 175 200

50

25

0

25

50

prasad fit line

322 Chapter 19. Transformations

https://docs.python.org/3/library/functions.html#bool

Autopilot Documentation, Release 0.5.0a1

References

[PQLC11] Original MATLAB Implementation: https://docs.google.com/open?id=
0B10RxHxW3I92dG9SU0pNMV84alk

Methods:

process(input) Given an n x 2 array of ordered x/y points, return

process(input: numpy.ndarray)→ numpy.ndarray
Given an n x 2 array of ordered x/y points, return

Parameters input (numpy.ndarray) – n x 2 array of ordered x/y points

Returns numpy.ndarray an m x 2 simplified array of line segments

19.3 Image

Classes:

Image([shape]) Metaclass for transformations of images
DLC([model_dir, model_zoo]) Do pose estimation with DeepLabCut-Live!!!!!

class Image(shape=None, *args, **kwargs)
Bases: autopilot.transform.transforms.Transform

Metaclass for transformations of images

Attributes:

format_in

format_out

shape

property format_in: dict

property format_out: dict

property shape: Tuple[int, int]

class DLC(model_dir: Optional[str] = None, model_zoo: Optional[str] = None, *args, **kwargs)
Bases: autopilot.transform.image.Image

Do pose estimation with DeepLabCut-Live!!!!!

Specify a model_dir (relative to <BASEDIR>/dlc or absolute) or a model name from the DLC model zoo.

All other args and kwargs are passed on to dlclive.DLCLive, see its documentation for details: https://github.
com/DeepLabCut/DeepLabCut-live

Variables

19.3. Image 323

https://docs.google.com/open?id=0B10RxHxW3I92dG9SU0pNMV84alk
https://docs.google.com/open?id=0B10RxHxW3I92dG9SU0pNMV84alk
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://github.com/DeepLabCut/DeepLabCut-live
https://github.com/DeepLabCut/DeepLabCut-live

Autopilot Documentation, Release 0.5.0a1

• model_type (str, 'local' or 'zoo') – whether a directory (local) or a modelzoo name
(zoo) was passed

• live (dlclive.DLCLive) – the DLCLive object

Must give either model_dir or model_zoo

Parameters
• model_dir (str) – directory of model, either absolute or relative to <BASEDIR>/dlc. if
None, use model_zoo

• model_zoo (str) – name of modelzoo model. if None, use model_dir

• *args – passed to DLCLive and superclass

• **kwargs – passed to DLCLive and superclass

Methods:

process(input)

list_modelzoo() List available modelzoo model names in local
deeplabcut version

import_dlc()

create_modelzoo(model)

load_model()

export_model()

Attributes:

model

model_dir

dlc_paths paths used by dlc in manipulating/using models
dlc_dir {prefs.get('BASE_DIR')}/dlc :returns: str
format_in

format_out

process(input: numpy.ndarray)→ numpy.ndarray

property model: str

property model_dir: str

property dlc_paths: dict

paths used by dlc in manipulating/using models

• config: <model_dir>/config.yaml

• train_pose_cfg: <model_dir>/dlc-models/iteration-<n>/<name>/train/pose_cfg.yaml,

324 Chapter 19. Transformations

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

Autopilot Documentation, Release 0.5.0a1

• export_pose_cfg: <model_dir>/exported-models/<name>/pose_cfg.yaml

• export_dir: <model_dir>/exported-models/<name>

Returns dict

property dlc_dir: str

{prefs.get('BASE_DIR')}/dlc :returns: str

classmethod list_modelzoo()

List available modelzoo model names in local deeplabcut version

Returns names of available modelzoo models

Return type list

import_dlc()

create_modelzoo(model)

load_model()

export_model()

property format_in: dict

property format_out: dict

19.4 Logical

Classes:

Condition([minimum, maximum, elementwise]) Compare the input against some condition
Compare(compare_fn, *args, **kwargs) Compare processed values using some function that re-

turns a boolean

class Condition(minimum=None, maximum=None, elementwise=False, *args, **kwargs)
Bases: autopilot.transform.transforms.Transform

Compare the input against some condition

Parameters
• minimum
• maximum
• elementwise (bool) – if False, return True only if all values are within range. otherwise

return bool for each tested value

• *args
• **kwargs

Methods:

process(input)

19.4. Logical 325

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

Autopilot Documentation, Release 0.5.0a1

Attributes:

minimum

maximum

format_in

format_out

process(input)

property minimum: [<class 'numpy.ndarray'>, <class 'float'>]

property maximum: [<class 'numpy.ndarray'>, <class 'float'>]

property format_in: dict

property format_out: dict

class Compare(compare_fn: callable, *args, **kwargs)
Bases: autopilot.transform.transforms.Transform

Compare processed values using some function that returns a boolean

ie. process will return compare_fn(*args) from process.

it is expected that input will be an iterable with len > 1

Parameters
• compare_fn (callable) – Function used to compare the values given to Compare.
process()

• *args ()
• **kwargs ()

Methods:

process(input)

process(input)

19.5 Selection

Classes:

Slice(select, *args, **kwargs) Generic selection processor
DLCSlice(select[, min_probability]) Select x,y coordinates of DLC output based on the name

of the tracked parts

326 Chapter 19. Transformations

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

Autopilot Documentation, Release 0.5.0a1

class Slice(select, *args, **kwargs)
Bases: autopilot.transform.transforms.Transform

Generic selection processor

Parameters
• select (slice, tuple[slice], int, tuple[int]) – a slice, tuple of slices, int, or tuple of ints! any-

thing you can use inside of a pair of [square brackets].

• *args
• **kwargs

Attributes:

format_in

format_out

Methods:

process(input)

format_in = {'type': 'any'}

format_out = {'type': 'any'}

process(input)

class DLCSlice(select: Union[str, tuple, list], min_probability: float = 0, *args, **kwargs)
Bases: autopilot.transform.selection.Slice

Select x,y coordinates of DLC output based on the name of the tracked parts

note that min_probability is undefined when a list or tuple of part names are defined: the form of the returned
array is ambiguous (how to tell which part is which when some might be excluded?)

Parameters
• select (slice, tuple[slice], int, tuple[int]) – a slice, tuple of slices, int, or tuple of ints! any-

thing you can use inside of a pair of [square brackets].

• *args
• **kwargs

Attributes:

format_in

format_out

Methods:

19.5. Selection 327

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float

Autopilot Documentation, Release 0.5.0a1

check_slice(select)

process(input)

format_in = { 'parent': <class 'autopilot.transform.image.DLC'>, 'type': <class
'numpy.ndarray'>}

format_out = {'type': <class 'numpy.ndarray'>}

check_slice(select)

process(input: numpy.ndarray)

19.6 Timeseries

Timeseries transformations, filters, etc.

Classes:

Filter_IIR([ftype, buffer_size, coef_type, axis]) Simple wrapper around scipy.signal.iirfilter()
Gammatone(freq, fs[, ftype, filtfilt, ...]) Single gammatone filter based on [Sla97]
Kalman(dim_state[, dim_measurement, dim_control]) Kalman filter!!!!!
Integrate([decay, dt_scale])

class Filter_IIR(ftype='butter', buffer_size=256, coef_type='sos', axis=0, *args, **kwargs)
Bases: autopilot.transform.transforms.Transform

Simple wrapper around scipy.signal.iirfilter()

Creates a streaming filter – takes in single values, stores them, and uses them to filter future values.

Parameters
• ftype (str) – filter type, see ftype of scipy.signal.iirfilter() for available filters

• buffer_size (int) – number of samples to store when filtering

• coef_type ({‘ba’, ‘sos’}) – type of filter coefficients to use (see scipy.signal.sosfilt()
and scipy.signal.lfilt())

• axis (int) – which axis to filter over? (default: 0 because when passing arrays to filter, want
to filter samples over time)

• **kwargs – passed on to scipy.signal.iirfilter() , eg.

– N - filter order

– Wn - array or scalar giving critical frequencies

– btype - type of band: ['bandpass', 'lowpass', 'highpass', 'bandstop']

Variables
• coefs (np.ndarray) – filter coefficients, depending on coef_type

• buffer (collections.deque) – buffer of stored values to filter

328 Chapter 19. Transformations

https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.iirfilter.html#scipy.signal.iirfilter
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.iirfilter.html#scipy.signal.iirfilter
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.iirfilter.html#scipy.signal.iirfilter
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.sosfilt.html#scipy.signal.sosfilt
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.iirfilter.html#scipy.signal.iirfilter
https://docs.python.org/3/library/collections.html#collections.deque

Autopilot Documentation, Release 0.5.0a1

• coef_type (str) – type of filter coefficients to use (see scipy.signal.sosfilt() and
scipy.signal.lfilt())

• axis (int) – which axis to filter over? (default: 0 because when passing arrays to filter,
want to filter samples over time)

• ftype (str) – filter type, see ftype of scipy.signal.iirfilter() for available filters

Methods:

process(input) Filter the new value based on the values stored in
Filter.buffer

process(input: float)
Filter the new value based on the values stored in Filter.buffer

Parameters input (float) – new value to filter!

Returns the filtered value!

Return type float

class Gammatone(freq: float, fs: int, ftype: str = 'iir', filtfilt: bool = True, order: Optional[int] = None, numtaps:
Optional[int] = None, axis: int = - 1, **kwargs)

Bases: autopilot.transform.transforms.Transform

Single gammatone filter based on [Sla97]

Thin wrapper around scipy.signal.gammatone !! (started rewriting this and realized they had made a legible
version <3 ty scipy team, additional implementations in the references)

Examples

References

• [Sla97]

• Brian2hears implementation

• detly/gammatone

Parameters
• freq (float) – Center frequency of the filter in Hz

• fs (int) – Sampling rate of the signal to process

• ftype (str) – Type of filter to return from scipy.signal.gammatone()

• filtfilt (bool) – If True (default), use scipy.signal.filtfilt(), else use scipy.
signal.lfilt()

• order (int) – From scipy docs: The order of the filter. Only used when ftype='fir'.
Default is 4 to model the human auditory system. Must be between 0 and 24.

• numtaps (int) – From scipy docs: Length of the filter. Only used when ftype='fir'.
Default is fs*0.015 if fs is greater than 1000, 15 if fs is less than or equal to 1000.

• axis (int) – Axis of input signal to apply filter over (default -1)

• **kwargs – passed to scipy.signal.filtfilt() or scipy.signal.lfilt()

19.6. Timeseries 329

https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.sosfilt.html#scipy.signal.sosfilt
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.iirfilter.html#scipy.signal.iirfilter
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://github.com/brian-team/brian2hears/blob/131fd6d86c3ec460c45b42ea9c2f3b62c62d0631/brian2hears/filtering/filterbanklibrary.py#L26
https://github.com/detly/gammatone
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.gammatone.html#scipy.signal.gammatone
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.filtfilt.html#scipy.signal.filtfilt
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.filtfilt.html#scipy.signal.filtfilt

Autopilot Documentation, Release 0.5.0a1

0.25 0.50 0.75
0

2500

5000

7500

10000

12500

15000

17500

20000

White Noise

0.25 0.50 0.75

1kHz Gammatone Filter

0.25 0.50 0.75

15kHz Gammatone Filter

330 Chapter 19. Transformations

Autopilot Documentation, Release 0.5.0a1

Methods:

process(input)

process(input: Union[numpy.ndarray, list])→ numpy.ndarray

class Kalman(dim_state: int, dim_measurement: Optional[int] = None, dim_control: int = 0, *args, **kwargs)
Bases: autopilot.transform.transforms.Transform

Kalman filter!!!!!

Adapted from https://github.com/rlabbe/filterpy/blob/master/filterpy/kalman/kalman_filter.py simplified and
optimized lovingly <3

Each of the arrays is named with its canonical letter and a short description, (eg. the x_state vector x_state is
self.x_state

Parameters
• dim_state (int) – Dimensions of the state vector

• dim_measurement (int) – Dimensions of the measurement vector

• dim_control (int) – Dimensions of the control vector

Variables
• x_state (numpy.ndarray) – Current state vector

• P_cov (numpy.ndarray) – Uncertainty Covariance

• Q_proc_var (numpy.ndarray) – Process Uncertainty

• B_control (numpy.ndarray) – Control transition matrix

• F_state_trans (numpy.ndarray) – State transition matrix

• H_measure (numpy.ndarray) – Measurement function

• R_measure_var (numpy.ndarray) – Measurement uncertainty

• M_proc_measure_xcor (numpy.ndarray) – process-measurement cross correlation

• z_measure (numpy.ndarray) –

• K (numpy.ndarray) – Kalman gain

• y (numpy.ndarray) –

• S (numpy.ndarray) – System uncertainty

• SI (numpy.ndarray) – Inverse system uncertainty

• x_prior (numpy.ndarray) – State prior

• P_prior (numpy.ndarray) – Uncertainty prior

• x_post (numpy.ndarray) – State posterior probability

• P_post (numpy.ndarray) – Uncertainty posterior probability

19.6. Timeseries 331

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://github.com/rlabbe/filterpy/blob/master/filterpy/kalman/kalman_filter.py

Autopilot Documentation, Release 0.5.0a1

References

Roger Labbe. “Kalman and Bayesian Filters in Python” - https://github.com/rlabbe/
Kalman-and-Bayesian-Filters-in-Python Roger Labbe. “FilterPy” - https://github.com/rlabbe/filterpy

Methods:

predict([u, B, F, Q]) Predict next x_state (prior) using the Kalman filter
x_state propagation equations.

update(z[, R, H]) Add a new measurement (z_measure) to the Kalman
filter.

process(z, **kwargs) Call predict and update, passing the relevant kwargs
residual_of (z) Returns the residual for the given measurement

(z_measure).
measurement_of_state(x) Helper function that converts a x_state into a mea-

surement.

Attributes:

alpha Fading memory setting.

predict(u=None, B=None, F=None, Q=None)
Predict next x_state (prior) using the Kalman filter x_state propagation equations.

Update our state and uncertainty priors, x_prior and P_prior

u [np.array, default 0] Optional control vector.

B [np.array(dim_state, dim_u), or None] Optional control transition matrix; a value of None will cause the
filter to use self.B_control.

F [np.array(dim_state, dim_state), or None] Optional x_state transition matrix; a value of None will cause
the filter to use self.F_state_trans.

Q [np.array(dim_state, dim_state), scalar, or None] Optional process noise matrix; a value of None will
cause the filter to use self.Q_proc_var.

update(z: numpy.ndarray, R=None, H=None)→ numpy.ndarray
Add a new measurement (z_measure) to the Kalman filter.

If z_measure is None, nothing is computed. However, x_post and P_post are updated with the prior (x_prior,
P_prior), and self.z_measure is set to None.

Parameters
• z (numpy.ndarray) – measurement for this update. z_measure can be a scalar if

dim_measurement is 1, otherwise it must be convertible to a column vector.

If you pass in a value of H_measure, z_measure must be a column vector the of the correct
size.

• R (numpy.ndarray, int, None) – Optionally provide R_measure_var to override the mea-
surement noise for this one call, otherwise self.R_measure_var will be used.

• H (numpy.ndarray, None) – Optionally provide H_measure to override the measurement
function for this one call, otherwise self.H_measure will be used.

332 Chapter 19. Transformations

https://github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python
https://github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python
https://github.com/rlabbe/filterpy

Autopilot Documentation, Release 0.5.0a1

process(z, **kwargs)
Call predict and update, passing the relevant kwargs

Parameters
• z ()
• **kwargs ()

Returns self.x_state

Return type np.ndarray

residual_of(z)
Returns the residual for the given measurement (z_measure). Does not alter the x_state of the filter.

measurement_of_state(x)
Helper function that converts a x_state into a measurement.

x [np.array] kalman x_state vector

z_measure [(dim_measurement, 1): array_like] measurement for this update. z_measure can be a scalar
if dim_measurement is 1, otherwise it must be convertible to a column vector.

property alpha

Fading memory setting. 1.0 gives the normal Kalman filter, and values slightly larger than 1.0 (such as
1.02) give a fading memory effect - previous measurements have less influence on the filter’s estimates.
This formulation of the Fading memory filter (there are many) is due to Dan Simon [1]_.

class Integrate(decay=1, dt_scale=False, *args, **kwargs)
Bases: autopilot.transform.transforms.Transform

Methods:

process(input)

process(input)

19.7 Units

For converting between things that are the same thing but have different numbers and shapes

Classes:

Rescale([in_range, out_range, clip]) Rescale values from one range to another
Colorspaces(value) An enumeration.
Color(convert_from, convert_to[, output_scale]) Convert colors using the colorsys module!!

class Rescale(in_range: Tuple[float, float] = (0, 1), out_range: Tuple[float, float] = (0, 1), clip=False, *args,
**kwargs)

Bases: autopilot.transform.transforms.Transform

Rescale values from one range to another

Attributes:

19.7. Units 333

https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

Autopilot Documentation, Release 0.5.0a1

format_in

format_out

Methods:

process(input) Subtract input minimum, multiple by output/input
size ratio, add output minimum

format_in = { 'type': (<class 'numpy.ndarray'>, <class 'float'>, <class 'int'>,
<class 'tuple'>, <class 'list'>)}

format_out = {'type': <class 'numpy.ndarray'>}

process(input)
Subtract input minimum, multiple by output/input size ratio, add output minimum

class Colorspaces(value)
Bases: enum.Enum

An enumeration.

Attributes:

HSV

RGB

YIQ

HLS

HSV = 1

RGB = 2

YIQ = 3

HLS = 4

class Color(convert_from: autopilot.transform.units.Colorspaces = <Colorspaces.HSV: 1>, convert_to:
autopilot.transform.units.Colorspaces = <Colorspaces.RGB: 2>, output_scale=255, *args,
**kwargs)

Bases: autopilot.transform.transforms.Transform

Convert colors using the colorsys module!!

Note: All inputs must be scaled (0,1) and all outputs will be (0,1)

Attributes:

334 Chapter 19. Transformations

https://docs.python.org/3/library/enum.html#enum.Enum

Autopilot Documentation, Release 0.5.0a1

format_in

format_out

CONVERSIONS

Methods:

process(input, *args)

format_in = {'type': <class 'tuple'>}

format_out = {'type': <class 'tuple'>}

CONVERSIONS = { <Colorspaces.HSV: 1>: { <Colorspaces.RGB: 2>: <function hsv_to_rgb
at 0x7f41b5c5d8b0>}, <Colorspaces.RGB: 2>: { <Colorspaces.HSV: 1>: <function
rgb_to_hsv at 0x7f41b5c5d820>, <Colorspaces.YIQ: 3>: <function rgb_to_yiq at
0x7f41c6d33040>, <Colorspaces.HLS: 4>: <function rgb_to_hls at 0x7f41b5c5d670>},
<Colorspaces.YIQ: 3>: { <Colorspaces.RGB: 2>: <function yiq_to_rgb at
0x7f41b5c5d5e0>}, <Colorspaces.HLS: 4>: { <Colorspaces.RGB: 2>: <function
hls_to_rgb at 0x7f41b5c5d700>}}

process(input, *args)

19.7. Units 335

Autopilot Documentation, Release 0.5.0a1

336 Chapter 19. Transformations

CHAPTER

TWENTY

UTILS

Utility functions!

20.1 Common Utils

Generic utility functions that are used in multiple places in the library that for now don’t have a clear other place to be

Functions:

list_classes(module) List all classes within a module/package without import-
ing by parsing the syntax tree directly with ast .

find_class(cls_str) Given a full package.module.ClassName string, return
the relevant class

recurse_subclasses(cls[, leaves_only]) Given some class, find its subclasses recursively
list_subjects([pilot_db]) Given a dictionary of a pilot_db, return the subjects that

are in it.
load_pilotdb([file_name, reverse]) Try to load the file_db
coerce_discrete(df, col[, mapping]) Coerce a discrete/string column of a pandas dataframe

into numeric values
find_key_recursive(key, dictionary) Find all instances of a key in a dictionary, recursively.
find_key_value(dicts, key, value[, single]) Find an entry in a list of dictionaries where dict[key] ==

value.
walk_dicts(adict[, keys]) Recursively yield key/value pairs, returning keys as tu-

ples corresponding to the recursive keys in the dict
flatten_dict(nested[, keys, skip]) Flatten a nested dictionary to a dictionary with tuples of

the nested keys

Classes:

ReturnThread([group, target, name, args, ...]) Thread whose .join() method returns the value from the
function thx to https://stackoverflow.com/a/6894023

NumpyEncoder(*[, skipkeys, ensure_ascii, ...]) Allow json serialization of objects containing numpy ar-
rays.

NumpyDecoder(*args, **kwargs) Allow json deserialization of objects containing numpy
arrays.

list_classes(module)→ List[Tuple[str, str]]
List all classes within a module/package without importing by parsing the syntax tree directly with ast .

337

https://docs.python.org/3/library/ast.html#module-ast
https://stackoverflow.com/a/6894023
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/ast.html#module-ast

Autopilot Documentation, Release 0.5.0a1

Parameters module (module, str) – either the imported module to be queried, or its name as a string.
if passed a string, attempt to import with importlib.import_module()

Returns list of tuples [(‘ClassName’, ‘module1.module2.ClassName’)] a la inspect.
getmembers()

find_class(cls_str: str)
Given a full package.module.ClassName string, return the relevant class

Parameters cls_str (str) – a full package.module.ClassName string, like 'autopilot.hardware.
Hardware'

Returns the class indicated by cls_str

recurse_subclasses(cls, leaves_only=False)→ list
Given some class, find its subclasses recursively

See: https://stackoverflow.com/a/17246726/13113166

Parameters leaves_only (bool) – If True, only include classes that have no further subclasses, if
False (default), return all subclasses.

Returns list of subclasses

class ReturnThread(group=None, target=None, name=None, args=(), kwargs={}, Verbose=None)
Bases: threading.Thread

Thread whose .join() method returns the value from the function thx to https://stackoverflow.com/a/6894023

This constructor should always be called with keyword arguments. Arguments are:

group should be None; reserved for future extension when a ThreadGroup class is implemented.

target is the callable object to be invoked by the run() method. Defaults to None, meaning nothing is called.

name is the thread name. By default, a unique name is constructed of the form “Thread-N” where N is a small
decimal number.

args is the argument tuple for the target invocation. Defaults to ().

kwargs is a dictionary of keyword arguments for the target invocation. Defaults to {}.

If a subclass overrides the constructor, it must make sure to invoke the base class constructor (Thread.__init__())
before doing anything else to the thread.

Methods:

run() Method representing the thread's activity.
join([timeout]) Wait until the thread terminates.

run()

Method representing the thread’s activity.

You may override this method in a subclass. The standard run() method invokes the callable object passed
to the object’s constructor as the target argument, if any, with sequential and keyword arguments taken from
the args and kwargs arguments, respectively.

join(timeout=None)
Wait until the thread terminates.

This blocks the calling thread until the thread whose join() method is called terminates – either normally
or through an unhandled exception or until the optional timeout occurs.

338 Chapter 20. Utils

https://docs.python.org/3/library/importlib.html#importlib.import_module
https://docs.python.org/3/library/inspect.html#inspect.getmembers
https://docs.python.org/3/library/inspect.html#inspect.getmembers
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://stackoverflow.com/a/17246726/13113166
https://docs.python.org/3/library/threading.html#threading.Thread
https://stackoverflow.com/a/6894023

Autopilot Documentation, Release 0.5.0a1

When the timeout argument is present and not None, it should be a floating point number specifying a
timeout for the operation in seconds (or fractions thereof). As join() always returns None, you must call
is_alive() after join() to decide whether a timeout happened – if the thread is still alive, the join() call timed
out.

When the timeout argument is not present or None, the operation will block until the thread terminates.

A thread can be join()ed many times.

join() raises a RuntimeError if an attempt is made to join the current thread as that would cause a deadlock.
It is also an error to join() a thread before it has been started and attempts to do so raises the same exception.

list_subjects(pilot_db=None)
Given a dictionary of a pilot_db, return the subjects that are in it.

Parameters pilot_db (dict) – a pilot_db. if None tried to load pilot_db with
:method:`.load_pilotdb`

Returns a list of currently active subjects

Return type subjects (list)

load_pilotdb(file_name=None, reverse=False)
Try to load the file_db

Parameters
• reverse
• file_name

Returns:

coerce_discrete(df, col, mapping={'L': 0, 'R': 1})
Coerce a discrete/string column of a pandas dataframe into numeric values

Default is to map ‘L’ to 0 and ‘R’ to 1 as in the case of Left/Right 2AFC tasks

Parameters
• df (pandas.DataFrame) – dataframe with the column to transform

• col (str) – name of column

• mapping (dict) – mapping of strings to numbers

Returns transformed dataframe

Return type df (pandas.DataFrame)

find_key_recursive(key, dictionary)
Find all instances of a key in a dictionary, recursively.

Parameters
• key
• dictionary

Returns list

find_key_value(dicts: List[dict], key: str, value: str, single=True)
Find an entry in a list of dictionaries where dict[key] == value.

Parameters
• dicts ()

20.1. Common Utils 339

https://docs.python.org/3/library/stdtypes.html#list
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Autopilot Documentation, Release 0.5.0a1

• key ()
• value ()
• single (bool) – if True (default), raise an exception if multiple results are matched

walk_dicts(adict, keys: Optional[List] = None)→ tuple
Recursively yield key/value pairs, returning keys as tuples corresponding to the recursive keys in the dict

Parameters adict (dict) – dict to walk over

Yields tuple of key value pairs

flatten_dict(nested: dict, keys=(), skip=())→ dict
Flatten a nested dictionary to a dictionary with tuples of the nested keys

Similar to walk_dicts(), excepts not a generator, and returns a flattened dictionary rather than a series of tuples.

Examples

nested_dict = {
'a': 1,
'b': {

'c': 2,
'd': {

'e': 3
},

'f': 4
}

}
flatten_dict(nested_dict)
{

('a',): 1,
('b', 'c'): 2,
('b', 'd', 'e'): 3,
('b', 'f'): 4

}

Parameters
• nested (dict) – A nested dictionary

• keys (tuple) – A tuple of keys used in the recursive function to create the returned key

• skip (tuple[str]) – Tuple of keys to skip flattening

Returns A flattened dictionary

Return type dict

class NumpyEncoder(*, skipkeys=False, ensure_ascii=True, check_circular=True, allow_nan=True,
sort_keys=False, indent=None, separators=None, default=None)

Bases: json.encoder.JSONEncoder

Allow json serialization of objects containing numpy arrays.

Use like json.dump(obj, fp, cls=NumpyEncoder)

Deserialize with NumpyDecoder

340 Chapter 20. Utils

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

Autopilot Documentation, Release 0.5.0a1

References

• https://stackoverflow.com/a/49677241/13113166

• https://github.com/mpld3/mpld3/issues/434#issuecomment-340255689

• https://gist.github.com/massgh/297a73f2dba017ffd28dbc34b9a40e90

Constructor for JSONEncoder, with sensible defaults.

If skipkeys is false, then it is a TypeError to attempt encoding of keys that are not str, int, float or None. If skipkeys
is True, such items are simply skipped.

If ensure_ascii is true, the output is guaranteed to be str objects with all incoming non-ASCII characters escaped.
If ensure_ascii is false, the output can contain non-ASCII characters.

If check_circular is true, then lists, dicts, and custom encoded objects will be checked for circular references
during encoding to prevent an infinite recursion (which would cause an OverflowError). Otherwise, no such
check takes place.

If allow_nan is true, then NaN, Infinity, and -Infinity will be encoded as such. This behavior is not JSON spec-
ification compliant, but is consistent with most JavaScript based encoders and decoders. Otherwise, it will be a
ValueError to encode such floats.

If sort_keys is true, then the output of dictionaries will be sorted by key; this is useful for regression tests to
ensure that JSON serializations can be compared on a day-to-day basis.

If indent is a non-negative integer, then JSON array elements and object members will be pretty-printed with
that indent level. An indent level of 0 will only insert newlines. None is the most compact representation.

If specified, separators should be an (item_separator, key_separator) tuple. The default is (’, ‘, ‘: ‘) if indent
is None and (‘,’, ‘: ‘) otherwise. To get the most compact JSON representation, you should specify (‘,’, ‘:’) to
eliminate whitespace.

If specified, default is a function that gets called for objects that can’t otherwise be serialized. It should return a
JSON encodable version of the object or raise a TypeError.

Methods:

default(obj) Implement this method in a subclass such that it re-
turns a serializable object for o, or calls the base im-
plementation (to raise a TypeError).

default(obj)
Implement this method in a subclass such that it returns a serializable object for o, or calls the base imple-
mentation (to raise a TypeError).

For example, to support arbitrary iterators, you could implement default like this:

def default(self, o):
try:

iterable = iter(o)
except TypeError:

pass
else:

return list(iterable)
Let the base class default method raise the TypeError
return JSONEncoder.default(self, o)

20.1. Common Utils 341

https://stackoverflow.com/a/49677241/13113166
https://github.com/mpld3/mpld3/issues/434#issuecomment-340255689
https://gist.github.com/massgh/297a73f2dba017ffd28dbc34b9a40e90

Autopilot Documentation, Release 0.5.0a1

class NumpyDecoder(*args, **kwargs)
Bases: json.decoder.JSONDecoder

Allow json deserialization of objects containing numpy arrays.

Use like json.load(fp, cls=NumpyDecoder)

Serialize with NumpyEncoder

References

• https://stackoverflow.com/a/49677241/13113166

• https://github.com/mpld3/mpld3/issues/434#issuecomment-340255689

• https://gist.github.com/massgh/297a73f2dba017ffd28dbc34b9a40e90

object_hook, if specified, will be called with the result of every JSON object decoded and its return value
will be used in place of the given dict. This can be used to provide custom deserializations (e.g. to support
JSON-RPC class hinting).

object_pairs_hook, if specified will be called with the result of every JSON object decoded with an ordered
list of pairs. The return value of object_pairs_hook will be used instead of the dict. This feature can be
used to implement custom decoders. If object_hook is also defined, the object_pairs_hook takes priority.

parse_float, if specified, will be called with the string of every JSON float to be decoded. By default this
is equivalent to float(num_str). This can be used to use another datatype or parser for JSON floats (e.g. deci-
mal.Decimal).

parse_int, if specified, will be called with the string of every JSON int to be decoded. By default this is
equivalent to int(num_str). This can be used to use another datatype or parser for JSON integers (e.g. float).

parse_constant, if specified, will be called with one of the following strings: -Infinity, Infinity, NaN. This can
be used to raise an exception if invalid JSON numbers are encountered.

If strict is false (true is the default), then control characters will be allowed inside strings. Control characters
in this context are those with character codes in the 0-31 range, including '\t' (tab), '\n', '\r' and '\0'.

Methods:

object_hook(obj)

object_hook(obj)

20.2 Decorators

Decorators for Autopilot classes

Add functionality to autopilot classes without entering into or depending on the inheritance hierarchy.

Classes:

Introspect() Decorator to be used around methods (particularly
__init__) to store arguments given on call.

342 Chapter 20. Utils

https://stackoverflow.com/a/49677241/13113166
https://github.com/mpld3/mpld3/issues/434#issuecomment-340255689
https://gist.github.com/massgh/297a73f2dba017ffd28dbc34b9a40e90

Autopilot Documentation, Release 0.5.0a1

class Introspect

Bases: object

Decorator to be used around methods (particularly __init__) to store arguments given on call.

Stores args and kwargs in self._introspect[wrapped_function.__name__] = {'kwarg_1': val_1,
'kwarg_2': val_2}

Note that this will unpack positional arguments into keyword arguments. If the topmost class is given positional
arguments, they will be stored in the special field 'args': [arg1,arg2,...]

Works by wrapping the method in such a way that self is preserved, and can patch into the existing MRO.

Note: This class was intended for use on __init__ methods and has not been tested on other methods. Though
they should work in theory, there may be unexpected behavior in introspecting across multiple frames, as the
check is for whether we are within the calling object’s calling hierarchy.

For example, given a Superclass and a Subclass (and a mock Introspect object) like this:

class Introspect:
def __call__(self, func) -> typing.Callable:

@wraps(func)
def wrapped_fn(wrapped_self, *args, **kwargs):

print('2. start of introspection')
ret = func(wrapped_self, *args, **kwargs)
print('4. end of introspection')
return ret

return wrapped_fn

class Superclass:

@Introspect()
def __init__(self, *args, **kwargs):

self.args = args
self.kwargs = kwargs
print(f"3. superclass function call")

class Subclass(Superclass):
def __init__(self, *args, **kwargs):

print('1. inheriting class, pre super call')
super(Subclass, self).__init__(*args, **kwargs)
print('5. inheriting class, post super call')

One would get the following output:

>>> instance = Subclass('a', 'b', 'c')
1. inheriting class, pre super call
2. start of introspection
3. superclass function call
4. end of introspection
5. inheriting class, post super call

To hoist the call back up into the (potentially multiple) subclass frames, we use inspect and iterate through
frames, grabbing their arguments, until we reach a frame that is no longer in our calling hierarchy.

20.2. Decorators 343

https://docs.python.org/3/library/functions.html#object

Autopilot Documentation, Release 0.5.0a1

20.3 Hydration

Functions to be able to make sending and recreating autopilot objects by sending compressed representations of their
instantiation.

Examples

>>> import autopilot
>>> from pprint import pprint

>>> Noise = autopilot.get('sound', 'Noise')
>>> a_noise = Noise(duration=1000, amplitude=0.01, fs=44100)

>>> dehydrated_noise = dehydrate(a_noise)
>>> pprint(dehydrated_noise)
{'class': 'autopilot.stim.sound.sounds.Noise',
'kwargs': {'amplitude': 0.01,

'channel': None,
'duration': 1000,
'fs': 44100}}

>>> b_noise = hydrate(dehydrated_noise)

>>> a_noise
<autopilot.stim.sound.sounds.Noise object at 0x12d76f400>
>>> b_noise
<autopilot.stim.sound.sounds.Noise object at 0x12d690310>

>>> a_noise._introspect['__init__']
{'fs': 44100, 'duration': 1000, 'amplitude': 0.01, 'channel': None}
>>> b_noise._introspect['__init__']
{'fs': 44100, 'duration': 1000, 'amplitude': 0.01, 'channel': None}

Functions:

dehydrate(obj) Get a dehydrated version of an object that has its
__init__ method wrapped with

hydrate(obj_dict) Rehydrate an object description from dehydrate()

dehydrate(obj)→ dict

Get a dehydrated version of an object that has its __init__ method wrapped with utils.decorators.
Introspect for sending across the wire/easier reinstantiation and provenance.

Parameters obj – The (instantiated) object to dehydrate

Returns
a dictionary that can be used with hydrate(), of the form:

344 Chapter 20. Utils

https://docs.python.org/3/library/stdtypes.html#dict

Autopilot Documentation, Release 0.5.0a1

{
'class': 'autopilot.submodule.Class',
'kwargs': {'kwarg_1': 'value1', ... }

}

Return type dict

hydrate(obj_dict: dict)
Rehydrate an object description from dehydrate()

20.4 GUI Invoker

Classes:

InvokeEvent(fn, *args, **kwargs) Sends signals to the main QT thread from spawned mes-
sage threads

Invoker Wrapper that calls an evoked event made by
InvokeEvent

Functions:

get_invoker()

class InvokeEvent(fn, *args, **kwargs)
Bases: PySide2.QtCore.QEvent

Sends signals to the main QT thread from spawned message threads

See stackoverflow

Accepts a function, its args and kwargs and wraps them as a QtCore.QEvent

Attributes:

EVENT_TYPE

EVENT_TYPE = PySide2.QtCore.QEvent.Type(65533)

class Invoker

Bases: PySide2.QtCore.QObject

Wrapper that calls an evoked event made by InvokeEvent

Methods:

event(event)
Parameters event

Attributes:

20.4. GUI Invoker 345

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://stackoverflow.com/a/12127115

Autopilot Documentation, Release 0.5.0a1

staticMetaObject

event(event)

Parameters event
staticMetaObject = <PySide2.QtCore.QMetaObject object at 0x7f418f4a8640>

get_invoker()

20.5 loggers

Functions:

init_logger([instance, module_name, ...]) Initialize a logger

Exceptions:

ParseError Error parsing a logfile

Classes:

Log_Format(format, example[, conversions])

LogEntry Single entry in a log
Log Representation of a logfile in memory

Data:

LOG_FORMATS //github.com/r1chardj0n3s/parse>`_
MESSAGE_FORMATS Additional parsing patterns for logged messages

init_logger(instance=None, module_name=None, class_name=None, object_name=None)→ logging.Logger
Initialize a logger

Loggers are created such that. . .

• There is one logger per module (eg. all gpio objects will log to hardware.gpio)

• If the passed object has a name attribute, that name will be prefixed to its log messages in the file

• The loglevel for the file handler and the stdout is determined by prefs.get('LOGLEVEL'), and if none is
provided WARNING is used by default

• logs are rotated according to prefs.get('LOGSIZE') (in bytes) and prefs.get('LOGNUM') (number
of backups of prefs.get('LOGSIZE') to cycle through)

Logs are stored in prefs.get('LOGDIR'), and are formatted like:

"%(asctime)s - %(name)s - %(levelname)s : %(message)s"

346 Chapter 20. Utils

https://docs.python.org/3/library/logging.html#logging.Logger

Autopilot Documentation, Release 0.5.0a1

Loggers can be initialized either by passing an object to the first instance argument, or by specifying any of
module_name , class_name , or object_name (at least one must be specified) which are combined with periods
like module.class_name.object_name

Parameters
• instance – The object that we are creating a logger for! if None, at least one of module,
class_name, or object_name must be passed

• module_name (None, str) – If no instance passed, the module name to create a logger for

• class_name (None, str) – If no instance passed, the class name to create a logger for

• object_name (None, str) – If no instance passed, the object name/id to create a logger for

Returns logging.logger

exception ParseError

Bases: RuntimeError

Error parsing a logfile

class Log_Format(format: str, example: str, conversions: Union[Dict[str, Callable], NoneType] = None)
Bases: object

Attributes:

format A format string parseable by parse
example An example string (that allows for testing)
conversions A dictionary matching keys in the format string to

callables for post-parsing coercion

Methods:

parse(log_entry)

format: str

A format string parseable by parse

example: str

An example string (that allows for testing)

conversions: Optional[Dict[str, Callable]] = None

A dictionary matching keys in the format string to callables for post-parsing coercion

parse(log_entry: str)→ dict

LOG_FORMATS = (Log_Format(format='{timestamp:Timestamp} - {name} - {level} :
{message}', example="2022-03-07 16:56:48,954 - networking.node.Net_Node._T - DEBUG :
RECEIVED: ID: _testpi_9879; TO: T; SENDER: _testpi; KEY: DATA; FLAGS: {'NOREPEAT': True};
VALUE: {'trial_num': 1197, 'timestamp': '2022-03-01T23:52:16.995387', 'frequency':
45255.0, 'amplitude': 0.1, 'ramp': 5.0, 'pilot': 'testpi', 'subject': '0895'}",
conversions={'Timestamp': <function _convert_asc_timestamp at 0x7f41afa0ea60>}),
Log_Format(format='[{timestamp:Timestamp}] {level} [{name}]: {message}',
example='[2022-03-09 16:13:43,224] INFO [networking.node]: parent, module-level logger
created: networking.node', conversions={'Timestamp': <function _convert_asc_timestamp
at 0x7f41afa0ea60>}))

20.5. loggers 347

https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

Autopilot Documentation, Release 0.5.0a1

//github.com/r1chardj0n3s/parse>`_

Type Possible formats of logging messages (to allow change over versions) as a `parse string <https

MESSAGE_FORMATS = { 'node_msg_recv': '{action}: ID: {message_id}; TO: {to}; SENDER:
{sender}; ' 'KEY: {key}; FLAGS: {flags}; VALUE: {value}', 'node_msg_sent': '{action} -
ID: {message_id}; TO: {to}; SENDER: {sender}; ' 'KEY: {key}; FLAGS: {flags}; VALUE:
{value}'}

Additional parsing patterns for logged messages

• node_msg: Logging messages from networking.node.Net_Node

pydantic model LogEntry

Bases: autopilot.root.Autopilot_Type

Single entry in a log

{
"title": "LogEntry",
"description": "Single entry in a log",
"type": "object",
"properties": {
"timestamp": {
"title": "Timestamp",
"type": "string",
"format": "date-time"

},
"name": {
"title": "Name",
"type": "string"

},
"level": {
"title": "Level",
"enum": [

"DEBUG",
"INFO",
"WARNING",
"ERROR"

],
"type": "string"

},
"message": {
"title": "Message",
"anyOf": [

{
"type": "string"

},
{
"type": "object"

}
]

}
},
"required": [

(continues on next page)

348 Chapter 20. Utils

Autopilot Documentation, Release 0.5.0a1

(continued from previous page)

"timestamp",
"name",
"level",
"message"

]
}

Fields
• level (Literal['DEBUG', 'INFO', 'WARNING', 'ERROR'])

• message (Union[str, dict])

• name (str)

• timestamp (datetime.datetime)

field timestamp: datetime.datetime [Required]

field name: str [Required]

field level: Literal['DEBUG', 'INFO', 'WARNING', 'ERROR'] [Required]

field message: Union[str, dict] [Required]

parse_message(format: List[str])
Parse the message using a format string specified as a key in the MESSAGE_FORMATS dictionary (or a format
string itself)

replaces the message attribute.

If parsing unsuccessful, no exception is raised because there are often messages that are not parseable in
the logs!

Parameters format (typing.List[str]) – List of format strings to try!

Returns:

classmethod from_string(entry: str, parse_message: Optional[List[str]] = None)→
autopilot.utils.loggers.LogEntry

Create a LogEntry by parsing a string.

Try to parse using any of the possible .LOG_FORMATS, raising a ParseError if none are successful

Parameters
• entry (str) – single line of a logging file

• parse_message (Optional[str]) – Parse messages with the MESSAGE_FORMATS key or for-
mat string

Returns LogEntry
Raises .ParseError –

pydantic model Log

Bases: autopilot.root.Autopilot_Type

Representation of a logfile in memory

20.5. loggers 349

https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str

Autopilot Documentation, Release 0.5.0a1

{
"title": "Log",
"description": "Representation of a logfile in memory",
"type": "object",
"properties": {
"entries": {
"title": "Entries",
"type": "array",
"items": {
"$ref": "#/definitions/LogEntry"

}
}

},
"required": [

"entries"
],
"definitions": {
"LogEntry": {
"title": "LogEntry",
"description": "Single entry in a log",
"type": "object",
"properties": {
"timestamp": {
"title": "Timestamp",
"type": "string",
"format": "date-time"

},
"name": {
"title": "Name",
"type": "string"

},
"level": {
"title": "Level",
"enum": [

"DEBUG",
"INFO",
"WARNING",
"ERROR"

],
"type": "string"

},
"message": {
"title": "Message",
"anyOf": [

{
"type": "string"

},
{
"type": "object"

}
]

}
},

(continues on next page)

350 Chapter 20. Utils

Autopilot Documentation, Release 0.5.0a1

(continued from previous page)

"required": [
"timestamp",
"name",
"level",
"message"

]
}

}
}

Fields
• entries (List[autopilot.utils.loggers.LogEntry])

field entries: List[autopilot.utils.loggers.LogEntry] [Required]

classmethod from_logfile(file: Union[pathlib.Path, str], include_backups: bool = True,
parse_messages: Optional[List[str]] = None)

Load a logfile (and maybe its backups) from a logfile location

Parameters
• file (pathlib.Path, str) – If string, converted to Path. If relative (and relative file is not

found), then attempts to find relative to prefs.LOGDIR

• include_backups (bool) – if True (default), try and load all of the backup logfiles (that
have .1, .2, etc appended)

• parse_messages (Optional[str]) – Parse messages with the MESSAGE_FORMATS key or for-
mat string

Returns Log

20.6 Log Parsers

Utility functions to parse logging files, extracting data, separating by ID, etc.

See also autopilot.utils.loggers and the autopilot.utils.loggers.Log class

Classes:

Data_Extract(*args, **kwargs)

Functions:

extract_data(logfile[, include_backups, ...]) Extract data from networking logfiles.

class Data_Extract(*args, **kwargs)
Bases: dict

Attributes:

20.6. Log Parsers 351

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#dict

Autopilot Documentation, Release 0.5.0a1

header

data

header: dict

data: pandas.core.frame.DataFrame

extract_data(logfile: pathlib.Path, include_backups: bool = True, output_dir: Optional[pathlib.Path] = None)→
List[autopilot.utils.log_parsers.Data_Extract]

Extract data from networking logfiles.

Parameters
• logfile (pathlib.Path) – Logfile to parse

• include_backups (bool) – Include log backups (default True), eg. logfile.log.1,
logfile.log.2

• output_dir (Path) – If present, save output to directory as a .json file with header informa-
tion from the 'START' message, and a csv file with the trial data

Returns List of extracted data and headers

Return type List[Data_Extract]

20.7 Plugins

Utility functions for handling plugins, eg. importing, downloading, listing, confirming, etc.

Functions:

import_plugins([plugin_dir]) Import all plugins in the plugin (or supplied) directory.
unload_plugins() Un-import imported plugins (mostly for testing pur-

poses)
list_wiki_plugins() List plugins available on the wiki using utils.wiki.

ask()

import_plugins(plugin_dir: Optional[pathlib.Path] = None)→ dict
Import all plugins in the plugin (or supplied) directory.

There is no specific form for a plugin at the moment, so this function will recursively import all modules and
packages within the directory.

Plugins can then be accessed by the get() registry functions.

Parameters plugin_dir (None, pathlib.Path) – Directory to import. if None (default), use
prefs.get('PLUGINDIR').

Returns of imported objects with form {“class_name”: class_object}

Return type dict

unload_plugins()

Un-import imported plugins (mostly for testing purposes)

352 Chapter 20. Utils

https://docs.python.org/3/library/stdtypes.html#dict
https://pandas.pydata.org/pandas\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \defaulthyphenchar }{}{} docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#dict

Autopilot Documentation, Release 0.5.0a1

list_wiki_plugins()

List plugins available on the wiki using utils.wiki.ask()

Returns {‘plugin_name’: {‘plugin_prop’:’prop_value’,. . . }

Return type dict

20.8 Registry

Registry for programmatic access to autopilot classes and plugins

When possible, rather than importing and using an object directly, access it using the get methods in this module. This
makes it possible for plugins to be integrated across the system.

Classes:

REGISTRIES(value) Types of registries that are currently supported, ie.

Functions:

get(base_class[, class_name, plugins, ast, ...]) Get an autopilot object.
get_names(base_class[, class_name, plugins, ...]) get() but return a list of object names instead of the

objects themselves
get_hardware([class_name, plugins, ast]) Get a hardware class by name.
get_task([class_name, plugins, ast]) Get a task class by name.

class REGISTRIES(value)
Bases: str, enum.Enum

Types of registries that are currently supported, ie. the possible values of the first argument of registry.get()

Values are the names of the autopilot classes that are searched for inheriting classes, eg. HARDWARE ==
"autopilot.hardware.Hardware" for autopilot.Hardware

Attributes:

HARDWARE

TASK

GRADUATION

TRANSFORM

CHILDREN

SOUND

HARDWARE = 'autopilot.hardware.Hardware'

TASK = 'autopilot.tasks.Task'

20.8. Registry 353

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/enum.html#enum.Enum

Autopilot Documentation, Release 0.5.0a1

GRADUATION = 'autopilot.tasks.graduation.Graduation'

TRANSFORM = 'autopilot.transform.transforms.Transform'

CHILDREN = 'autopilot.tasks.children.Child'

SOUND = 'autopilot.stim.sound.sounds.BASE_CLASS'

get(base_class: Union[autopilot.utils.registry.REGISTRIES, str, type], class_name: Optional[str] = None, plugins:
bool = True, ast: bool = True, include_base: bool = False)→ Union[type, List[type]]
Get an autopilot object.

Parameters
base_class (REGISTRIES , str, type) – Class to search its subclasses for the indicated object. One of the values in the REGISTRIES enum,

or else one of its keys (eg. 'HARDWARE'). If given a full module.ClassName string (eg.
"autopilot.tasks.Task") attempt to get the indicated object. If given an object, use
that.

class_name (str, None): Name of class that inherits from base_class that is to be returned.
if None (default), return all found subclasses of base_class

plugins (bool): If True (default), ensure contents of PLUGINDIR are loaded (with import_plugins())
and are included in results. If False, plugins are not explicitly imported, but if any have
been imported elsewhere, they will be included anyway because we can’t control all the
different ways to subclass in Python.

ast (bool): If True (default), if an imported object isn’t found that matches class_name,
parse the syntax trees of submodules of base_class with utils.common.
list_classes() without importing to try and find it. If a match is found, it is
imported and checked whether or not it is indeed a subclass of the base_class. if False,
do not parse ast trees (will miss any modules that aren’t already imported).

include_base (bool): If False (default), remove the base_class before returning

Returns Either the requested items, or a list of all the relevant items

get_names(base_class: Union[autopilot.utils.registry.REGISTRIES, str, type], class_name: Optional[str] = None,
plugins: bool = True, ast: bool = True, full_name: bool = False)→ List[str]

get() but return a list of object names instead of the objects themselves

See get() for documentation of base arguments.

Note: While technically you can call this function with a class_name, by default [class_name] ==
get_names(base_class, class_name), but if full_name == False it could be used to get the fully qual-
ified package.module name in a pretty roundabout way.

Parameters full_name (bool) – if False (default), return just the class name. if True, return the
full package.subpackage.module.Class_Name name.

Returns a list of names

Return type List[str]

get_hardware(class_name: Optional[str] = None, plugins: bool = True, ast: bool = True)→
Union[Type[Hardware], List[Type[Hardware]]]

Get a hardware class by name.

Alias for registry.get()

354 Chapter 20. Utils

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Type

Autopilot Documentation, Release 0.5.0a1

Parameters
• class_name (str) – Name of hardware class to get

• plugins (bool) – If True (default) ensure plugins are loaded and return from them. see
registry.get() for more details about the behavior of this argument

• ast (bool) – If True (default) parse the syntax tree of all modules within hardware. see
registry.get() for more details about the behavior of this argument

Returns Hardware
get_task(class_name: Optional[str] = None, plugins: bool = True, ast: bool = True)→ Union[Type[Task],

List[Type[Task]]]
Get a task class by name.

Alias for registry.get()

Parameters
• class_name (str) – Name of task class to get

• plugins (bool) – If True (default) ensure plugins are loaded and return from them. see
registry.get() for more details about the behavior of this argument

• ast (bool) – If True (default) parse the syntax tree of all modules within tasks. see
registry.get() for more details about the behavior of this argument

Returns Task

20.9 Requires

Stub module for specifying dependencies for Autopilot objects.

Draft for now, to be integrated in v0.5.0

Classes:

Requirement(name, version) Base class for different kinds of requirements
Git_Spec(url[, branch, commit, tag]) Specify a git repository or its subcomponents: branch,

commit, or tag
Python_Package(name, version, package_name, ...)

ivar package_name If a package is named
differently in package repositories
than it is imported,

System_Library(name, version) System-level package
Requirements(requirements) Dataclass for a collection of requirements for a particular

object.

class Requirement(name: str, version: packaging.specifiers.SpecifierSet = <SpecifierSet('')>)
Bases: abc.ABC

Base class for different kinds of requirements

Attributes:

20.9. Requires 355

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/abc.html#abc.ABC

Autopilot Documentation, Release 0.5.0a1

name

version

met Check if a requirement is met

Methods:

resolve() Try and resolve a requirement by getting packages,
changing system settings, etc.

name: str

version: packaging.specifiers.SpecifierSet = <SpecifierSet('')>

abstract property met: bool

Check if a requirement is met

Returns True if met, False otherwise

Return type bool

abstract resolve()→ bool
Try and resolve a requirement by getting packages, changing system settings, etc.

Returns True if successful!

Return type bool

class Git_Spec(url: autopilot.utils.types.URL, branch: Optional[str] = None, commit: Optional[str] = None,
tag: Optional[str] = None)

Bases: object

Specify a git repository or its subcomponents: branch, commit, or tag

Attributes:

url

branch

commit

tag

url: autopilot.utils.types.URL

branch: Optional[str] = None

commit: Optional[str] = None

tag: Optional[str] = None

356 Chapter 20. Utils

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Autopilot Documentation, Release 0.5.0a1

class Python_Package(name: str, version: packaging.specifiers.SpecifierSet = <SpecifierSet('')>,
package_name: typing.Optional[str] = None, repository: autopilot.utils.types.URL =
'https://pypi.org/simple', git: typing.Optional[autopilot.utils.requires.Git_Spec] = None)

Bases: autopilot.utils.requires.Requirement

Variables
• package_name (str) – If a package is named differently in package repositories than it is

imported, specify the package_name (default is package_name == name). The name will
be used to test whether the package can be imported, and package_name used to install from
the specified repository if not

• repository (URL) – The URL of a python package repository to use to install. Defaults to
pypi

• (class (git) – .Git_Spec): Specify a package comes from a particular git repository, com-
mit, or branch instead of from a package repository. If git is present, repository is ig-
nored.

Attributes:

package_name

repository

git

import_spec The importlib.machinery.ModuleSpec for
name , if present, otherwise False

package_version The version of the installed package, if found.
met Return True if python package is found in the

PYTHONPATH that satisfies the SpecifierSet

Methods:

resolve() We're not supposed to Returns:

package_name: Optional[str] = None

repository: autopilot.utils.types.URL = 'https://pypi.org/simple'

git: Optional[autopilot.utils.requires.Git_Spec] = None

property import_spec: Union[ModuleSpec, bool]

The importlib.machinery.ModuleSpec for name , if present, otherwise False

Returns importlib.machinery.ModuleSpec or False

property package_version: Union[str, bool]

The version of the installed package, if found. Uses package_name (name when installing, eg.
auto-pi-lot) which can differ from the name (eg. autopilot) of a package (used when importing)

Returns ‘x.x.x’ or False if not found

Return type str

20.9. Requires 357

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/importlib.html#importlib.machinery.ModuleSpec
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/importlib.html#importlib.machinery.ModuleSpec
https://docs.python.org/3/library/importlib.html#importlib.machinery.ModuleSpec
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Autopilot Documentation, Release 0.5.0a1

property met: bool

Return True if python package is found in the PYTHONPATH that satisfies the SpecifierSet

resolve()→ bool
We’re not supposed to Returns:

name: str

class System_Library(name: str, version: packaging.specifiers.SpecifierSet = <SpecifierSet('')>)
Bases: autopilot.utils.requires.Requirement

System-level package

Warning: not implemented

Attributes:

name: str

class Requirements(requirements: List[autopilot.utils.requires.Requirement])
Bases: object

Dataclass for a collection of requirements for a particular object. Each object should have at most one
Requirements object, which may have many sub-requirements

Variables requirements (list[Requirement]) – List of requirements. (a singular requirement
should have an identical API to requirements, the met and resolve methods)

Attributes:

requirements

met Checks if the specified requirements are met

Methods:

resolve()

__add__(other) Add requirement sets together

requirements: List[autopilot.utils.requires.Requirement]

property met: bool

Checks if the specified requirements are met

Returns True if requirements are met, False if not

Return type bool

resolve()→ bool

358 Chapter 20. Utils

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Autopilot Documentation, Release 0.5.0a1

__add__(other)
Add requirement sets together

Warning: Not Implemented

Parameters other ()

Returns:

20.10 Types

Basic types for a basic types of bbs

Classes:

URL(content)

class URL(content)
Bases: str

20.11 Wiki

Utility functions for dealing with the wiki (https://wiki.auto-pi-lot.com).

See the docstrings of the ask() function, as well as the guide_wiki_plugins section in the user guide for use.

Functions:

ask(filters[, properties]) Perform an API call to the wiki using the ask API and
simplify to a list of dictionaries

browse(search[, browse_type, params]) Use the browse api of the wiki to search for specific
pages, properties, and so on.

make_ask_string(filters[, properties, full_url]) Create a query string to request semantic information
from the Autopilot wiki

make_browse_string(search[, browse_type, ...])

ask(filters: Union[List[str], str], properties: Union[None, List[str], str] = None)→ List[dict]
Perform an API call to the wiki using the ask API and simplify to a list of dictionaries

Parameters
• filters (list, str) – A list of strings or a single string of semantic mediawiki formatted property

filters. See make_ask_string() for more information

• properties (None, list, str) – Properties to return from filtered pages, See
make_ask_string() for more information

Returns:

20.10. Types 359

https://docs.python.org/3/library/stdtypes.html#str
https://wiki.auto-pi-lot.com
https://www.semantic-mediawiki.org/wiki/Help:API:ask
https://www.semantic-mediawiki.org/wiki/Help:API:smwbrowse
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#dict
https://www.semantic-mediawiki.org/wiki/Help:API:ask

Autopilot Documentation, Release 0.5.0a1

browse(search: str, browse_type: str = 'page', params: Optional[dict] = None)
Use the browse api of the wiki to search for specific pages, properties, and so on.

Parameters
• search (str) – the search string! * can be used as a wildcard.

• browse_type (str) – The kind of browsing we’re doing, one of:

– page

– subject

– property

– pvalue

– category

– concept

• params (dict) – Additional params for the browse given as a dictionary, see the smw docs
for usage.

Returns dict, list of dicts of results

make_ask_string(filters: Union[List[str], str], properties: Union[None, List[str], str] = None, full_url: bool =
True)→ str

Create a query string to request semantic information from the Autopilot wiki

Parameters
• filters (list, str) – A list of strings or a single string of semantic medi-

awiki formatted property filters, eg "[[Category:Hardware]]" or "[[Has
Contributor::sneakers-the-rat]]". Refer to the semantic mediawiki documentation
for more information on syntax

• properties (None, list, str) – Properties to return from filtered pages, see the available proper-
ties on the wiki and the semantic mediawiki documentation for more information on syntax.
If None (default), just return the names of the pages

• full_url (bool) – If True (default), prepend f'{WIKI_URL}api.php?
action=ask&query=' to the returned string to make it ready for an API call

Returns the formatted query string

Return type str

make_browse_string(search, browse_type='page', params=None, full_url: bool = True)

360 Chapter 20. Utils

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#dict
https://www.semantic-mediawiki.org/wiki/Help:API:smwbrowse
https://www.semantic-mediawiki.org/wiki/Help:API:smwbrowse
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://www.semantic-mediawiki.org/wiki/Help:Selecting_pages
https://wiki.auto-pi-lot.com/index.php/Special:Properties
https://wiki.auto-pi-lot.com/index.php/Special:Properties
https://www.semantic-mediawiki.org/wiki/Help:Selecting_pages
https://www.semantic-mediawiki.org/wiki/Help:API:ask
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

CHAPTER

TWENTYONE

SETUP

After initial setup, configure autopilot: create an autopilot directory and a prefs.json file

Functions:

make_dir(adir[, permissions]) Make a directory if it doesn't exist and set its permissions
to 0777

make_alias(launch_script[, bash_profile]) Make an alias so that calling autopilot calls
autopilot_dir/launch_autopilot.sh

parse_manual_prefs(manual_prefs)

parse_args()

locate_user_dir(args)

run_form(prefs)

make_launch_script(prefs[, prefs_fn, ...])

make_systemd(prefs, launch_file)

results_string(env_results, config_msgs, ...)

make_ectopic_dirnames(basedir)

main()

make_dir(adir: pathlib.Path, permissions: int = 511)
Make a directory if it doesn’t exist and set its permissions to 0777

Parameters
• adir (str) – Path to the directory

• permissions (int) – an octal integer used to set directory permissions (default 0o777)

make_alias(launch_script: pathlib.Path, bash_profile: Optional[str] = None)→ Tuple[bool, str]
Make an alias so that calling autopilot calls autopilot_dir/launch_autopilot.sh

Parameters
• launch_script (str) – the path to the autopilot launch script to be aliased

361

https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Autopilot Documentation, Release 0.5.0a1

• bash_profile (str, None) – Optional, location of shell profile to edit. if None, use .bashrc
then .bash_profile if they exist

parse_manual_prefs(manual_prefs: List[str])→ dict

parse_args()

locate_user_dir(args)→ pathlib.Path

run_form(prefs: dict)→ Tuple[dict, List[str]]

make_launch_script(prefs: dict, prefs_fn=None, launch_file=None, permissions: int = 509)→ pathlib.Path

make_systemd(prefs: dict, launch_file: pathlib.Path)→ Tuple[bool, str]

results_string(env_results: dict, config_msgs: List[str], error_msgs: List[str], prefs_fn: str, prefs)→ str

make_ectopic_dirnames(basedir: pathlib.Path)→ dict

main()

21.1 scripts

Scripts used in run_script and setup_autopilot to install packages and configure the system environment

Scripts are contained in the scripts.SCRIPTS dictionary, and each script is of the form:

'script_name': {
'type': 'bool', # always bool, signals that gui elements should present it as a␣

→˓checkbox to run or not
'text': 'human readable description of what the script does',
'commands': [

'list of shell commands'
]

}

The commands in each commands list are concatenated with && and run sequentially (see run_script.
call_series()). Certain commands that are expected to fail but don’t impact the outcome of the rest of the script –
eg. making a directory that already exists – can be made optional by using the syntax:

[
'required command',
{'command':'optional command', 'optional': True}

]

This concatenates the command with a ``; `` which doesn’t raise an error if the command fails and allows the rest of
the script to proceed.

Note: The above syntax will be used in the future for additional parameterizations that need to be made to scripts (
though being optional is the only paramaterization avaialable now).

Note: An unadvertised feature of raspi-config is the ability to run commands frmo the cli – find the name
of a command here: https://github.com/RPi-Distro/raspi-config/blob/master/raspi-config and then use it like this:
sudo raspi-config nonint function_name argument , so for example to enable the camera one just calls sudo

362 Chapter 21. setup

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#dict
https://github.com/RPi-Distro/raspi-config/blob/master/raspi-config

Autopilot Documentation, Release 0.5.0a1

raspi-config nonint do_camera 0 (where turning the camera on, perhaps counterintuitively, is 0 which is true
for all commands)

Todo: Probably should have these use prefs.get('S')copes as well

Data:

SCRIPTS

21.1. scripts 363

Autopilot Documentation, Release 0.5.0a1

SCRIPTS = OrderedDict([('env_pilot', { 'commands': ['sudo apt-get update', 'sudo
apt-get install -y ' 'build-essential cmake git python3-dev ' 'libatlas-base-dev
libsamplerate0-dev ' 'libsndfile1-dev libreadline-dev ' 'libasound-dev i2c-tools '
'libportmidi-dev liblo-dev libhdf5-dev ' 'libzmq3-dev libffi-dev'], 'text': 'install
system packages necessary for ' 'autopilot Pilots? (required if they arent ' 'already)',
'type': 'bool'}), ('env_terminal', { 'commands': ['sudo apt-get update', 'sudo
apt-get install ' '-y ' 'libxcb-icccm4 ' 'libxcb-image0 ' 'libxcb-keysyms1 '
'libxcb-randr0 ' 'libxcb-render-util0 ' 'libxcb-xinerama0 ' 'libxcb-xfixes0'], 'text':
'install system packages necessary for ' 'autopilot Terminals? (required if they arent '
'already)', 'type': 'bool'}), ('performance', { 'commands': ['sudo systemctl disable
raspi-config', "sudo sed -i '/^exit 0/i echo " '"performance" | sudo tee '
"/sys/devices/system/cpu/cpu*/cpufreq/scaling_governor' " '/etc/rc.local', 'sudo sh -c
"echo @audio - memlock ' '256000 >> /etc/security/limits.conf"', 'sudo sh -c "echo @audio
- rtprio 75 ' '>> /etc/security/limits.conf"', 'sudo sh -c "echo vm.swappiness = 10 ' '>>
/etc/sysctl.conf"'], 'text': 'Do performance enhancements? (recommended, ' 'change cpu
governor and give more memory to ' 'audio)', 'type': 'bool'}), ('change_pw', {
'commands': ['passwd'], 'text': "If you haven't, you should change the default "
'raspberry pi password or you _will_ get your ' 'identity stolen. Change it now?',
'type': 'bool'}), ('set_locale', { 'commands': ['sudo dpkg-reconfigure locales',
'sudo dpkg-reconfigure ' 'keyboard-configuration'], 'text': 'Would you like to set your
locale?', 'type': 'bool'}), ('hifiberry', { 'commands': [{ 'command': 'sudo adduser
pi i2c', 'optional': True}, 'sudo sed -i ' "'s/^dtparam=audio=on/#dtparam=audio=on/g' "
'/boot/config.txt', 'sudo sed -i ' "'$s/$/\\ndtoverlay=hifiberry-dacplus\\
ndtoverlay=i2s-mmap\\ndtoverlay=i2c-mmap\\ndtparam=i2c1=on\\ndtparam=i2c_arm=on/' "
'/boot/config.txt', "echo -e 'pcm.!default {\\n type hw " 'card 0\\n}\\nctl.!default {\\n
type ' "hw card 0\\n}' | sudo tee " '/etc/asound.conf'], 'text': 'Setup Hifiberry
DAC/AMP?', 'type': 'bool'}), ('bluetooth', { 'commands': ["sudo sed - i '$s/$/\n"
"dtoverlay=pi3-disable-bt/' " '/boot/config.txt', 'sudo systemctl disable '
'hciuart.service', 'sudo systemctl disable ' 'bluealsa.service', 'sudo systemctl disable
' 'bluetooth.service'], 'text': "Disable Bluetooth? (recommended unless you're " 'using
it <3', 'type': 'bool'}), ('systemd', { 'text': 'Install Autopilot as a systemd
service?\n' 'If you are running this command in a virtual ' 'environment it will be used
to launch ' 'Autopilot', 'type': 'bool'}), ('alias', { 'text': 'Create an alias to
launch with "autopilot" ' '(must be run from setup_autopilot, calls ' 'make_alias)',
'type': 'bool'}), ('jackd_source', { 'commands': ['git clone '
'https://github.com/jackaudio/jack2 ' '--depth 1', 'cd jack2', './waf configure
--alsa=yes ' '--libdir=/usr/lib/arm-linux-gnueabihf/', './waf build -j6', 'sudo ./waf
install', 'sudo ldconfig', 'sudo sh -c "echo @audio - memlock ' '256000 >>
/etc/security/limits.conf"', 'sudo sh -c "echo @audio - rtprio 75 ' '>>
/etc/security/limits.conf"', 'cd ..', 'rm -rf ./jack2'], 'text': 'Install jack audio
from source, try this if ' 'youre having compatibility or runtime issues ' 'with jack
(required if AUDIOSERVER == jack)', 'type': 'bool'}), ('opencv', { 'commands': ['sudo
apt-get install -y ' 'build-essential cmake ccache unzip ' 'pkg-config libjpeg-dev
libpng-dev ' 'libtiff-dev libavcodec-dev ' 'libavformat-dev libswscale-dev ' 'libv4l-dev
libxvidcore-dev ' 'libx264-dev ffmpeg libgtk-3-dev ' 'libcanberra-gtk* libatlas-base-dev
' 'gfortran python2-dev python-numpy', 'git clone '
'https://github.com/opencv/opencv.git', 'git clone '
'https://github.com/opencv/opencv_contrib', 'cd opencv', 'mkdir build', 'cd build',
'cmake -D ' 'CMAKE_BUILD_TYPE=RELEASE ' '-D ' 'CMAKE_INSTALL_PREFIX=/usr/local ' '-D '
'OPENCV_EXTRA_MODULES_PATH=/home/pi/git/opencv_contrib/modules ' '-D BUILD_TESTS=OFF -D '
'BUILD_PERF_TESTS=OFF ' '-D BUILD_DOCS=OFF -D ' 'WITH_TBB=ON -D '
'CMAKE_CXX_FLAGS="-DTBB_USE_GCC_BUILTINS=1 ' '-D__TBB_64BIT_ATOMICS=0" ' '-D
WITH_OPENMP=ON -D ' 'WITH_IPP=OFF -D ' 'WITH_OPENCL=ON -D ' 'WITH_V4L=ON -D '
'WITH_LIBV4L=ON -D ' 'ENABLE_NEON=ON -D ' 'ENABLE_VFPV3=ON -D '
'PYTHON3_EXECUTABLE=/usr/bin/python3 ' '-D ' 'PYTHON_INCLUDE_DIR=/usr/include/python3.7 '
'-D ' 'PYTHON_INCLUDE_DIR2=/usr/include/arm-linux-gnueabihf/python3.7 ' '-D '
'OPENCV_ENABLE_NONFREE=ON ' '-D ' 'INSTALL_PYTHON_EXAMPLES=OFF ' '-D WITH_CAROTENE=ON '
'-D ' "CMAKE_SHARED_LINKER_FLAGS='-latomic' " '-D BUILD_EXAMPLES=OFF ..', 'sudo sed -i '
"'s/^CONF_SWAPSIZE=100/CONF_SWAPSIZE=2048/g' " '/etc/dphys-swapfile', 'sudo
/etc/init.d/dphys-swapfile stop', 'sudo /etc/init.d/dphys-swapfile start', 'make -j4',
'sudo --preserve-env=PATH make install', 'sudo ldconfig', 'sudo sed -i '
"'s/^CONF_SWAPSIZE=2048/CONF_SWAPSIZE=100/g' " '/etc/dphys-swapfile', 'sudo
/etc/init.d/dphys-swapfile stop', 'sudo /etc/init.d/dphys-swapfile ' 'start'], 'text':
'Install OpenCV from source, including ' 'performance enhancements for ARM processors '
'(takes awhile)', 'type': 'bool'}), ('performance_cameras', { 'commands': ["sudo sh
-c 'echo options uvcvideo " 'nodrop=1 timeout=10000 quirks=0x80 > '
"/etc/modprobe.d/uvcvideo.conf'", 'sudo rmmod uvcvideo', 'sudo modprobe uvcvideo', 'sudo
sed -i "/^exit 0/i sudo sh -c ' "'echo ${usbfs_size} > "
'/sys/module/usbcore/parameters/usbfs_memory_mb\'" ' '/etc/rc.local'], 'text': 'Do
performance enhancements for video - mods ' 'to uvcvideo and increasing usbfs', 'type':
'bool'}), ('picamera', { 'commands': ['sudo raspi-config nonint do_camera 0'], 'text':
'Enable PiCamera (with raspi-config)', 'type': 'bool'}), ('picamera_legacy', {
'commands': ['sudo raspi-config nonint do_legacy 0'], 'text': 'Enable Legacy Picamera
driver (for raspiOS ' 'Bullseye)', 'type': 'bool'}), ('pigpiod', { 'commands': ['wget
' 'https://github.com/sneakers-the-rat/pigpio/archive/master.zip', 'unzip master.zip',
'cd pigpio-master', 'make -j4', 'sudo --preserve-env=PATH make install', 'cd ..', 'sudo
rm -rf ./pigpio-master', 'sudo rm ./master.zip'], 'text': 'Install pigpio daemon
(sneakers fork that ' 'gives full timestamps and has greater ' 'capacity for scripts)',
'type': 'bool'}), ('i2c', { 'commands': ['sudo sed -i '
"'s/^#dtparam=i2c_arm=on/dtparam=i2c_arm=on/g' " '/boot/config.txt', "sudo sed -i
'$s/$/\n" "i2c_arm_baudrate=100000/' " '/boot/config.txt', "sudo sed -i '$s/$/\n"
"i2c-dev/' /etc/modules", 'sudo dtparam i2c_arm=on', 'sudo modprobe i2c-dev'], 'text':
'Enable i2c and set baudrate to 100kHz', 'type': 'bool'})])

364 Chapter 21. setup

Autopilot Documentation, Release 0.5.0a1

21.2 run_script

Run scripts to setup system dependencies and autopilot plugins

> # to list scripts
> python3 -m autopilot.setup.run_script --list

> # to execute one script (setup hifiberry soundcard)
> python3 -m autopilot.setup.run_script hifiberry

> # to execute multiple scripts
> python3 -m autopilot.setup.run_script hifiberry jackd

Functions:

call_series(commands[, series_name, verbose]) Call a series of commands, giving a single return code
on completion or failure

run_script(script_name) Thin wrapper around call_series() that gets a script
by name from scripts.SCRIPTS and passes the list of
commands

run_scripts(scripts[, return_all, print_status]) Run a series of scripts, printing results
list_scripts() Print a formatted list of names in scripts.SCRIPTS

call_series(commands: List[Union[str, dict]], series_name=None, verbose: bool = True)→ bool
Call a series of commands, giving a single return code on completion or failure

See setup.scripts for syntax of command list.

Parameters
• commands (list) – List of strings or dicts to call, see setup.scripts

• series_name (None, str) – If provided, print name of currently running script

• verbose (bool) – If True (default), print command and status messages.

Returns bool - True if completed successfully

run_script(script_name)
Thin wrapper around call_series() that gets a script by name from scripts.SCRIPTS and passes the list of
commands

Parameters script_name (str) – name of a script in scripts.SCRIPTS

run_scripts(scripts: List[str], return_all: bool = False, print_status: bool = True)→ Union[bool, Dict[str, bool]]
Run a series of scripts, printing results

Parameters
• scripts (list) – list of script names

• return_all (bool) – if True, return dict of {script:success} for each called script. If
False (default), return single bool if all commands were successful

• print_status (bool) – if True (default), print whether each script completed successfully or
not.

21.2. run_script 365

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

Autopilot Documentation, Release 0.5.0a1

Returns success or failure of scripts - True if all were successful, False otherwise.

Return type bool

list_scripts()

Print a formatted list of names in scripts.SCRIPTS

366 Chapter 21. setup

https://docs.python.org/3/library/functions.html#bool

CHAPTER

TWENTYTWO

PREFS

Module to hold module-global variables as preferences.

Upon import, prefs attempts to import a prefs.json file from the default location (see prefs.init()).

Prefs are then accessed with prefs.get() and prefs.set() functions. After initialization, if a pref if set, it is
stored in the prefs.json file – prefs are semi-durable and persist across sessions.

When attempting to get a pref that is not set, prefs.get() will first try to find a default value (set in _PREFS , and if
none is found return None – accordingly no prefs should be intentionally set to None, as it signifies that the pref is not
set.

Prefs are thread- and process-safe, as they are stored and served by a multiprocessing.Manager object.

prefs.json is typically generated by running autopilot.setup.setup_autopilot , though you can freestyle it
if you are so daring.

The ``HARDWARE`` pref is a little special. It specifies how each of the hardware components connected to the
system is configured. It is a dictionary with this general structure:

'HARDWARE': {
'GROUP': {

'ID': {
'hardware_arg': 'val'

}
}

}

where there are user-named 'GROUPS' of hardware objects, like 'LEDS' , etc. Within a group, each object has its
'ID' (passed as the name argument to the hardware initialization method) which allows it to be identified from the
other components in the group. The intention of this structure is to allow multiple categories of hardware objects to
be parameterized and used separately, even though they might be the same object type. Eg. we may have three LEDs
in our nosepokes, but also have an LED that serves at the arena light. If we wanted to write a command that turns off
all LEDs, we would have to explicitly specify their IDs, making it difficult to re-use very common hardware command
patterns within tasks. There are obvious drawbacks to this scheme – clunky, ambiguous, etc. and will be deprecated as
parameterization continues to congeal across the library.

The class that each element is used with is determined by the Task.HARDWARE dictionary. Specifically, the Task.
init_hardware() method does something like:

self.hardware['GROUP']['ID'] = self.HARDWARE['GROUP']['ID'](**prefs.get('HARDWARE')[
→˓'GROUP']['ID'])

367

Autopilot Documentation, Release 0.5.0a1

Warning: These are not hard coded prefs. _DEFAULTS populates the default values for prefs, but local prefs are
always restored from and saved to prefs.json . If you’re editing this file and things aren’t changing, you’re in the
wrong place!

This iteration of prefs with respect to work done on the People’s Ventilator Project

If a pref has a string for a 'deprecation' field in prefs._DEFAULTS , a FutureWarning will be raised with the
string given as the message

Classes:

Scopes(value) Enum that lists available scopes and groups for prefs
Common_Prefs Prefs common to all autopilot agents
Directory_Prefs Directories and paths that define the contents of the user

directory.
Agent_Prefs Abstract prefs class for prefs that are specific to agents
Terminal_Prefs Prefs for the Terminal
Pilot_Prefs Prefs for the Pilot
Audio_Prefs Prefs to configure the audio server
Hardware_Pref Abstract class for hardware objects,

Functions:

get([key]) Get a pref!
set(key, val) Set a pref!
save_prefs([prefs_fn]) Dump prefs into the prefs_fn .json file
init([fn]) Initialize prefs on autopilot start.
add(param, value) Add a pref after init
git_version(repo_dir) Get the git hash of the current commit.
compute_calibration([path, calibration, ...])

Parameters
• path

clear() Mostly for use in testing, clear loaded prefs (without
deleting prefs.json)

class Scopes(value)
Bases: enum.Enum

Enum that lists available scopes and groups for prefs

Scope can be an agent type, common (for everyone), or specify some subgroup of prefs that should be presented
together (like directories)

COMMON = All Agents DIRECTORY = Prefs group for specifying directory structure TERMINAL = prefs
for Terminal Agents Pilot = Prefs for Pilot agents LINEAGE = prefs for networking lineage (until networking
becomes more elegant ;) AUDIO = Prefs for configuring the Jackd audio server

Attributes:

368 Chapter 22. prefs

https://www.peoplesvent.org/en/latest/pvp.common.prefs.html
https://docs.python.org/3/library/enum.html#enum.Enum

Autopilot Documentation, Release 0.5.0a1

COMMON All agents
TERMINAL Prefs specific to Terminal Agents
PILOT Prefs specific to Pilot Agents
DIRECTORY Directory structure
LINEAGE Prefs for coordinating network between pilots and

children
AUDIO Audio prefs...

COMMON = 1

All agents

TERMINAL = 2

Prefs specific to Terminal Agents

PILOT = 3

Prefs specific to Pilot Agents

DIRECTORY = 4

Directory structure

LINEAGE = 5

Prefs for coordinating network between pilots and children

AUDIO = 6

Audio prefs. . .

pydantic settings Common_Prefs

Bases: autopilot.root.Autopilot_Pref

Prefs common to all autopilot agents

{
"title": "Common_Prefs",
"description": "Prefs common to all autopilot agents",
"type": "object",
"properties": {},
"additionalProperties": false

}

Config
• alias_generator: function = <function no_underscore_all_caps at 0x7f41b50fa670>

• env_prefix: str = AUTOPILOT_

pydantic settings Directory_Prefs

Bases: autopilot.root.Autopilot_Pref

Directories and paths that define the contents of the user directory.

In general, all paths should be beneath the USER_DIR

{
"title": "Directory_Prefs",
"description": "Directories and paths that define the contents of the user␣

→˓directory.\n\nIn general, all paths should be beneath the `USER_DIR`",
(continues on next page)

369

Autopilot Documentation, Release 0.5.0a1

(continued from previous page)

"type": "object",
"properties": {},
"additionalProperties": false

}

Config
• env_prefix: str = AUTOPILOT_DIRECTORY_

pydantic settings Agent_Prefs

Bases: autopilot.root.Autopilot_Pref

Abstract prefs class for prefs that are specific to agents

{
"title": "Agent_Prefs",
"description": "Abstract prefs class for prefs that are specific to agents",
"type": "object",
"properties": {},
"additionalProperties": false

}

Config
• alias_generator: function = <function no_underscore_all_caps at 0x7f41b50fa670>

• env_prefix: str = AUTOPILOT_

pydantic settings Terminal_Prefs

Bases: autopilot.prefs.Agent_Prefs

Prefs for the Terminal

{
"title": "Terminal_Prefs",
"description": "Prefs for the :class:`~autopilot.agents.terminal.Terminal`",
"type": "object",
"properties": {},
"additionalProperties": false

}

Config
• env_prefix: str = AUTOPILOT_TERMINAL_

pydantic settings Pilot_Prefs

Bases: autopilot.prefs.Agent_Prefs

Prefs for the Pilot

{
"title": "Pilot_Prefs",
"description": "Prefs for the :class:`~autopilot.agents.pilot.Pilot`",
"type": "object",

(continues on next page)

370 Chapter 22. prefs

Autopilot Documentation, Release 0.5.0a1

(continued from previous page)

"properties": {},
"additionalProperties": false

}

Config
• env_prefix: str = AUTOPILOT_PILOT_

pydantic settings Audio_Prefs

Bases: autopilot.root.Autopilot_Pref

Prefs to configure the audio server

{
"title": "Audio_Prefs",
"description": "Prefs to configure the audio server",
"type": "object",
"properties": {},
"additionalProperties": false

}

Config
• alias_generator: function = <function no_underscore_all_caps at 0x7f41b50fa670>

• env_prefix: str = AUTOPILOT_

pydantic settings Hardware_Pref

Bases: autopilot.root.Autopilot_Pref

Abstract class for hardware objects,

{
"title": "Hardware_Pref",
"description": "Abstract class for hardware objects,",
"type": "object",
"properties": {},
"additionalProperties": false

}

Config
• alias_generator: function = <function no_underscore_all_caps at 0x7f41b50fa670>

• env_prefix: str = AUTOPILOT_

get(key: Optional[str] = None)
Get a pref!

If a value for the given key can’t be found, prefs will attempt to

Parameters key (str, None) – get pref of specific key, if None, return all prefs

Returns value of pref (type variable!), or None if no pref of passed key

371

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str

Autopilot Documentation, Release 0.5.0a1

set(key: str, val)
Set a pref!

Note: Whenever a pref is set, the prefs file is automatically updated – prefs are system-durable!!

(specifically, whenever the module-level _INITIALIZED value is set to True, prefs are saved to file to avoid
overwriting before loading)

Parameters
• key (str) – Name of pref to set

• val – Value of pref to set (prefs are not type validated against default types)

save_prefs(prefs_fn: Optional[str] = None)
Dump prefs into the prefs_fn .json file

Parameters
• prefs_fn (str, None) – if provided, pathname to prefs.json otherwise resolve prefs.json

according the

• to the normal methods. . . .
init(fn=None)

Initialize prefs on autopilot start.

If passed dict of prefs or location of prefs.json, load and use that

Otherwise

• Look for the autopilot wayfinder ~/.autopilot file that tells us where the user directory is

• look in default location ~/autopilot/prefs.json

Todo: This function may be deprecated in the future – in its current form it serves to allow the sorta janky launch
methods in the headers/footers of autopilot/agents/pilot.py and autopilot/agents/terminal.py that will eventually
be transformed into a unified agent framework to make launching easier. Ideally one would be able to just import
prefs without having to explicitly initialize it, but we need to formalize the full launch process before we make
the full lurch to that model.

Parameters fn (str, dict) – a path to prefs.json or a dictionary of preferences

add(param, value)
Add a pref after init

Parameters
• param (str) – Allcaps parameter name

• value – Value of the pref

git_version(repo_dir)
Get the git hash of the current commit.

Stolen from numpy’s setup

and linked by ryanjdillon on SO

372 Chapter 22. prefs

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://github.com/numpy/numpy/blob/master/setup.py#L70-L92
https://stackoverflow.com/a/40170206

Autopilot Documentation, Release 0.5.0a1

Parameters repo_dir (str) – directory of the git repository.

Returns git commit hash.

Return type unicode

compute_calibration(path=None, calibration=None, do_return=False)

Parameters
• path
• calibration
• do_return

Returns:

clear()

Mostly for use in testing, clear loaded prefs (without deleting prefs.json)

(though you will probably overwrite prefs.json if you clear and then set another pref so don’t use this except in
testing probably)

373

Autopilot Documentation, Release 0.5.0a1

374 Chapter 22. prefs

CHAPTER

TWENTYTHREE

ROOT

Abstract Root Objects from which all other autopilot objects inherit from.

These objects are not intended to be instantiated on their own, and this module should not import from any other
autopilot module

Functions:

no_underscore_all_caps(input) prefs used to be 'ALLCAPS' instead of 'ALL_CAPS'.

Classes:

Autopilot_Type Root autopilot model for types
Autopilot_Pref Root autopilot model for prefs
Autopilot_Object([id]) Meta-object for autopilot object types

no_underscore_all_caps(input: str)→ str
prefs used to be 'ALLCAPS' instead of 'ALL_CAPS'. In general, these should be considered degenerate, and no
future prefs should be declared that depend on the presence of the underscore.

Used by Autopilot_Pref to generate Aliases

Parameters input (str) – input string

Returns without underscores and in allcaps.

Return type str

pydantic model Autopilot_Type

Bases: pydantic.main.BaseModel, abc.ABC

Root autopilot model for types

{
"title": "Autopilot_Type",
"description": "Root autopilot model for types",
"type": "object",
"properties": {}

}

pydantic settings Autopilot_Pref

Bases: pydantic.env_settings.BaseSettings

Root autopilot model for prefs

All settings can be declared with an environment variable prefixed with 'AUTOPILOT_'

375

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/abc.html#abc.ABC

Autopilot Documentation, Release 0.5.0a1

{
"title": "Autopilot_Pref",
"description": "Root autopilot model for prefs\n\nAll settings can be declared␣

→˓with an environment variable\nprefixed with ``'AUTOPILOT_'``",
"type": "object",
"properties": {},
"additionalProperties": false

}

Config
• alias_generator: function = <function no_underscore_all_caps at 0x7f41b50fa670>

• env_prefix: str = AUTOPILOT_

class Autopilot_Object(id: Optional[str] = None)
Bases: abc.ABC

Meta-object for autopilot object types

376 Chapter 23. Root

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/abc.html#abc.ABC

CHAPTER

TWENTYFOUR

EXTERNAL

Autopilot uses two lightly modified versions of existing libraries that are included in the repository as submodules.

• mlx90640-library - driver for the hardware.i2c.MLX90640 that correctly sets the baudrate for 64fps capture

• pigpio - pigpio that is capable of returning full timestamps rather than system ticks in gpio callbacks.

377

https://github.com/sneakers-the-rat/mlx90640-library/
https://github.com/sneakers-the-rat/pigpio

Autopilot Documentation, Release 0.5.0a1

378 Chapter 24. external

CHAPTER

TWENTYFIVE

CHANGELOG

For full details, see commit logs and issues at http://github.com/auto-pi-lot/autopilot

25.1 Version 0.5

25.1.1 v0.5.0a0 - ~The Data Modeling Edition~

A lot. Namely a whole rewriting of the autopilot.data module.

This is being released as an alpha version while we finish working out a few of the kinks in the data modeling system
because Jonny is finishing their dissertation and has a deadline determined by the viscera of institutional science rather
than software development!

Upgrading From <v0.5.0

• The subject class will attempt to update any of your existing .h5 files to the new format – it should be nonde-
structive (making a backup of the whole file first and then making backups up any tables that it can’t create a
new version of that fully preserves the data from the previous version), but don’t be alarmed when your subject
files start updating! We advise, as we always do, making a full backup of your data directory before making this
update.

• Change references in launch_autopilot.sh scripts from autopilot.core.terminal or autopilot.
core.pilot to autopilot.agents.terminal or autopilot.agents.pilot, respectively

• Update any TrialData declarations in plugin tasks to use the new Trial_Data model. See Nafc.TrialData
for an example. The old pytables IsDescriptor style descriptions will still work, but you will be given a warning
every time.

• We advise updating pigpio to at least 3c23715 to avoid warnings and make use of some new functionality.

Package Structure

• The autopilot.core module was removed entirely, and was split into

– autopilot.agent: which contains the Terminal and Pilot classes and a stub metaclass

– autopilot.utils.loggers: formerly autopilot.core.loggers

– autopilot.gui (described in module documentation) now has all the GUI modules, split out by type
rather than all in one file.

– autopilot.data was created from autopilot.core.subject, see below.

379

http://github.com/auto-pi-lot/autopilot
https://github.com/sneakers-the-rat/pigpio/commit/3c237159e5995ec58cd673579bdd66a8d819b269

Autopilot Documentation, Release 0.5.0a1

• autopilot.root contains root classes:

– Autopilot_Type - types and data models for handling and saving live data

– Autopilot_Object - General root metaclass, beneath which will be top-level metaclasses for each of the
major class hierarchies that are currently separate.

– Autopilot_Pref - Stub for later converting prefs and environmental configuration parameters from their
scattered state.

• autopilot.exceptions will be used for more explicit exception handling.

• Code files were given 755 permissions to allow execution (as opposed to 644)

• The unused git submodules for pigpio and an old temperature sensor were removed.

Major updates

• autopilot.data is the major change in this release! See the module-level doc page for more details

– autopilot.core.subject was moved to autopilot.data.subject and remains the main interface
to autopilot data. It was effectively rewritten to accomodate the use of data models, and many of its public
methods were made private to make its use more obvious.

∗ The subject structure that determines which things are located where has been made into its own class
Subject_Structure

∗ Making new subjects is now done with the Subject.new() class method rather than from the
__init__ method

∗ The open_hdf method has been replaced with the _h5f private method that is a more explicit context
manager allowing locking read/write access and nonlocking read access

∗ The subject file now explicitly handles updates between different versions of the Subject class.

∗ Subject will check if the protocol .json file has been updated from when it was assigned and auto-
matically update to the new version, logging the change.

∗ All trial data is now saved with a session_uuid unique identifier column that is an always-unique
key in case of any overlapping session IDs from reassignments, etc.

∗ Many attributes were replaced by properties that return data models:

· Subject.bio and Subject.info -> Biography

· Subject.protocol -> Protocol_Status, which manages the current trial, session, step, etc.
rather than being treated separately

– autopilot.data.interfaces contains classes to relate abstract data models to different representations
and formats

∗ interfaces.datajoint allows creating datajoint schema definitions from autopilot models using
the companion datajoint-babel project

∗ interfaces.tables translates pydantic models to HDF5 files

– autopilot.data.modeling has basic types for use in data models

– autopilot.data.models has the models themselves

– autopilot.data.units stub module for using explicit units instead of anonymous floats

• A new set of general model filling widgets - widgets.input and widgets.model - were created that will
eventually replace much of the existing GUI which suffers from code duplication problems from minor variations
between representations of parameters, etc.

380 Chapter 25. Changelog

https://github.com/auto-pi-lot/datajoint-babel

Autopilot Documentation, Release 0.5.0a1

• Log, Log_Format, LogEntry, ParseError, MESSAGE_FORMATS, LOG_FORMATS were added to allow program-
matic loading of logfiles, and utils.log_parsers was added to allow recovery of structured data (eg. from
logged trial data). Loggers now use the rich logging handler for much more readable logs in stderr.

• Jack_Sound classes now put all frames at once into the processing queue, rather than one at a time for much
less variability in sound onset jitter. The JackClient class was updated to reflect that as well by adding a
play_q_size argument that controls the size of the deque used to store frames to play (rather than pulling each
from a Queue as was done before). JackClient also has an optional disable_gc (False by default) parameter
that allows the garbage collector to be disabled in the process for further (unquantified) jitter reduction.

Minor updates

• The bandwidth test (Bandwidth_Test widget and Pilot.l_bandwidth() listen) was updated to allow select-
ing compression, use of a random array, or preserialized messages

• The Terminal now closes cleanly (still with a warning of leaked semaphors) without hanging.

• External processes external.start_pigpiod() and external.start_jackd() first check if the process is
already started

• Digital_Out.set() now has a result argument for faster setting that doesn’t confirm the result when False

• Message s now provide clearer support for compression in serialization, and automatically detect and handle a
compressed message when deserializing. This is also carried through to the Net_Node.send() method.

• Station.l_kill() was moved up to the top level Station class, rather than being something the Terminal
station owns.

• The run_script functions no longer uses the totally unreadable white on green ANSI code combo that I have
no idea why i ever used in the first place.

• A picamera_legacy script was added for enabling the picamera on bullseye.

• The sounds.Gammatone sound now accepts a filter_kwargs dictionary that is passed on to the timeseries.
Gammatone filter.

• The Task and Nafc classes use the new Trial_Data style data declarations.

• Two utility functions common.walk_dicts() and common.flatten_dicts() were added to make handling
nested dictionaries a bit easier.

•

Bugfixes

• The Subject class would incorrectly overwrite data given a mismatch in system times between the Terminal and
Pilot. The subject class should now ideally no longer overwrite anything ever.

• The subject class would drop trial data silently if it was not in the TrialData description. En route to making the
table automatically expand to accomodate unexpected data, dropped data is now logged as an exception.

• The prefs manager handles being launched from within ipython and other processes better, but is still a bit buggy.
Now it uses the check used internally in the multiprocessing module to see if a manager can be launched, and
falls back to using a standard dictionary if not.

• jackd_source script uses correct https:// rather than git:// protocol.

• A _TASK_LIST was added to utils.registry to support deprecated task specifications.

25.1. Version 0.5 381

https://rich.readthedocs.io/en/stable/logging.html

Autopilot Documentation, Release 0.5.0a1

Regressions

• With additional checking for monotonic increases in trial_num and checks that prevent data overwriting, indi-
vidual writes of trial data are now a bit slower, which should be optimized for when we complete the transition
to uniform data models throughout the library.

Prefs

• PIGPIOD - bool - if True, start pigpiod on pilot start

• Stubs were created for converting the prefs to using data models, but they have not been filled yet.

• A AUTOPILOT_NO_PREFS_MANAGER environment variable now controls the use of a multiprocessing manager
explicit. Documentation for environmental variables is forthcoming.

• A AUTOPILOT_WARN_DEFAULTS environment variable controls whether warnings should be printed for when a
default pref value is retrieved, because that warning is a good one but can be really annoying.

Packaging & Dependencies

• Autopilot is now packaged with Poetry! This allows for fully deterministic installation with the poetry.lock file
and updates from the old setuptools style of dependency specification.

• The source repository has moved from https://github.com/wehr-lab/autopilot to https://github.com/auto-pi-
lot/autopilot

• MANIFEST.in has been replaced by the include field in pyproject.toml

• autopilot.__version__ is now determined by importlib.metadata and specified in the pyproject.toml
file rather than in the __init__.py file

• blosc was replaced with blosc2

• New dependencies

– global

∗ pydantic (^1.9.0)

∗ parse (^1.19.0)

∗ rich (^11.2.0)

∗ validators (^0.18.2)

– docs

∗ autodoc_pydantic (^1.7.0)

∗ myst_parser (^0.17.2)

• Version Bumps

– pyzmq 18.1.* -> ^22.3.0

– tornado >=5.0.0 -> ^6.1.0

– numpy >=1.16.5 -> ^1.20.0

– scipy >=1.6.0 -> ^1.7.0

– pandas >=0.19.2 -> ^1.3.0 on python 3.7 and ^1.4.0 on >=3.8

– tables >=3.4.2 -> ^3.7.0

382 Chapter 25. Changelog

Autopilot Documentation, Release 0.5.0a1

– Sphinx >=3.1.2 -> ^4.3.1

– A lot more dependencies were taken from being implicit versions to explicit by the conversion to using
Poetry. . .

Docs

• Configuration was moved to its own page, documenting setting up the system as well as the contents of the user
directory.

• A faq page was stubbed out (but is still pretty skeletal)

• The overview was updated with some more information in the module tour

• Virtual environment usage was moved from the setup page to its own subpage linked from the FAQ.

• A make serve option was added to the docs makefile that makes use of sphinx-autobuild to livereload docs
while editing them.

• autopilot_theme.css was updated to be compatible with the new version of sphinx-rtd-theme that apparently
changed the way that TOC buttons were made, as well as remove incorrect references to fonts no longer packaged.

• The autodoc_pydantic and myst_parser extensions were added – and we will be moving towards using
MyST rather than hellish ReST for future narrative docs!

• Private methods and functions are now no longer rendered in the main documentation, and the library will over
time use the public/private distinction more systematically to make it more understandable.

• Examples was split off into its own folder and links to wiki plugins. Blink was moved with it

Tests

• We have started importing some of the pigpio mocking tools from the People’s Ventilator Project to start writing
GPIO tests!

25.2 Version 0.4

25.2.1 v0.4.4 - Timing and Sound (February 2nd, 2022)

Several parts to this update!

• See PR#146 for details about improvements to jackd sound timing! In short:

• Changed the way that continuous sounds work. Rather than cycling through an array, which was easy to drop,
now pass a sound object that can generate its own samples on the fly using the hydration module.

• More accurate timing of sound ending callbacks. Before, the event would be called immediately on buffering the
sounds into the jack ports, but that was systematically too early. Instead, use jack timing methods to account for
delay from blocksize and n_periods to wait_until a certain delay to set() the event. See _wait_for_end

Other stuff:

25.2. Version 0.4 383

https://pypi.org/project/sphinx-autobuild/
https://peoplesvent.org
https://github.com/auto-pi-lot/autopilot/pull/146

Autopilot Documentation, Release 0.5.0a1

New

• hydration module for creating and storing autopilot objects between processes and computers!

• @Introspect made and added to sound classes. Will be moved to root class. Allows storing the parameters
given on instantiation.

• requires module for more explicit declarations of by-object dependencies to resolve lots of the little fragile
checks throughout the package, as well as make it easier for plugins :)

• types module that will, well, have types for v0.5.0’s reworked type system!

• minor - added exceptions module, just stubs for now

• Made dummy sound class to just use sounds without needing a running sound server

• New transformations! The Prasad line fitting algorithm as Linefit_Prasad and ordering points in a line from,
eg. edge detection in ``Order_Points` `

Improvements

• Only warn once for returning a default pref value, and make its own warning class so that it can be filtered.

• Cleaning up the base sound classes and moved them to their own module because sounds was very cumbersome
and hard to reason about. Now use get_sound_class instead of declaring within the module.

• Made optional install packages as extras_require so now can install with pip install auto-pi-lot -E
pilot rather than autodetecting based on architecture. Further improvements (moving to poetry) will be in
v0.5.0

Bugfixes

• Correctly identify filenames in logging, before the last module name was treated as a suffix on the path and
removed, and so only the most recent logger created would actually log to disk. Logging now works across
threads and processes.

• Fall back to a non-multiprocessing-based prefs if for some reason we can’t use a mp.Manager in the given context
(eg. ipython) - Still need to figure out a way to not print the exception because it is thrown asynchronously.

• as much as i love it, the splash screen being absent for whatever reason shouldn’t crash the program.

• Raise an exception when instantiating a picamera without having picamera installed, re: https://github.com/
auto-pi-lot/autopilot/issues/142

• Raise ImportError when ffmpeg is not present and trying to use a videowriter class

• Use a deque rather than an infinitely growing list to store GPIO events.

Docs

• Documenting the scripts module a bit better.

• Lots more docs on jack_server

384 Chapter 25. Changelog

https://github.com/auto-pi-lot/autopilot/issues/142
https://github.com/auto-pi-lot/autopilot/issues/142

Autopilot Documentation, Release 0.5.0a1

25.2.2 v0.4.3 (October 20th, 2021)

New Features

• timeseries.Gammatone filter and sounds.Gammatone filtered noise classes! Thank you scipy team for mak-
ing this simple!

Minor Improvements

• 579ef1a - En route to implementing universal calibrations, load and save them in a specified place for each
hardware object instead of the horrific olde way which was built into prefs for some reason

• prefs attempts to make directories if they don’t exist

• plenty of new debugging flags!

Bugfixes

• a775723 - Sleep before graduating tasks, lateral fix until we rework the task initiation ritual

• 360062d - pad sounds with silence or continuous sounds if they aren’t a full period length

• 6614c80 - Revert to old way of making chunks to make it work with both padded and unpadded sounds

• Import sounds module directly instead of referring from the package root in tests

• Terminal node pings pilots instead of an erroneous reference to a nonexistent Terminal.send method

• 47dd4c2 - Fix pinging by passing pilot id, and handle pressing start/stop button when subject not selected

• Fixed some GUI exceptions from trying to make blank lines in reassign window, improperly handling the Subject
class.

25.2.3 v0.4.2 (August 24th)

Minor Improvements

• Transformer can now forward processed data and input data in addition to returning the processed data. A
lateral improvement until the streaming API is finished.

• Slice now accepts arbitrary indexing objects, rather than just slice objects. Not sure why this wasn’t the case
before.

Bugfixes

• Fixed a circular import problem that prevented the stim module from being imported because the placeholder
metaclass was in the __init__.py file. Moved it to its own file.

• Fixed another instantiated but not raised value error in gpio

25.2. Version 0.4 385

https://github.com/auto-pi-lot/autopilot/commit/579ef1a41518f57721decd7ecfc289f2b358b356
https://github.com/auto-pi-lot/autopilot/commit/a775723acc66e327492145066eea0e7dff59331e
https://github.com/auto-pi-lot/autopilot/commit/360062d3ad4cd30cdba1c53eebe5ff7d7698ffad
https://github.com/auto-pi-lot/autopilot/commit/6614c808ec2f3fc86e01df17b78aa976e8843b5a
https://github.com/auto-pi-lot/autopilot/commit/47dd4c2345df081fb5f3ca1c1705d2f696fc62c9

Autopilot Documentation, Release 0.5.0a1

Documentation

• Documenting flags in networking objects

• Documenting min_size in camera stream method

• Documenting invert_gyro in I2C_9DOF

25.2.4 v0.4.1 (August 17th)

Bugfixes

• The autopilot.setup.forms.HARDWARE_FORM would incorrectly use the class object itself rather than the
class name in a few places which caused hardware names to incorrectly display and be impossible to add!

• Correctly handle module name in loggers when running interactively

• Use accelerometer calibration when computing rotation()

• Use autopilot.get() in autopilot.transform.make_transform()

Docs

• Document the attributes in autopilot.transform.timeseries.Kalman

25.2.5 v0.4.0 - Become Multifarious (August 3rd, 2021)

This release is primarily to introduce the new plugin system, the autopilot wiki, and their integration as a way of starting
the transformation of Autopilot into a tool with decentralized development and governance (as well as make using the
tool a whole lot easier and more powerful).

With humble thanks to Lucas Ott, Tillie Morris, Chris Rodgers, Arne Meyer , Mikkel Roald-Arbøl , David Robbe , and
an anonymous discussion board poster for being part of this release.

New Features

• Registries & Plugins - Autopilot now supports users writing their code outside of the library as plugins! To
support this, a registry system was implemented throughout the program. Plugin objects can be developed as
objects that inherit from the Autopilot object tree – eg. implementing a GPIO object by subclassing hardware.
gpio.GPIO , or a new task by subclassing Task . This system is flexible enough to allow any lineage of objects
to be included as a plugin – stimuli, tasks, and so on – and we will be working to expand registries to every
object in Autopilot, including the ability for plugins to replace core modules to make Autopilot’s flexibility verge
on ludicrous. The basic syntax of the registry system is simple and doesn’t require any additional logic beyond
inheritance to be implemented on plugin objects – autopilot.get('object_type', 'object_name') is
the basic method, with a few aliases for specific object types like autopilot.get_hardware(). Also thanks
to Arne Meyer for submitting an early draft of the registry system and Mikkel Roald-Arbøl for raising the issue.

• At long last, the Autopilot Wiki is alive!!!! - https://wiki.auto-pi-lot.com/ - The wiki is the place for communal
preservation of technical knowledge about using Autopilot, like hardware designs, build guides, parameter sets,
and beyond! This isn’t any ordinary wiki, though, we got ourselves a semantic wiki which augments traditional
wikis with a rich system of human and computer-readable linked attributes: a particular type of page will have
some set of attributes, like a page about a 3D printed part will have an associated .stl file, but rather than having
these be in plaintext they are specified in a format that is queryable, extensible, and infinitely mutable. The vision
for the wiki is much grander (but not speculative! very concrete!) than just a place to take notes, but is intended

386 Chapter 25. Changelog

https://github.com/cxrodgers/
https://github.com/arnefmeyer
https://github.com/roaldarbol
https://github.com/neurodavidus
https://github.com/auto-pi-lot/autopilot/pull/109
https://github.com/arnefmeyer
https://github.com/roaldarbol
https://wiki.auto-pi-lot.com/

Autopilot Documentation, Release 0.5.0a1

to blend the use of Autopilot as an experimental tool with body of knowledge that supports it. Autopilot can
query the wiki with the wiki module like wiki.ask('[[Category:3D_CAD]]', 'Has STL') to get links to
all .stl files for all 3D parts on the wiki. The integration between the two makes using and submitting information
trivial, but also makes designing whole new types of community interfaces completely trivial. As a first pass, the
Wiki will be the place to index plugins, the system for submitting them, querying them, and downloading them
only took a few hours and few dozen lines of code to implement. The wiki is infinitely malleable – that’s the
point – and I am very excited to see how people use it.

• Tests & Continuous Integration with Travis! We are on the board with having nonzero tests! The travis page is
here: https://travis-ci.com/github/auto-pi-lot/autopilot and the coveralls page is here: https://coveralls.io/github/
auto-pi-lot/autopilot . At the moment we have a whopping 27% coverage, but as we build out our testing suite
we hope that it will become much easier for people to contribute to Autopilot and be confident that it works!

• New Hardware Objects
– cameras.PiCamera - A fast interface to the PiCamera, wrapping the picamera library, and using tips

from its developer to juice every bit of speed i could!

– The I2C_9DOF object was massively improved to take better advantage of its onboard DSP and expose
more of its i2c commands.

• New Transforms
– timeseries.Kalman - adapted a Kalman filter from the wonderful filterpy package! it’s in the new

timeseries transform module

– geometry.IMU_Orientation - IMU_Orientation performs a sensor fusion algorithm with the
Kalman Filter class to combine gyroscope and accelerometer measurements into a better estimate
of earth-centric roll and pitch. This is used by the IMU class, but is made independent so it can be
used without an Autopilot hardware object/post-facto/etc.

– timeseries.Filter_IIR - Filter_IIR implements scipy’s IIR filter as a transform object.

– timeseries.Integrate - Integrate adds successive numbers together (scaled by dt if requested).
not much by itself, but when used with a kalman filter very useful :)

– geometry.Rotate - use scipy to rotate a vector by some angle in x, y, and/or z

– geometry.Spheroid - fit and transform 3d coordinates according to some spheroid - used in the
IMU’s accelerometer calibration method: given some target spheroid, and some deformed spheroid
(eg. a miscalibrated accelerometer might have the x, y, or z axis scaled or offset) either explicitly set
or estimated from a series of point measurements, transform future input given that transformation to
correct for the deformed source spheroid.

• New Prefs
– 'AUTOPLUGIN' - Attempt to import the contents of the plugin directory,

– 'PLUGIN_DB' - filename to use for the .json plugin_db that keeps track of installed plugins’,

– 'PING_INTERVAL' - How many seconds should pilots wait in between pinging the Terminal?’,

– 'TERMINAL_SETTINGS_FN' - filename to store QSettings file for Terminal’,

– 'TERMINAL_WINSIZE_BEHAVIOR' - Strategy for resizing terminal window on opening’,

– 'TERMINAL_CUSTOM_SIZE' - Custom size for window, specified as [px from left, px from top, width,
height]’,

25.2. Version 0.4 387

https://travis-ci.com/github/auto-pi-lot/autopilot
https://coveralls.io/github/auto-pi-lot/autopilot
https://coveralls.io/github/auto-pi-lot/autopilot

Autopilot Documentation, Release 0.5.0a1

Major Improvements

• Stereo Sound (Thank you Chris Rodgers!) - https://github.com/auto-pi-lot/autopilot/pull/102

• Multihop messages & direct messaging - https://github.com/auto-pi-lot/autopilot/pull/99 - it is now possible to
send multihop messages through multiple Station objects, as well as easier to send messages directly between
net nodes. See the examples in the network tests section of the docs.

• Multiple Children (Thank you Chris Rodgers!) - https://github.com/auto-pi-lot/autopilot/pull/103 - the CHILDID
field now accepts a list, allowing a Pilot to initialize child tasks on multiple children. (this syntax and the hier-
archical nature of pilots and children will be deprecated as we refactor the networking modules into a general
mesh system, but this is lovely to have for now :)

• Programmatic Setup - https://github.com/auto-pi-lot/autopilot/issues/33 - noninteractive setup of prefs
and scripts by using autopilot.setup -f prefs.json -p PREFNAME=VALUE -s scriptname1 -s
scriptname2

• Widget to stream video, en route to more widgets for direct GUI control of hardware objects connected to pilots

• Support python 3.8 and 3.9 essentially by not insisting that the spinnaker SDK be installable by all users (which
at the time was only available for 3.7)

Minor Improvements

• Terminal can be opened maximized, or have its size and position set explicitly, preserve between launches (Thank
you Chris Rodgers!) - https://github.com/auto-pi-lot/autopilot/pull/70

• Pilots will periodically ping the Terminal again, Terminal can manually ping Pilots that may have gone silent -
https://github.com/auto-pi-lot/autopilot/pull/91

• Pilots share their prefs with the Terminal in their initial handshake - https://github.com/auto-pi-lot/autopilot/
pull/91

• Reintroduce router ports for net-nodes to allow them to bind a port to receive messages - https://github.com/
auto-pi-lot/autopilot/pull/115/commits/35be5d634d98a7983ec3d3d6c5b94da6965a2579

• Listen methods are now optional for net_nodes

• Allowed the creation of dataless tasks - https://github.com/auto-pi-lot/autopilot/pull/115/commits/
628e1fb9c8fcd15399b19b351fed87e4826bc9ab

• Allowed the creation of plotless tasks - https://github.com/auto-pi-lot/autopilot/pull/115/commits/
08d99d55a32b45f54e3853813c7c71ea230b25dc

• The I2C_9DOF clas uses memoryviews rather than buffers for a small performance boost - https://github.com/
auto-pi-lot/autopilot/pull/115/commits/890f2c500df8010b50d61f64e2755cd2c7a8aeed

• Phasing out using Queue s in favor of collections.deque for applications that only need thread and not
process safety because they are way faster and what we wanted in the first place anyway.

• New Scripts - i2c, picamera, env_terminal

• utils.NumpyEncoder and decoder to allow numpy arrays to be json serialized

• calibrations are now loaded by hardware objects themselves instead of the extraordinarily convoluted system in
prefs – though some zombie code still remains there.

• Net nodes know their ip now, but this is a lateral improvement pending a reworking of the networking modules.

• performance script now sets swappiness = 10 to discourage the use of swapfiles - see https://www.
raspberrypi.org/forums/viewtopic.php?t=198765

388 Chapter 25. Changelog

https://github.com/cxrodgers/
https://github.com/auto-pi-lot/autopilot/pull/102
https://github.com/auto-pi-lot/autopilot/pull/99
https://github.com/cxrodgers/
https://github.com/auto-pi-lot/autopilot/pull/103
https://github.com/auto-pi-lot/autopilot/issues/33
https://github.com/cxrodgers/
https://github.com/auto-pi-lot/autopilot/pull/70
https://github.com/auto-pi-lot/autopilot/pull/91
https://github.com/auto-pi-lot/autopilot/pull/91
https://github.com/auto-pi-lot/autopilot/pull/91
https://github.com/auto-pi-lot/autopilot/pull/115/commits/35be5d634d98a7983ec3d3d6c5b94da6965a2579
https://github.com/auto-pi-lot/autopilot/pull/115/commits/35be5d634d98a7983ec3d3d6c5b94da6965a2579
https://github.com/auto-pi-lot/autopilot/pull/115/commits/628e1fb9c8fcd15399b19b351fed87e4826bc9ab
https://github.com/auto-pi-lot/autopilot/pull/115/commits/628e1fb9c8fcd15399b19b351fed87e4826bc9ab
https://github.com/auto-pi-lot/autopilot/pull/115/commits/08d99d55a32b45f54e3853813c7c71ea230b25dc
https://github.com/auto-pi-lot/autopilot/pull/115/commits/08d99d55a32b45f54e3853813c7c71ea230b25dc
https://github.com/auto-pi-lot/autopilot/pull/115/commits/890f2c500df8010b50d61f64e2755cd2c7a8aeed
https://github.com/auto-pi-lot/autopilot/pull/115/commits/890f2c500df8010b50d61f64e2755cd2c7a8aeed
https://www.raspberrypi.org/forums/viewtopic.php?t=198765
https://www.raspberrypi.org/forums/viewtopic.php?t=198765

Autopilot Documentation, Release 0.5.0a1

• Setting a string in the deprecation field of a pref in _DEFAULTS prints it as a warning to start actually depre-
cating responsibly.

• Logging in more places like Subject creation, manipulation, protocol assignation.

Bugfixes

• Loggers would only work for the last object that was instantiated, which was really embarassing. fixed - https:
//github.com/auto-pi-lot/autopilot/pull/91

• Graduation criteria were calculated incorrectly when subjects were demoted in stages of a protocol - https://
github.com/auto-pi-lot/autopilot/pull/91

• fix durations in solenoid class (Thank you Chris Rodgers!) - https://github.com/auto-pi-lot/autopilot/pull/63

• LED_RGB ignores zero - https://github.com/auto-pi-lot/autopilot/pull/98

• Fix batch assignment window crashing when there are subjects that are unassigned to a task - https://github.com/
auto-pi-lot/autopilot/pull/115/commits/e42fc5802792822ff5a53a2379041a4a8b301e9e

• Catch malformed protocols in batch assignment widget - https://github.com/auto-pi-lot/autopilot/pull/115/
commits/2cc8508a4bf3a6d49512197dc72433c60d0c656e

• Remove broken Terminal.reset_ui method and made control panel better at adding/removing pilots - https:
//github.com/auto-pi-lot/autopilot/pull/91

• Subject class handles unexpected state a lot better (eg. no task assigned, no step assigned, tasks with no data.)
but is still an absolute travesty that needs to be refactored badly.

• The jackclient would crash with long-running continuous sounds as the thread feeding it samples eventually
hiccuped. Made more robust by having jackclient store samples locally int he sound server rather than being
continuously streamed from the queue.

• PySide2 references still incorrectly used QtGui rather than QtWidgets

• pigpio scripts would not be stopped and removed when a task was stopped, the gpio.clear_scripts() func-
tion now handles that.

• xcb was removed from PySide2 distributions, so it’s now listed in the requirements for the Terminal and made
available in the env_terminal script.

• LED_RGB didn’t appropriately raise a ValueErrorwhen called with a single pin - https://github.com/auto-pi-lot/
autopilot/issues/117

• A fistful of lingering Python 2 artifacts

Code Structure

• continuing to split out modules in autopilot.core - networking this time

• utils is now a separate module instead of being in multiple places

• the npyscreen forms in setup_autopilot were moved to a separate module

• setup_autopilotwas broken into functions instead of a very long and impenetrable script. still a bit of cleaning
to do there.

• autopilot.setup.setup_autopilot was always extremely awkward, so it’s now been aliased as
autopilot.setup

25.2. Version 0.4 389

https://github.com/auto-pi-lot/autopilot/pull/91
https://github.com/auto-pi-lot/autopilot/pull/91
https://github.com/auto-pi-lot/autopilot/pull/91
https://github.com/auto-pi-lot/autopilot/pull/91
https://github.com/cxrodgers/
https://github.com/auto-pi-lot/autopilot/pull/63
https://github.com/auto-pi-lot/autopilot/pull/98
https://github.com/auto-pi-lot/autopilot/pull/115/commits/e42fc5802792822ff5a53a2379041a4a8b301e9e
https://github.com/auto-pi-lot/autopilot/pull/115/commits/e42fc5802792822ff5a53a2379041a4a8b301e9e
https://github.com/auto-pi-lot/autopilot/pull/115/commits/2cc8508a4bf3a6d49512197dc72433c60d0c656e
https://github.com/auto-pi-lot/autopilot/pull/115/commits/2cc8508a4bf3a6d49512197dc72433c60d0c656e
https://github.com/auto-pi-lot/autopilot/pull/91
https://github.com/auto-pi-lot/autopilot/pull/91
https://github.com/auto-pi-lot/autopilot/issues/117
https://github.com/auto-pi-lot/autopilot/issues/117

Autopilot Documentation, Release 0.5.0a1

• the docs have now been split into subfolders rather than period separated names to make urls nicer – eg
/dev/hardware/cameras.htm rather than /dev/hardware.cameras.html . this should break some links when switch-
ing between versions on readthedocs but other than that be nondestructive.

Docs

• new Quickstart documentation with lots of quick examples!

Regressions

• Removed the check_compatible method in the Transforms class. We will want to make a call at some point
if we want to implement a full realtime pipelining framework or if we want to use something like luigi or joblib
or etc. for now this is an admission that type and shape checking was never really implemented but it does raise
some exceptions sometimes.

25.3 Version 0.3

25.3.1 v0.3.5 (February 22, 2021)

Bugfixes

• Very minor one, fixes to the way Terminal accesses the pilot_db.json file to use Terminal.pilots property
that makes a new pilot_db.json file if one doesn’t exist, but otherwise loads the one that is found in prefs.
get('PILOT_DB')

• Reorganized Terminal source to group properties together & minor additions of type hinting

• Fixed some bad fallback behavior looking for files in old hardcoded default directories, eg. in the ye olde utils.
get_pilotdb()

25.3.2 v0.3.4 (December 13, 2020)

Improvements

• Unify the creation of loggers!!!! See the docs ;) autopilot.core.loggers : https://github.
com/auto-pi-lot/autopilot/pull/52/commits/d55638f985ab38044fc95ffeff5945021c2e198e https://github.com/
auto-pi-lot/autopilot/issues/38

• Unify prefs, including sensible defaults, refactoring of scripts into a reasonable format, multiprocess-safety,
and just generally a big weight off my mind. Note that this is a breaking change to the way prefs
are accessed. Previously one would do prefs.PREF_NAME, but that made it very difficult to provide de-
fault values or handle missing prefs. the new syntax is prefs.get(‘PREF_NAME’) which returns defaults
with a warning and None if the pref is not set: https://github.com/auto-pi-lot/autopilot/pull/52/commits/
c40a212bcaf5f184f2a6a606027fe15b1b4df59c https://github.com/auto-pi-lot/autopilot/issues/38

• completely clean up scripts, and together that opened the path to clean up setup as well. so all things configuration
got a major promotion

• We’re on the board with CI and automated testing with a positively massive 3% code coverage!!! https://github.
com/auto-pi-lot/autopilot/pull/52/commits/743bb8fe67a69fcc556fa76e81f72f97f510dff7

• new scripts to eg. create autopilot alias: https://github.com/auto-pi-lot/autopilot/pull/52/commits/
211919b05922e18a85d8ef6216973f4000fd32c5

390 Chapter 25. Changelog

https://github.com/auto-pi-lot/autopilot/pull/52/commits/d55638f985ab38044fc95ffeff5945021c2e198e
https://github.com/auto-pi-lot/autopilot/pull/52/commits/d55638f985ab38044fc95ffeff5945021c2e198e
https://github.com/auto-pi-lot/autopilot/issues/38
https://github.com/auto-pi-lot/autopilot/issues/38
https://github.com/auto-pi-lot/autopilot/pull/52/commits/c40a212bcaf5f184f2a6a606027fe15b1b4df59c
https://github.com/auto-pi-lot/autopilot/pull/52/commits/c40a212bcaf5f184f2a6a606027fe15b1b4df59c
https://github.com/auto-pi-lot/autopilot/issues/38
https://github.com/auto-pi-lot/autopilot/pull/52/commits/743bb8fe67a69fcc556fa76e81f72f97f510dff7
https://github.com/auto-pi-lot/autopilot/pull/52/commits/743bb8fe67a69fcc556fa76e81f72f97f510dff7
https://github.com/auto-pi-lot/autopilot/pull/52/commits/211919b05922e18a85d8ef6216973f4000fd32c5
https://github.com/auto-pi-lot/autopilot/pull/52/commits/211919b05922e18a85d8ef6216973f4000fd32c5

Autopilot Documentation, Release 0.5.0a1

Bugfixes

• cleanup scripts on object deletion: https://github.com/auto-pi-lot/autopilot/pull/52/commits/
e8218304bd7ef2e13d2adfc236f3e781abea5f78 https://github.com/auto-pi-lot/autopilot/issues/41

• don’t drop ‘floats’ from gui when we say we can use them. . . : https://github.com/auto-pi-lot/autopilot/pull/52/
commits/743bb8fe67a69fcc556fa76e81f72f97f510dff7

• pigpio scripts dont like floats: https://github.com/auto-pi-lot/autopilot/pull/52/commits/
9f939cd78a5296db3bf318115bee0213bcd1afc0

Docs

• Clarification of supported systems: https://github.com/auto-pi-lot/autopilot/pull/52/commits/
ce0ddf78b7f59f5487fec2ca7e8fb3c0ad162051

• Solved an ancient sphinx riddle of how to get data objects/constants to pretty-print: https://github.com/
auto-pi-lot/autopilot/pull/52/commits/ec6d5a75dada05688b6bd3c1a53b3d9e5923870f

• Clarify hardware prefs https://github.com/auto-pi-lot/autopilot/pull/52/commits/
f3a7609995c84848004891a0f41c7847cb754aae

• what numbering system do we use: https://github.com/auto-pi-lot/autopilot/pull/52/commits/
64267249d7b1ec1040b522308cd60f928f2b2ee6

Logging

• catch pigpio script init exception: https://github.com/auto-pi-lot/autopilot/pull/52/commits/
3743f8abde7bbd3ed7766bdd75aee52afedf47e2

• more of it idk https://github.com/auto-pi-lot/autopilot/pull/52/commits/b682d088dbad0f206c3630543e96a5a00ceabe25

25.3.3 v0.3.3 (October 25, 2020)

Bugfixes

• Fix layout in batch reassign gui widget from python 3 float division

• Cleaner close by catching KeyboardInterrupt in networking modules

• Fixing audioserver boot options – if ‘AUDIOSERVER’ is set even if ‘AUDIO’ isn’t set in prefs, should still start
server. Not full fixed, need to make single plugin handler, single point of enabling/disabling optional services
like audio server

• Fix conflict between polarity and pull in initializing pulls in pilot

• Catch tables.HDF5ExtError if local .h5 file corrupt in pilot

• For some reason ‘fs’ wasn’t being replaced in the jackd string, reinstated.

• Fix comparison in LED_RGB that caused ‘0’ to turn on full becuse ‘value’ was being checked for its truth value
(0 is false) rather than checking if value is None.

• obj.next() to next(obj)` in jackdserver

25.3. Version 0.3 391

https://github.com/auto-pi-lot/autopilot/pull/52/commits/e8218304bd7ef2e13d2adfc236f3e781abea5f78
https://github.com/auto-pi-lot/autopilot/pull/52/commits/e8218304bd7ef2e13d2adfc236f3e781abea5f78
https://github.com/auto-pi-lot/autopilot/issues/41
https://github.com/auto-pi-lot/autopilot/pull/52/commits/743bb8fe67a69fcc556fa76e81f72f97f510dff7
https://github.com/auto-pi-lot/autopilot/pull/52/commits/743bb8fe67a69fcc556fa76e81f72f97f510dff7
https://github.com/auto-pi-lot/autopilot/pull/52/commits/9f939cd78a5296db3bf318115bee0213bcd1afc0
https://github.com/auto-pi-lot/autopilot/pull/52/commits/9f939cd78a5296db3bf318115bee0213bcd1afc0
https://github.com/auto-pi-lot/autopilot/pull/52/commits/ce0ddf78b7f59f5487fec2ca7e8fb3c0ad162051
https://github.com/auto-pi-lot/autopilot/pull/52/commits/ce0ddf78b7f59f5487fec2ca7e8fb3c0ad162051
https://github.com/auto-pi-lot/autopilot/pull/52/commits/ec6d5a75dada05688b6bd3c1a53b3d9e5923870f
https://github.com/auto-pi-lot/autopilot/pull/52/commits/ec6d5a75dada05688b6bd3c1a53b3d9e5923870f
https://github.com/auto-pi-lot/autopilot/pull/52/commits/f3a7609995c84848004891a0f41c7847cb754aae
https://github.com/auto-pi-lot/autopilot/pull/52/commits/f3a7609995c84848004891a0f41c7847cb754aae
https://github.com/auto-pi-lot/autopilot/pull/52/commits/64267249d7b1ec1040b522308cd60f928f2b2ee6
https://github.com/auto-pi-lot/autopilot/pull/52/commits/64267249d7b1ec1040b522308cd60f928f2b2ee6
https://github.com/auto-pi-lot/autopilot/pull/52/commits/3743f8abde7bbd3ed7766bdd75aee52afedf47e2
https://github.com/auto-pi-lot/autopilot/pull/52/commits/3743f8abde7bbd3ed7766bdd75aee52afedf47e2
https://github.com/auto-pi-lot/autopilot/pull/52/commits/b682d088dbad0f206c3630543e96a5a00ceabe25

Autopilot Documentation, Release 0.5.0a1

Improvements

• Better internal handling of pigpiod – you’re now able to import and use hardware modules without needing to
explicitly start pigpiod!!

• Hopefully better killing of processes on exit, though still should work into unified process manager so don’t need
to reimplement everything (eg. as is done with launching pigpiod and jackd)

• Environment scripts have been split out into setup/scripts.py and you can now run them with python -m
autopilot.setup.run_script (use --help to see how!)

• Informative error when setup is run with too narrow terminal: https://github.com/auto-pi-lot/autopilot/issues/23

• More loggers, but increased need to unify logger creation!!!

Cleanup

• remove unused imports in main __init__.py that made cyclical imports happen more frequently than necessary

• single-sourcing version number from __init__.py

• more cleanup of unnecessary meta and header stuff left from early days

• more debugging flags

• filter NaturalNameWarning from pytables

• quieter cleanups for hardware objects

25.3.4 v0.3.2 (September 28, 2020)

Bugfixes

• https://github.com/auto-pi-lot/autopilot/issues/19 - previously, I attempted to package binaries for the lightly
modified pigpio and for jackd (the apt binary used to not work), but after realizing that was the worst possible
way of going about it I changed install strategies, but didn’t entirely remove the vestiges of the prior attempt.
The installation expected certain directories to exist (in autopilot/external) that didn’t, which crashed and choked
install. Still need to formalize a configuration and plugin system, but getting there.

• https://github.com/auto-pi-lot/autopilot/issues/20 - the jackd binary in the apt repos for the raspi used to not
work, so i was in the habit of compiling jackd audio from source. I had build that into the install routine, but
something about that now causes the JACK-Client python interface to throw segfaults. Somewhere along the line
someone fixed the apt repo version of jackd so we use that now.

• previously I had only tested in a virtual environment, but now the installation routine properly handles not being
in a venv.

Cleanup

• remove bulky static files like fonts and css from /docs/ where they were never needed and god knows how they
got there

• use a forked sphinx-sass when building docs that doesn’t specify a required sphinx version (which breaks sphinx)

• removed skbuild requirements from install

• fixed pigpio install requirement in requirements_pilot.txt

• included various previously missed files in MANIFEST.in

392 Chapter 25. Changelog

https://github.com/auto-pi-lot/autopilot/issues/23
https://github.com/auto-pi-lot/autopilot/issues/19
https://github.com/auto-pi-lot/autopilot/issues/20

Autopilot Documentation, Release 0.5.0a1

• added installation of system libraries to the pilot configuration menu

25.3.5 v0.3.1 (August 4, 2020)

Practice version!!! still figuring out pypi

25.3.6 v0.3.0 (August 4, 2020)

Major Updates

• Python 3 - We’ve finally made it to Python 3! Specifically we have brought Autopilot up to compatibility with
Python 3.8 – though the Spinnaker SDK is currently only available through Python 3.7, so we have formally
required 3.7 for now while we work on moving acquisition to Aravis. I will not attempt to keep Autopilot com-
patible with Python 2, but no decision has been made about compatibility with other versions of Python 3. Until
then, expect that Autopilot will attempt to keep up with major version changes. The switch also let up update
PySide (Qt library used for the GUI) to PySide2, which uses Qt5 and has a whole raft of other improvements.

• Continuous Data Handling - The Subject class and networking modules have been improved to handle
continuous data (eg. streaming data, generally non-trialwise or non-event-sampled data). Continuous data can
be set in a Task description either with a tables column descriptor as trial data is, but also can be set as 'infer',
for which the Subject class will wait until it receives the first data and automatically create a tables column
depending on its type and shape. While previously we intended to nudge users to be explicit about declaring their
data, this was necessary to allow for data that might be variable in type and shape to be included in a Task – eg.
it should be possible to record video data without needing to specify the resolution or bit depth as a hardcoded
parameter in a task class. I have come to like type inference, and may make it a general practice for all types of
data. That would potentially allow tasks to be written without explicitly declaring the data that they produce at
all, but I haven’t decided if that’s a good thing or not yet.

• The GPIO engine has been rebuilt, relying more on pigpio’s function interface. This means that GPIO timing is
now ~microsecond precise, important for reward delivery, LED flashing, and a number of other basic infrastruc-
tural needs. The reorganization of hardware modules resulted in general GPIO , Digital_In and Digital_Out
metaclasses, making common operations like setting polarity, triggers, and pullup/down resistors much easier.

• Setup has been greatly improved. This includes proper packaging and installation with setuptools & sk-build,
allowing us to finally join PyPI :) https://pypi.org/project/auto-pi-lot/ . Setup has been unified into a single
npyscreen-based set of prompts that allow the user to run scripts to install libraries or configure their environment
(also see run_script() and list_scripts()), set prefs, configure hardware objects (based on some very
fun signature introspection), setup autopilot as a systemd service, etc. Getting started with Autopilot is now three
commands!:

pip install auto-pi-lot
autopilot.setup.setup_autopilot
~/autopilot/launch_autopilot.sh

25.3. Version 0.3 393

https://pypi.org/project/auto-pi-lot/

Autopilot Documentation, Release 0.5.0a1

Minor Updates

• Logging level is now set from prefs, so where before, eg. every message through the networking modules
would be logged to stdout, now only warnings and exceptions are. This gives a surprisingly large performance
boost.

– Logging has also been much improved in networking modules, where rather than an awkward
do_logging flag that was used to avoid logging performance-critical events like streaming data, logging
is controlled by log level throughout the system. By default, logging of most messages is set at debug level
so they don’t drown out important messages in the logs as they used to.

• Networking modules now only deserialize messages if they are the final recipient, saving lots of processing time
– particularly with streamed arrays. Message objects also only re-serialize messages if they have been changed.
Message structure has been changed such that serialized messages are now of the general format:

[sender,
(optional) intermediate_node_1, intermediate_node_2, ...
final_recipient,
message_contents]

• Configuration will continue to be a point of improvement, but a few minor updates were made:

– prefs.CONFIG will be used to signal multiple, potentially overlapping agent configurations, each of which
may have their own system dependencies, external daemons, etc. Eg. a Pilot could be configured to play
audio (which requires a jackd daemon to be started before Autopilot) and video (which requires Autopilot
to be started in a X session). Checks of prefs.CONFIG are now in rather than == to reflect that.

– prefs.PINS was renamed prefs.HARDWARE, and now allows hardware to be configured with dictionaries
rather than integers only. Initially PINS was meant to just contain pin numbering for GPIO objects, but
having a single point of hardware configuration is preferable. Task.init_hardware() now respects all
parameters set in prefs.

• Throughout the code, minimal get_this type methods have begun to be replaced with @property attributes.
This is because a) I love them and think they are magical, but b) will also be building Autopilot’s closed-
loop infrastructure around a Qt-style signal/slot architecture that wraps @property attributes so they can be
.connected to one another easily.

• Previously it was possible to control presentation by groups of stimuli, but now it is possible to control the
presentation frequency of individual stimuli.

• PySide2 has proper support for CSS Stylesheets, so the design of Autopilot’s GUI has been marginally improved,
a process that will continue in the ceaseless quest for aesthetic perfection.

• Several setup routines have been added to make installation of opencv, pyspin, etc. easier. I also wrote a routine
to download_box() files from a URL, which is mysteriously hard to do.

• The To-Do page now reflects the full ambition of Autopilot, where before this vision was contained only in the
whitepaper and a disorganized plaintext file in the repo.

• The Subject class can now export trial data to_csv(). A very minor update, but one that is the first in a number
of planned improvements to data export.

• I have also opened up a message board in google groups to make feature requests and discuss use and develop-
ment, hope to see you there :)

https://groups.google.com/forum/#!forum/autopilot-users

394 Chapter 25. Changelog

https://www.biorxiv.org/content/10.1101/807693v1
https://github.com/auto-pi-lot/autopilot/blob/master/notes/todo
https://groups.google.com/forum/#!forum/autopilot-users

Autopilot Documentation, Release 0.5.0a1

New Features

• TRANSFORMS have been introduced!!! Transform objects have a process() method that, well, transforms
data in some way. Multiple transforms can be added together to make a transformation chain. This module is
still very young and doesn’t have a developed API, but will be built to to automatic type compatibility checking,
coersion, parallelization, and rhythm (FIFO/FILO) control. Transforms are implemented with different modali-
ties (image, selection, logical) that imply different types of input and output data structures, but the hierarchical
structure of the modules is still quite flat.

– Autopilot is now integrated with DeepLabCut-live!!!! You can now use realtime pose tracking in your
experiments. See the dlclive_example

• HARDWARE has been substantially refactored to give objects an appropriate inheritance structure. This sub-
stantially reduces effort duplication across hardware objects and makes a bunch of obvious capabilities avail-
able to all of them, for example all hardware objects are now network (init_networking()) and logging
(init_logging()) capable.

– Cameras: The cameras.Camera_CV class allows webcams/other simple cameras to be accessed through
OpenCV, and the cameras.Camera_Spinnaker class allows FLIR and other cameras to be accessed
through the Spinnaker SDK. Cameras are capable of encoding videos locally (with x264), streaming frames
over the network, and making acquired frames available to other objects on the same computer. The
Camera_Spinnaker class provides simple @property setter/getter methods for common parameters, but
also makes all PySpin attributes available to the user with its get() and set() methods. The cameras.
Camera metaclass is written so that new camera types can be added by overriding a few methods. A new
Video_Child can be used to run a camera on a Child agent.

– 9DOF Motion Sensor: The i2c.I2C_9DOF class can use the LSM9DS1 sensor to collect accelerometer,
magnetometer, and gyroscopic data to compute unambiguous position and orientation information. We
will be including calibration and computation routines that make it easier to extract properties of interest –
eg. computing vertical motion by combining readings from the three sensors.

– Temperature Sensor: The i2c.MLX90640 class can use the MLX90640 sensor to measure temperature.
The sensor is 32x24px, which the class can interpolate(). The class also allows frames to be integrated
and averaged over time, substantially reducing noise. I modified the driver library to enable capture at the
full 64fps on the Raspberry Pi.

• NETWORKING modules can stream continuous data better in a few ways:

– Net_Node modules were given a get_stream() method that lets objects, well, stream data. Specifically,
they are given a queue.Queue to shovel data into, which is then picked up by a dedicated zmq.Socket in
its own thread, which handles batching, serialization, and load balancing. Streamed messages are batched
(ie. contain multiple messages), but behave like normal message when received – they are split and contain
an inner_key that is used to call the listen with each message (see l_stream()).

– networking objects also now compress arrays-in-transit with the superfast blosc compression library. This
increases their throughput dramatically, as many data streams in neuroscience are relatively low-entropy
(eg. the pixels in a video of a mostly-white arena are mostly unchanged frame-to-frame and are thus highly
compressible). See the Message._serialize_numpy() and Message._deserialize_numpy() meth-
ods.

• STIMULI - The JackClient can now play continuous sounds rather than discrete sounds. An example can be
found in the Nafc_Gap task, which plays continuous white noise. All sounds now have a play_continuous()
method, which continually dumps samples in a cycle into a queue for the JackClient. The continuous sound
will be interrupted if another sound has its Jack_Sound.play() method called, but the continuous sound will
resume seamlessly even if number of samples in the played sound aren’t a multiple of the jack buffer size. We
use this for gaps in noise (using the new Gap class), which we have confirmed are sample-accurate.

• UI & VIZ

25.3. Version 0.3 395

https://github.com/DeepLabCut/DeepLabCut-live/
https://github.com/auto-pi-lot/autopilot/blob/2to3/examples/example_transformation_dlc.ipynb
https://www.flir.com/products/spinnaker-sdk/
https://www.melexis.com/en/product/MLX90640/Far-Infrared-Thermal-Sensor-Array
https://docs.python.org/3/library/queue.html#queue.Queue
https://pyzmq.readthedocs.io/en/latest/api/zmq.html#zmq.Socket
http://python-blosc.blosc.org/

Autopilot Documentation, Release 0.5.0a1

– A Video window has been created to display streaming video. The Terminal_Networking.
l_continuous() method meters frames such that even if high-speed video is being acquired, frames
are only sent at a rate of prefs.DRAWFPS. The Video class uses the ImageItem_TimedUpdate object,
a slight modification of pyqtgraph.ImageItem, that calls its update method according to a PySide2.
QtCore.QTimer.

– A plots_menu menu has been added to the Terminal, and a GUI dialog (gui.Psychometric) has been
added to create simple psychometric curves with the viz.psychometric module, which uses altair. Plans
for developing visualization are described in To-Do.

– A general gui.pop_dialog() function simplifies displaying messages to the user using the Terminal UI.
This was an initial step towards improving status/error reporting from other agents, further detailed in To-
Do.

Bugfixes

• Some objects, particularly several gui objects, had the old mouse/mice terminology updated to subject/subjects.

• Net_Node objects were only implicitly destroyed by their release method which ends the threaded loop by
setting the closing event.

• Embarassingly, Pilot objects were not prevented from running multiple tasks at a time. This led to some
very confusing and hard-to-debug problems, as well as frequent conflicts over hardware access and resources.
Typically what would happen is the Terminal would send a START message to begin a task, and if it wouldn’t
received a message receipt quickly enough would resend it, resulting in two tasks being started – but this would
happen whenever two START messages were sent to a pilot. This was fixed with a simple check of Pilot.state
before a task is initialized. Similar bugs were fixed in Plot objects.

• The Subject class would sometimes fail to get and increment the trial session. This has been fixed by saving
the session number as an attribute in the info node.

• The Subject class would reset the session counter even when the same task was being reassigned (eg. if up-
dated), now it preserves session number if the protocol name is unchanged.

• The update_protocols()method didn’t report which subjects had their protocols updated, and so if there was
some exception when setting new protocols it happened silently, making it so a user would never know their task
was never updated. This was fixed with a noisier protocol update method for the Subject class and by displaying
a list of subjects that were updated after the method is called.

• Correction trials were being calculated incorrectly by the Stim_Manager, such that rather than only repeating a
stimulus if the subject got the previous trial incorrect, the stimulus was always repeated at least once.

Code Structure

• Modified versions of external libraries have been added as git submodules in autopilot/external.

• Requirements files have been split out to better differentiate between different agents and use-cases. eg. re-
quirements for Terminal agents are in requirements/requirements_terminal.txt, requirements for build
the docs are in requirements/requirements_docs.txt, etc. This is a temporary arrangement, as a future
design goal is restructuring setup routines so that they can flexibly install components as-needed (see To-Do)

• autopilot.core.hardware has been refactored into its own module, autopilot.hardware, and split by
device type, currently. . .

– autopilot.cameras

– autopilot.gpio - devices that use the GPIO pins for standard digital I/O logic

– autopilot.i2c - devices that use the GPIO pins for I2C

396 Chapter 25. Changelog

https://pyqtgraph.readthedocs.io/en/latest/graphicsItems/imageitem.html#pyqtgraph.ImageItem
https://altair-viz.github.io/

Autopilot Documentation, Release 0.5.0a1

– autopilot.usb

• The docs are hosted on readthedocs again, so the docs structure has been collapsed to a single folder without
built documentation

• The autopilot user directory is now ~/autopilot rather than /usr/autopilot, which was always a mistake
anyway. Autopilot creates a wayfinder ~/.autopilot file that is used to find the user directory if it’s set else-
where

External Libraries

• External libraries can now be built and packaged along with autopilot using cmake, see CMakeLists.txt. Still uh
having a little bit of trouble getting this to work, so code is in place to build and package the custom pigpio repo
and jack audio but this will likely need some more work.

• pigpio https://github.com/sneakers-the-rat/pigpio/

– Added the ability to return absolute timestamps rather than system ticks. pigpio typically returns 1 32-bit
integer of ticks since the daemon started, absolute timestamps are 64-bit, so the pigpio daemon and python
interface (pi) were given two new methods:

∗ synchronize gets several (default 5) sets of paired timestamps and ticks using get_sync_time. It then
computes an offset for translating ticks to timestamps

∗ ticks_to_timestamp converts ticks to timestamps based on the offset found with synchronize

∗ get_current_time sends two requests to the daemon to get the seconds and microseconds of the com-
plete timestamp and returns an isoformatted string

• mlx90640-library https://github.com/pimoroni/mlx90640-library

– Removed building examples by default which require additional dependencies

– When using the raspi I2C driver, the baudrate would never be set to 1MHz, which is necessary to achieve
full 64fps. This was fixed to use 1MHz by default.

Regressions

• Message confirmation (holding a message to resend if confirmation isn’t received) was causing a huge amount of
problems and needed to be rethought. There are in general very low rates (near-zero) of messages being dropped
without some larger bug causing them, so confirmation has been disabled for now.

• The same is true of heartbeat() - which polled for status of connected pilots. this will be repaired and restored,
as the terminal currently has a pretty bad idea of the status of what’s connected to it. this will be part of a broader
networking overhaul

25.4 Version 0.2

25.4.1 v0.2.0 (October 26, 2019)

Can’t change what just started existing!

Release version of autopilot consistent with explanation in https://www.biorxiv.org/content/10.1101/807693v1

Development Roadmap, Minor To-dos, and all future plans :)

25.4. Version 0.2 397

https://github.com/sneakers-the-rat/pigpio/
https://github.com/pimoroni/mlx90640-library
https://www.biorxiv.org/content/10.1101/807693v1

Autopilot Documentation, Release 0.5.0a1

398 Chapter 25. Changelog

CHAPTER

TWENTYSIX

TO-DO

26.1 Visions

The long view: design, ux, and major functionality projects roughly corresponding to minor semantic versions

26.1.1 Integrations

Make autopilot work with. . .

Open Ephys Integration

• write a C extension to the Rhythm API similar to that used by the OpenEphys Rhythm Node.

• Enable existing OE configuration files to be loaded and used to configure plugin, so ephys data can be collected
natively alongside behavioral data.

Multiphoton & High-performance Image Integration

• Integrate the Thorlabs multiphoton imaging SDK to allow 2p image acquisition during behavior

• Integrate the Aravis camera drivers to get away from the closed-source spinnaker SDK

Bonsai Integration

• Write source and sink modules so Bonsai pipelines can be used within Autopilot for image processing, acquisition
etc.

399

https://github.com/open-ephys/plugin-GUI/tree/master/Plugins/RhythmNode
https://bonsai-rx.org/

Autopilot Documentation, Release 0.5.0a1

26.1.2 Closed-Loop Behavior & Processing Pipelines

• design a signal/slot architecture like Qt so that hardware devices

and data streams can be connected with low latency. Ideally something like:

directly connecting acceleration in x direction
to an LED's brightness
accelerometer.acceleration.connect('x', LED.brightness)

process some video frame and use it to control task stage logic
camera.frame.transform(

DLC, **kwargs
).connect(

task.subject_position
)

• The pipelining framework should be concurrent, but shouldn’t rely on multiprocessing.Queue
s and the like for performance, as transferring data between processes requires it to be pick-
led/unpickled. Instead it should use shared memory, like multiprocessing.shared_memory
available in Python 3.8

• The pipelining framework should be evented, such that changes in the source parameter are automat-
ically pushed through the pipeline without polling. This could be done with a decorator around the
setter method for the sender,

• The pipelining framework need not be written from scratch, and could use one of Python’s existing
pipelining frameworks, like

– Joblib

– Luigi

– pyperator

– streamz (love the ux of this but doesn’t seem v mature)

• Agents
– The Agent infrastructure is still immature—the terminal, pilot, and child agents are written as independent

classes, rather than with a shared inheritance structure. The first step is to build a metaclass for autopilot
agents that includes the different prefs setups they need and their runtime requirements. Many of the further
improvements are discussed in the setup section

– Child agents need to be easier to spawn and configure, and child tasks lack any formalization at all.

• Parameters
– Autopilot has a lot of types of parameters, and at the moment they all have their own styles. This makes a

number of things difficult, but primarily it makes it hard to predict which style is needed at any particular
time. Instead Autopilot needs a generalized ``Param``eter class. It should be able to represent the human
readable name of that parameter, the parameter’s value, the expected data type, whether that parameter is
optional, and so on.

– The parameter class should also be recursive, so parameter sets are not treated distinctly from an individual
parameter – eg. a task needs a set of parameters, one of which is a list of hardware. one hardware object in
that list will have its own list of parameters, and so forth.

– The parameter class should operate in both directions – ie. it should be able to represent set parameters, as
well as be able to be used as a specifier of parameters that need to be set

400 Chapter 26. To-Do

https://docs.python.org/3/library/multiprocessing.html#multiprocessing.Queue
https://joblib.readthedocs.io/en/latest/
https://luigi.readthedocs.io/en/stable/index.html
https://github.com/baffelli/pyperator
https://streamz.readthedocs.io/en/latest/core.html

Autopilot Documentation, Release 0.5.0a1

– The parameter class should be cascading, where parameters apply to lower ‘levels’ of parameterization
unless specified otherwise. For example, one may want to set correction_trials on for all stimuli in a
task, but be able to turn them off for one stimulus in particular. To avoid needing to manually implement
layered logic for all objects, handlers should be able to assume that a parameter will be passed from parent
objects to their children.

– GUI elements should be automatically populating – some GUI elements are, like the protocol wizard is
capable of populating a list of parameters from a task description, but it is incapable of choosing different
types of stimulus managers, reading all their parameters, and so on. Instead it should be possible to de-
scend through all levels of parameters for all objects in all GUI windows without duplicating the effort of
implementing the parameterization logic every time.

• Configuration & Setup
– Setup routines and configuration options are currently hard-coded into npyscreen forms (see
PilotSetupForm). prefs setup needs to be separated into a model-view-controller type design where
the available prefs and values are made separate from their form.

– Setup routines should include both the ability to install necessary resources and the ability to check if
those resources have been installed so that hardware objects can be instantiated freely without setup and
configuration becoming cumbersome.

– Currently, Autopilot creates a crude bash script with setup_pilot.sh to start external processes before
Autopilot. This makes handling multiple environment types difficult – ie. one needs to close the program
entirely, edit the startup script, and restart in order to switch from a primarily auditory to primarily visual
experiment. Management of external processes should be brought into Autopilot, potentially by using
sargehttps://sarge.readthedocs.io/en/latest/index.html or some other process management tool.

– Autopilot should both install to a virtual environment by default and should have docker containers built
for it. Further it should be possible to package up your environment for the purposes of experimental
replication.

• UI/UX
– The GUI code is now the oldest in the entire library. It needs to be generally overhauled to make use of the

tools that have been developed since it was written (eg. use of networking modules rather than passing sets
of variables around).

– It should be much easier to read the status of, interact with, and reconfigure agents that are connected to the
terminal. Currently control of Pilots is relatively opaque and limited, and often requires the user to go read
the logs stored on each individual pilot to determine what is happening with it. Instead Autopilot should
have an additional window that can be used to set the parameters, reconfigure, and test each individual
Pilot.

– There are some data -> graphical object mappings available to tasks, but Autopilot needs a fuller grammar
of graphics. It should be possible to reconfigure plotting in the terminal GUI, and it should be possible to
modify short-term parameters like bin widths for rolling means.

– Autopilot shouldn’t sprawl into a data visualization library, but it should have some basic post-experiment
plotting features like plotting task performance and stages over time.

– Autopilot should have a web interface for browsing data. We are undecided about building a web interface
for controlling tasks, but it should be possible to download data, do basic visualization, and observe the
status of the system from a web portal.

• Tasks
– Task design is a bit too open at the moment. Tasks need to feel like they have more ‘guarantees’ on their oper-

ation. eg. there should be a generalized callback api for triggering events. the existing handle_trigger()
is quite limited. There should be an obvious way for users to implement saving/reporting data from their
tasks.

26.1. Visions 401

https://npyscreen.readthedocs.io/
sargehttps://sarge.readthedocs.io/en/latest/index.html

Autopilot Documentation, Release 0.5.0a1

∗ Relatedly, the creation of triggers is pretty awkward and not strictly threadsafe, it should be possible
to identify triggers in subclasses (eg. a superclass creates some trigger, a subclass should be able to
unambiguously identify it without having to parse method names, etc)

– It’s possible already to use a python generator to have more complex ordering of task stages, eg. instead
of using an itertools.cycle one could write a generator function that yields task stages based on some
parameters of the task. There should be an additional manager type, the Trial_Manager, that implements
some common stage schemes – cycles, yes, but also DAGs, timed switches, etc. This way tasks could blend
some intuitive features of finite-state machines while also not being beholden by them.

• Mesh Networking
– Autopilot’s networking system at the moment risks either a) being bottlenecked by having to route all

data through a hierarchical network tree, or b) being indicipherable and impossible to program with as
individual objects and streams are capable of setting up arbitrary connections that need to potentially be
manually configured. This goal is very abstract, but Autopilot should have a mesh-networking protocol.

– It should be possible for any object to communicate with any other object in the network without name
collisions

– It should be possible to stream data efficiently both point-to-point but also from one producer to many
consumers.

– It should be possible for networking connections to be recovered automatically in the case a node temporar-
ily becomes unavailable.

– Accordingly, Autopilot should adapt Zyre for general communications, and improve its file transfer capa-
bilities so that it resembles something like bittorrent.

• Data
– Autopilot’s data format shouldn’t be yet another standard incompatible with all the others that exist. Au-

topilot should at least implement data translators for, if not adopt outright the Neurodata Without Borders
standard.

– For distributed data acquisition, it makes sense to use a distributed database, so we should consider switch-
ing data collection infrastructure from .hdf5 files to a database system like PostgreSQL.

• Hardware Library
– Populate https://auto-pi-lot.com/hardware with hardware designs, CAD files, BOMs, and assembly instruc-

tions

– Make a ‘thingiverse for experimental hardware’ that allows users to browse hardware based on application,
materials, etc.

26.2 Improvements

The shorter view: smaller, specific tweaks to improve functionality of existing features roughly corresponding to patches
in semantic versioning.

• Logging
– ensure that all events worth logging are logged across all objects.

– ensure that the structure of logfiles is intuitive – one logfile per object type (networking, hardware rather
than one per each hardware device)

– logging of experimental conditions is incomplete – only the git hash of the pilot is stored, but the git hash
of all relevant agents should be stored, and logging should be expanded to include params and system
configuration (like pip freeze)

402 Chapter 26. To-Do

https://github.com/zeromq/zyre
https://auto-pi-lot.com/hardware

Autopilot Documentation, Release 0.5.0a1

– logs should also be made both human and machine readable – use prettyprint for python objects, and stan-
dardize fields present in logger messages.

– File and Console log handlers should be split so that users can configure what they want to see
vs. what they want stored separately (See https://docs.python.org/3/howto/logging-cookbook.html#
multiple-handlers-and-formatters)

• UI/UX
– Batch subject creation.

– Double-clicking a subject should open a window to edit and view task parameters.

– Drag-and-drop subjects between pilots.

– Plot parameters should be editable - window roll size, etc.

– Make a messaging routine where a pilot can display some message on the terminal. this should be used to
alert the user about any errors in task operation rather than having to inspect the logs on the pilot.

– The Subject_List remains selectable/editable once a subject has started running, making it unclear which
subject is running. It should become fixed once a subject is running, or otherwise unambiguously indicate
which subject is running.

– Plot elements should have tooltips that give their value – eg. when hovering over a rolling mean, a tooltip
should display the current value of the rolling mean as well as other configuration params like how many
trials it is being computed over.

– Elements in the GUI should be smarter about resizing, particularly the main window should be able to use
a scroll bar once the number of subjects forces them off the screen.

• Hardware
– Sound calibration - implement a calibration algorithm that allows speakers to be flattened

– Implement OpenCL for image processing, specifically decoding on acquisition with OpenCV, with VC4CL.
See

∗ https://github.com/doe300/VC4CL/issues/29

∗ https://github.com/thortex/rpi3-opencv/

∗ https://github.com/thortex/rpi3-vc4cl/

– Have hardware objects sense if they are configured on instantiation – eg. when an audio device is configured,
check if the system has been configured as well as the hifiberry is in setup/presetup_pilot.sh

• Synchronization
– Autopilot needs a unified system to generate timestamps and synchronize events across pilots. Currently we

rely on implicit NTP-based synchronization across Pilots, which has ~ms jitter when configured optimally,
but is ultimately not ideal for precise alignment of data streams, eg. ephys sampled at 30kHz. pigpio
should be extended such that a Pilot can generate a clock signal that its children synchronize to. With the
recent addition of timestamp generation within pigpio, that would be one parsimonious way of

– In order to synchronize audio events with behavioral events, the JackClient needs to add a call to
jack_last_frame_time in order to get an accurate time of when sound stimuli start and stop (See
https://jackaudio.org/api/group__TimeFunctions.html)

– Time synchronization between Terminal and Pilot agents is less important, but having them synchronized
as much as possible is good. The Terminal should be set up to be an NTP server that Pilots follow.

• Networking

26.2. Improvements 403

https://docs.python.org/3/howto/logging-cookbook.html#multiple-handlers-and-formatters
https://docs.python.org/3/howto/logging-cookbook.html#multiple-handlers-and-formatters
https://github.com/doe300/VC4CL/issues/29
https://github.com/thortex/rpi3-opencv/
https://github.com/thortex/rpi3-vc4cl/
https://jackaudio.org/api/group__TimeFunctions.html

Autopilot Documentation, Release 0.5.0a1

– Multihop messages (eg. send to C through A and B) are clumsy. This may be irrelevant if Autopilot’s
network infrastructure is converted a true meshnet, but in the meantime networking modules should be
better at tracking and using trees of connected nodes.

– The system of zmq routers and dealers is somewhat cumbersome, and the new radio/dish pattern in zmq
might be better suited. Previously, we had chosen not to use pub/sub as the publisher is relatively inefficient
– it sends every message to every recipient, who filter messages based on their id, but the radio/dish method
may be more efficient.

– Network modules should use a thread pool for handling messages, as spawning a new thread for each
message is needlessly costly

• Data
– Data specification needs to be formalized further – currently data for a task is described with tables

specifiers, TrialData and ContinuousData, but there are always additional fields – particularly from
stimuli. The Subject class should be able to create columns and tables for

∗ Task data as specified in the task description

∗ Stimulus data as specified by a stimulus manager that initializes them. eg. the stimulus manager
initializes all stimuli for a task, and then is able to yield a description of all columns needed for all
initialized stimuli. So, for a task that uses

• Tests - Currently Autopilot has no unit tests (shocked ghasps, monocles falling into brandy glasses). We need to
implement an automated test suite and continuous integration system in order to make community development
of Autopilot manageable.

• Configuration
– Rather than require all tasks be developed within the directory structure of Autopilot, Tasks and hardware

objects should be able to be added to the system in a way that mimcs tensor2tensor’s registry For example,
users could specify a list of user directories in prefs, and user-created Hardware/Tasks could be decorated
with a @registry.register_task.

∗ This would additionally solve the awkward tasks.TASK_LIST method of making tasks available by
name that is used now by having a more formal task registry.

• Cleanliness & Beauty
– Intra-autopilot imports are a bit messy. They should be streamlined so that importing one class from one

module doesn’t spiral out of control and import literally everything in the package.

– Replace getter- and setter-type methods throughout with @properties when it would improve the
object, eg. in the JackClient, the storage/retrieval of all the global module variables could be made much
neater with @property methods.

– Like the Hardware class, top-level metaclasses should be moved to the __init__ file for the module to
avoid awkward imports and extra files like autopilot.tasks.task.Task

– Use enum.Enum s all over! eg. things like autopilot.hardware.gpio.TRIGGER_MAP etc.

• Concurrency
– Autopilot could be a lot smarter about the way it manages threads and processes! It should have a centralized

registry of threads and processes to keep track on their status

– Networking modules and other thread-creating modules should probably create thread pools to avoid the
overhead of constantly spawning them

• Decorators - specific improvements to make autopilot objects magic!

– hardware.gpio - try/catch release decorator so don’t have to check for attribute error in every subclass!

404 Chapter 26. To-Do

https://github.com/tensorflow/tensor2tensor
https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/registry.py
https://docs.python.org/3/library/enum.html#enum.Enum

Autopilot Documentation, Release 0.5.0a1

26.3 Bugs

Known bugs that have eluded us thus far

• The Pilot_Button doesn’t always reflect the availability/unavailability of connected pilots. The button model
as well as the general heartbeating/status indication routines need to be made robust.

• The pilot_db.json and Subject_List doesn’t check for duplicate subjects across Pilots. That shouldn’t be a
problem generally, but if a subject is switched between Pilots that may not be reflected in the generated metadata.
Pilot ID needs to be more intimately linked to the Subject.

• If Autopilot needs to be quit harshly, some pigpio-based hardware objects don’t quit nicely, and the pigpiod
service can remain stuck on. Resource release needs to be made more robust

• Network connectivity can be lost if the network hardware is disturbed (in our case the router gets kicked from the
network it is connected to) and is only reliably recovered by restarting the system. Network connections should
be able to recover disturbance.

• The use of off and on is inconsistent between Digital_Out and PWM – since the PWM cleans values (inverts
logic, expands range),

• There is ambiguity in setting PWM ranges: using PWM.set() with 0-1 uses the whole range off to on, but
numbers from 0-PWM.range can be used as well – 0-1 is the preferred behavior, but should using 0-range still
be supported as well?

26.4 Completed

good god we did it

• v0.3.5 (February 22, 2021) - Integrate DeepLabCut

• v0.3.5 (February 22, 2021) - Unify installation

• v0.3.5 (February 22, 2021) - Upgrade to Python 3

• v0.3.5 (February 22, 2021) - Upgrade to PySide 2 & Qt5

• v0.3.5 (February 22, 2021) - Generate full timestamps from pigpio rather than ticks

• v0.3.5 (February 22, 2021) - Continuous data handling

• v0.3.5 (February 22, 2021) - GPIO uses pigpio functions rather than python timing

• v0.3.5 (February 22, 2021) - networking modules compress arrays before transfer

• v0.3.5 (February 22, 2021) - Images can be acquired from cameras

26.5 Lowest Priority

Improvements that are very unimportant or strictly for unproductive joy

• Classic Mode - in honor of an ancient piece of software that Autopilot may have descended from, add a
hidden key that when pressed causes the entire terminal screen to flicker whenever any subject in any pilot
gets a trial incorrect.

26.3. Bugs 405

Autopilot Documentation, Release 0.5.0a1

406 Chapter 26. To-Do

CHAPTER

TWENTYSEVEN

REFERENCES

407

Autopilot Documentation, Release 0.5.0a1

408 Chapter 27. References

CHAPTER

TWENTYEIGHT

TESTS

28.1 Networking

Networking Tests.

Assumptions
• In docstring examples, listens callbacks are often omitted for clarity

Functions:

test_node(node_params) Net_Node s can be initialized with their default param-
eters

test_node_to_node(node_params) Net_Node s can directly send messages to each other
with ROUTER/DEALER pairs.

test_multihop(node_params, station_params) Message s can be routed through multiple Station ob-
jects by using a list in the to field

test_blosc(do_blosc, dtype) Messages should be able to serialize numpy arrays both
with and without blosc compression and recreate them
respecting their dtype and shape

test_node(node_params)
Net_Node s can be initialized with their default parameters

test_node_to_node(node_params)
Net_Node s can directly send messages to each other with ROUTER/DEALER pairs.

>>> node_1 = Net_Node(id='a', router_port=5000)
>>> node_2 = Net_Node(id='b', upstream='a', port=5000)
>>> node_2.send('a', 'KEY', 'VALUE')
>>> node_2.send('b', 'KEY', 'VALUE')

test_multihop(node_params, station_params)
Message s can be routed through multiple Station objects by using a list in the to field

send message:
node_1 -> station_1 -> station_2 -> station_3 -> node_3
>>> station_1 = Station(id='station_1', listen_port=6000,

pusher=True, push_port=6001, push_id='station_2')
>>> station_2 = Station(id='station_2', listen_port=6001,

pusher=True, push_port=6002, push_id='station_3',)
(continues on next page)

409

Autopilot Documentation, Release 0.5.0a1

(continued from previous page)

>>> station_3 = Station(id='station_3', listen_port=6002)
>>> node_1 = Net_Node(id='node_1',

upstream='station_1', port=6000)
>>> node_3 = Net_Node(id='node_3',

upstream='station_3', port=6002)
>>> node_1.send(key='KEY', value='VALUE',

to=['station_1', 'station_2', 'station_3', 'node_3'])

test_blosc(do_blosc, dtype)
Messages should be able to serialize numpy arrays both with and without blosc compression and recreate them
respecting their dtype and shape

28.2 Plugins

Functions:

hardware_plugin(default_dirs) Make a basic plugin that inherits from the Hardware
class, clean it up on exit

test_hardware_plugin(hardware_plugin) A subclass of autopilot.hardware.Hardware in the
PLUGINDIR can be accessed with autopilot.get().

test_autoplugin() the autopilot.utils.registry.get() func-
tion should automatically load plugins if the pref
AUTOPLUGIN is True and the plugins argument is
True

hardware_plugin(default_dirs)→ Tuple[pathlib.Path, str]
Make a basic plugin that inherits from the Hardware class, clean it up on exit

Returns path to created plugin file

Return type Path

test_hardware_plugin(hardware_plugin)
A subclass of autopilot.hardware.Hardware in the PLUGINDIR can be accessed with autopilot.get().

For example, for the following class declared in some .py file in the plugin dir:

from autopilot.hardware import Hardware

class Test_Hardware_Plugin(Hardware):
def __init__(self, *args, **kwargs):

super(Test_Hardware_Plugin, self).__init__(*args, **kwargs)

def release(self):
pass

one would be able to access it throughout autopilot with:

autopilot.get('hardware', 'Test_Hardware_Plugin')
or
autopilot.get_hardware('Test_Hardware_Plugin')

410 Chapter 28. Tests

https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str

Autopilot Documentation, Release 0.5.0a1

test_autoplugin()

the autopilot.utils.registry.get() function should automatically load plugins if the pref AUTOPLUGIN
is True and the plugins argument is True

28.3 Prefs

Functions:

clean_prefs(request) Clear and stash prefs, restore on finishing
test_prefs_defaults(default_pref, clean_prefs)

test_prefs_warnings(default_pref, clean_prefs) Test that getting a default pref warns once and only once
test_prefs_deprecation() If there is a string in the 'deprecation' field of a pref

in _DEFAULTS, a warning is raised printing the string.

clean_prefs(request)
Clear and stash prefs, restore on finishing

test_prefs_defaults(default_pref, clean_prefs)

test_prefs_warnings(default_pref, clean_prefs)
Test that getting a default pref warns once and only once

test_prefs_deprecation()

If there is a string in the 'deprecation' field of a pref in _DEFAULTS, a warning is raised printing the string.

28.4 Registry

Functions:

logger_registry_get(caplog)

test_get_one(base_class, class_name) Get one autopilot object with a specified base class
and class name using a string, an enum in autopi-
lot.utils.registry.REGISTRIES, or an object itself

test_get_all(base_class) Test that calling get with no class_name argument re-
turns all the objects for that registry

test_get_subtree(logger_registry_get, caplog) Test that calling getwith a child of a top-level object (eg
GPIO rather than Hardware) gets all its children, (using
GPIO as the test case)

test_get_hardware() use the autopilot.utils.registry.
get_hardware() alias

test_get_task() use the autopilot.utils.registry.get_task()
alias

test_get_equivalence() Test that the same object is gotten regardless of method
of specifying base_class

test_except_on_failure() Ensure a exceptions are raised for nonsense

logger_registry_get(caplog)

28.3. Prefs 411

Autopilot Documentation, Release 0.5.0a1

test_get_one(base_class, class_name)
Get one autopilot object with a specified base class and class name using a string, an enum in autopi-
lot.utils.registry.REGISTRIES, or an object itself

test_get_all(base_class)
Test that calling get with no class_name argument returns all the objects for that registry

test_get_subtree(logger_registry_get, caplog)
Test that calling get with a child of a top-level object (eg GPIO rather than Hardware) gets all its children, (using
GPIO as the test case)

test_get_hardware()

use the autopilot.utils.registry.get_hardware() alias

mostly a formality to keep it working since the underlying function is tested elsewhere

test_get_task()

use the autopilot.utils.registry.get_task() alias

mostly a formality to keep it working since the underlying function is tested elsewhere

test_get_equivalence()

Test that the same object is gotten regardless of method of specifying base_class

test_except_on_failure()

Ensure a exceptions are raised for nonsense

28.5 Setup

Functions:

test_make_alias()

test_quiet_mode() Autopilot can be setup programmatically by calling
setup_autopilot with --quiet and passing prefs and
scripts manually

test_make_alias()

test_quiet_mode()

Autopilot can be setup programmatically by calling setup_autopilot with –quiet and passing prefs and scripts
manually

28.6 Sounds

Tests for generating sound stimuli.

This script runs tests that generate different sound stimuli and verifies that they are initialized correctly.

Currently these only work if AUDIOSERVER is ‘jack’. ‘pyo’ is not tested. ‘docs’ doesn’t actually generate waveforms.

This doesn’t require (or test) a running jackd or even a JackClient. Instead, these tests short-circuit those dependencies
by manually setting FS and BLOCKSIZE in autopilot.stim.sound.jackclient.

A TODO is to test the JackClient itself.

412 Chapter 28. Tests

Autopilot Documentation, Release 0.5.0a1

Currently only the sound Noise is tested.

These tests cover multiple durations and amplitudes of mono and multi-channel Noise, including some edges cases like
very short durations or zero amplitude.

The rest of this docstring addresses the workaround used to short-circuit jackd and JackClient.

Here is the sequence of events that leads to FS and BLOCKSIZE. * If an autopilot.agents.pilot.Pilot is initialized: **
autopilot.agents.pilot.Pilot.__init__ checks prefs.AUDIOSERVER,

and calls autopilot.agents.pilot.Pilot.init_audio.

** autopilot.agents.pilot.Pilot.init_audio calls autopilot.external.__init__.start_jackd.

** autopilot.external.__init__.start_jackd takes the JACKDSTRING pref and replaces the token ‘-rfs’ in it with
the FS pref. The jackd process is launched and stored in autopilot.external.JACKD_PROCESS. That process
may fail or not, we continue anyway.

** Next, autopilot.agents.pilot.Pilot.init_audio instantiates an autopilot.stim.sound.jackclient.JackClient()

** autopilot.stim.sound.jackclient.JackClient.__init__ initalizes a jack.Client

** autopilot.stim.sound.jackclient.JackClient.fs is set to jack.Client.samplerate. Note that this is either the re-
quested sample rate, or some default value from jack (not Autopilot) if the client did not actually succeed in
booting.

** autopilot.stim.sound.jackclient.FS (a global variable) is set to autopilot.stim.sound.jackclient.JackClient.fs

• Later, a sound (e.g., Noise) is initialized.

** autopilot.stim.sound.sounds.Noise.__init__ calls super().__init__, ** which is autopi-
lot.stim.sound.sounds.Jack_Sound.__init__ ** autopilot.stim.sound.sounds.Jack_Sound.__init__

sets self.fs to jackclient.FS

** autopilot.stim.sound.sounds.Noise.__init__ calls autopilot.stim.sound.sounds.Noise.init_sound

** autopilot.stim.sound.sounds.Noise.init_sound calls autopilot.stim.sound.sounds.Jack_Sound.get_nsamples

** autopilot.stim.sound.sounds.Jack_Sound.get_nsamples inspects self.fs

To remove the dependence on jackd2 and JackClient, the entire first block of code can be circumvented by setting these:
autopilot.stim.sound.jackclient.FS autopilot.stim.sound.jackclient.BLOCKSIZE

Functions:

test_init_noise(duration_ms, amplitude, ...) Initialize and check a mono (single-channel) noise.
test_init_multichannel_noise(duration_ms, ...) Initialize and check a multi-channel noise.
test_unpadded_gap() A gap in a continous sound should not be padded (had

its last chunk filled with zeros).

test_init_noise(duration_ms, amplitude, check_duration_samples, check_n_chunks_expected)
Initialize and check a mono (single-channel) noise.

A mono Noise is initialized with specified duration and amplitude. The following things are checked: * The
attributes should be correctly set * The table should be the right dtype and the right duration,

given the sampling rate

• The chunks should be correct, given the block size. The last chunk should be zero-padded.

• The waveform should not exceed amplitude anywhere

• As long as the waveform is sufficiently long, it should exceed 90% of the amplitude somewhere

28.6. Sounds 413

Autopilot Documentation, Release 0.5.0a1

• Concatenating the chunks should generate a result equal to the table, albeit zero-padded to a multiple of
the block size.

• Specifying channel as None should give identical results to leaving it unspecified.

duration_ms : passed as duration amplitude : passed as amplitude check_duration_samples : int or None

If not None, the length of the sounds table should be this

check_n_chunks_expected [int or None] If not None, the length of the sounds chunks should be this

test_init_multichannel_noise(duration_ms, amplitude, channel, check_duration_samples,
check_n_chunks_expected)

Initialize and check a multi-channel noise.

A multi-channel Noise is initialized with specified duration, amplitude, and channel. The following things are
checked: * The attributes should be correctly set * The table should be the right dtype and the right duration,

given the sampling rate

• The chunks should be correct, given the block size. The last chunk should be zero-padded.

• The column channel should contain non-zero data and all other columns should contain zero data.

• The waveform should not exceed amplitude anywhere

• As long as the waveform is sufficiently long, it should exceed 90% of the amplitude somewhere

• Concatenating the chunks should generate a result equal to the

duration_ms : passed to Noise as duration amplitude : passed to Noise as amplitude channel : passed to Noise
as channel check_duration_samples : int or None

If not None, the length of the sounds table should be this

check_n_chunks_expected [int or None] If not None, the length of the sounds chunks should be this

test_unpadded_gap()

A gap in a continous sound should not be padded (had its last chunk filled with zeros).

28.7 Terminal

28.8 Transforms

28.9 Utils

414 Chapter 28. Tests

CHAPTER

TWENTYNINE

INDICES AND TABLES

• genindex

• modindex

• search

415

Autopilot Documentation, Release 0.5.0a1

416 Chapter 29. Indices and tables

BIBLIOGRAPHY

[ABCO15] Fatemeh Abyarjoo, Armando Barreto, Jonathan Cofino, and Francisco R. Ortega. Implementing a Sensor
Fusion Algorithm for 3D Orientation Detection with Inertial/Magnetic Sensors. In Tarek Sobh and Khaled
Elleithy, editors, Innovations and Advances in Computing, Informatics, Systems Sciences, Networking and
Engineering, Lecture Notes in Electrical Engineering, 305–310. Cham, 2015. Springer International Pub-
lishing. doi:10.1007/978-3-319-06773-5_41.

[KLS+20] Gary A Kane, Gonçalo Lopes, Jonny L Saunders, Alexander Mathis, and Mackenzie W Mathis. Real-time,
low-latency closed-loop feedback using markerless posture tracking. eLife, 9:e61909, December 2020.
doi:10.7554/eLife.61909.

[PPT+18] Photis Patonis, Petros Patias, Ilias N. Tziavos, Dimitrios Rossikopoulos, and Konstantinos G. Margaritis. A
Fusion Method for Combining Low-Cost IMU/Magnetometer Outputs for Use in Applications on Mobile
Devices. Sensors (Basel, Switzerland), August 2018. doi:10.3390/s18082616.

[PQLC11] Dilip K. Prasad, Chai Quek, Maylor K.H Leung, and Siu-Yeung Cho. A parameter independent line
fitting method. In The First Asian Conference on Pattern Recognition, 441–445. November 2011.
doi:10.1109/ACPR.2011.6166585.

[Sla97] M. Slaney. An Efficient Implementation of the Patterson-Holdsworth Auditory Filter Bank. undefined,
1997.

417

https://doi.org/10.1007/978-3-319-06773-5_41
https://doi.org/10.7554/eLife.61909
https://doi.org/10.3390/s18082616
https://doi.org/10.1109/ACPR.2011.6166585

Autopilot Documentation, Release 0.5.0a1

418 Bibliography

PYTHON MODULE INDEX

a
autopilot.agents, 81
autopilot.agents.base, 81
autopilot.agents.pilot, 82
autopilot.agents.terminal, 87
autopilot.data, 96
autopilot.data.interfaces, 102
autopilot.data.interfaces.base, 102
autopilot.data.interfaces.nwb, 111
autopilot.data.interfaces.tables, 106
autopilot.data.modeling, 118
autopilot.data.modeling.base, 118
autopilot.data.models, 122
autopilot.data.models.biography, 123
autopilot.data.models.protocol, 134
autopilot.data.models.researcher, 144
autopilot.data.models.subject, 145
autopilot.data.subject, 96
autopilot.data.units, 168
autopilot.gui, 169
autopilot.gui.dialog, 217
autopilot.gui.menus, 169
autopilot.gui.menus.file, 169
autopilot.gui.menus.plots, 172
autopilot.gui.menus.plugins, 173
autopilot.gui.menus.swarm, 174
autopilot.gui.menus.tests, 175
autopilot.gui.menus.tools, 177
autopilot.gui.plots, 180
autopilot.gui.plots.geom, 184
autopilot.gui.plots.info, 195
autopilot.gui.plots.plot, 180
autopilot.gui.plots.video, 196
autopilot.gui.widgets, 198
autopilot.gui.widgets.input, 198
autopilot.gui.widgets.list, 216
autopilot.gui.widgets.model, 207
autopilot.gui.widgets.subject, 210
autopilot.gui.widgets.terminal, 212
autopilot.hardware, 219
autopilot.hardware.cameras, 222
autopilot.hardware.gpio, 235

autopilot.hardware.i2c, 248
autopilot.hardware.usb, 253
autopilot.networking, 257
autopilot.networking.message, 270
autopilot.networking.node, 266
autopilot.networking.station, 258
autopilot.prefs, 367
autopilot.root, 375
autopilot.setup, 361
autopilot.setup.run_script, 365
autopilot.setup.scripts, 362
autopilot.setup.setup_autopilot, 361
autopilot.stim, 273
autopilot.stim.managers, 273
autopilot.stim.sound, 280
autopilot.stim.sound.base, 284
autopilot.stim.sound.jackclient, 280
autopilot.stim.sound.pyoserver, 284
autopilot.stim.sound.sounds, 289
autopilot.tasks, 295
autopilot.tasks.children, 298
autopilot.tasks.free_water, 301
autopilot.tasks.graduation, 303
autopilot.tasks.nafc, 305
autopilot.tasks.task, 295
autopilot.transform, 313
autopilot.transform.coercion, 316
autopilot.transform.geometry, 316
autopilot.transform.image, 323
autopilot.transform.logical, 325
autopilot.transform.selection, 326
autopilot.transform.timeseries, 328
autopilot.transform.transforms, 314
autopilot.transform.units, 333
autopilot.utils, 337
autopilot.utils.common, 337
autopilot.utils.decorators, 342
autopilot.utils.hydration, 344
autopilot.utils.invoker, 345
autopilot.utils.log_parsers, 351
autopilot.utils.loggers, 346
autopilot.utils.plugins, 352

419

Autopilot Documentation, Release 0.5.0a1

autopilot.utils.registry, 353
autopilot.utils.requires, 355
autopilot.utils.types, 359
autopilot.utils.wiki, 359

t
tests.test_networking, 409
tests.test_plugins, 410
tests.test_prefs, 411
tests.test_registry, 411
tests.test_setup, 412
tests.test_sound, 412
tests.test_utils, 414

420 Python Module Index

INDEX

Symbols
__add__() (Requirements method), 358
__add__() (Transform method), 316
__contains__() (Message method), 272
__delitem__() (Message method), 272
__getitem__() (Message method), 271
__setitem__() (Message method), 271

A
accel_range (I2C_9DOF property), 250
acceleration (I2C_9DOF property), 250
ACCELRANGE_16G (I2C_9DOF attribute), 249
ACCELRANGE_2G (I2C_9DOF attribute), 249
ACCELRANGE_4G (I2C_9DOF attribute), 249
ACCELRANGE_8G (I2C_9DOF attribute), 250
Accuracy (class in autopilot.tasks.graduation), 303
acquisition_mode (Camera_Spinnaker property), 233
add() (in module autopilot.prefs), 372
add_model() (ListModelWidget method), 206, 209
add_pilot() (Control_Panel method), 213
add_step() (Protocol_Wizard method), 171
age (Biography property), 133
Agent (class in autopilot.agents.base), 81
ALLOWED_FPS (MLX90640 attribute), 253
alpha (Kalman property), 333
Angle (class in autopilot.transform.geometry), 317
args (Input attribute), 199
args (Interface_Map attribute), 103
ask() (in module autopilot.utils.wiki), 359
assign_cb() (Digital_In method), 242
assign_cb() (Hardware method), 221
assign_cb() (Wheel method), 255
assign_protocol() (Subject method), 100
assigned (Protocol_Status attribute), 155
ATTR_TYPE_NAMES (Camera_Spinnaker attribute), 232
ATTR_TYPES (Camera_Spinnaker attribute), 232
attrs (H5F_Node attribute), 107
AUDIO (Scopes attribute), 369
autopilot.agents

module, 81
autopilot.agents.base

module, 81

autopilot.agents.pilot
module, 82

autopilot.agents.terminal
module, 87

autopilot.data
module, 96

autopilot.data.interfaces
module, 102

autopilot.data.interfaces.base
module, 102

autopilot.data.interfaces.nwb
module, 111

autopilot.data.interfaces.tables
module, 106

autopilot.data.modeling
module, 118

autopilot.data.modeling.base
module, 118

autopilot.data.models
module, 122

autopilot.data.models.biography
module, 123

autopilot.data.models.protocol
module, 134

autopilot.data.models.researcher
module, 144

autopilot.data.models.subject
module, 145

autopilot.data.subject
module, 96

autopilot.data.units
module, 168

autopilot.gui
module, 169

autopilot.gui.dialog
module, 217

autopilot.gui.menus
module, 169

autopilot.gui.menus.file
module, 169

autopilot.gui.menus.plots
module, 172

421

Autopilot Documentation, Release 0.5.0a1

autopilot.gui.menus.plugins
module, 173

autopilot.gui.menus.swarm
module, 174

autopilot.gui.menus.tests
module, 175

autopilot.gui.menus.tools
module, 177

autopilot.gui.plots
module, 180

autopilot.gui.plots.geom
module, 184

autopilot.gui.plots.info
module, 195

autopilot.gui.plots.plot
module, 180

autopilot.gui.plots.video
module, 196

autopilot.gui.widgets
module, 198

autopilot.gui.widgets.input
module, 198

autopilot.gui.widgets.list
module, 216

autopilot.gui.widgets.model
module, 204, 207

autopilot.gui.widgets.subject
module, 210

autopilot.gui.widgets.terminal
module, 212

autopilot.hardware
module, 219

autopilot.hardware.cameras
module, 222

autopilot.hardware.gpio
module, 235

autopilot.hardware.i2c
module, 248

autopilot.hardware.usb
module, 253

autopilot.networking
module, 257

autopilot.networking.message
module, 270

autopilot.networking.node
module, 266

autopilot.networking.station
module, 258

autopilot.prefs
module, 367

autopilot.root
module, 375

autopilot.setup
module, 361

autopilot.setup.run_script
module, 365

autopilot.setup.scripts
module, 362

autopilot.setup.setup_autopilot
module, 361

autopilot.stim
module, 273

autopilot.stim.managers
module, 273

autopilot.stim.sound
module, 280

autopilot.stim.sound.base
module, 284

autopilot.stim.sound.jackclient
module, 280

autopilot.stim.sound.pyoserver
module, 284

autopilot.stim.sound.sounds
module, 289

autopilot.tasks
module, 295

autopilot.tasks.children
module, 298

autopilot.tasks.free_water
module, 301

autopilot.tasks.graduation
module, 303

autopilot.tasks.nafc
module, 305

autopilot.tasks.task
module, 295

autopilot.transform
module, 313

autopilot.transform.coercion
module, 316

autopilot.transform.geometry
module, 316

autopilot.transform.image
module, 323

autopilot.transform.logical
module, 325

autopilot.transform.selection
module, 326

autopilot.transform.timeseries
module, 328

autopilot.transform.transforms
module, 314

autopilot.transform.units
module, 333

autopilot.utils
module, 337

autopilot.utils.common
module, 337

422 Index

Autopilot Documentation, Release 0.5.0a1

autopilot.utils.decorators
module, 342

autopilot.utils.hydration
module, 344

autopilot.utils.invoker
module, 345

autopilot.utils.log_parsers
module, 351

autopilot.utils.loggers
module, 346

autopilot.utils.plugins
module, 352

autopilot.utils.registry
module, 353

autopilot.utils.requires
module, 355

autopilot.utils.types
module, 359

autopilot.utils.wiki
module, 359

Autopilot_Object (class in autopilot.root), 376

B
backend (Camera_CV property), 230
bailed (Nafc.TrialData attribute), 310
Bandwidth_Test (class in autopilot.gui.menus.tests),

175
BASE_TYPES (in module autopilot.data.modeling.base),

122
baselines (Biography attribute), 133
BCM_TO_BOARD (in module autopilot.hardware), 220
Bias_Correction (class in autopilot.stim.managers),

278
bin (Camera_Spinnaker property), 232
bio (Subject property), 98
biography (NWB_Interface attribute), 117
blank_LEDs() (Pilot method), 86
BLOCKSIZE (in module autopilot.stim.sound.jackclient),

280
BOARD_TO_BCM (in module autopilot.hardware), 219
bool (Interface_Mapset attribute), 104
BoolInput (class in autopilot.gui.widgets.input), 200
boot_server() (JackClient method), 283
box (Enclosure attribute), 124
branch (Git_Spec attribute), 356
breeding (Biography attribute), 133
browse() (in module autopilot.utils.wiki), 359
buffer() (Gap method), 293
buffer() (Jack_Sound method), 288
buffer_continuous() (Jack_Sound method), 288
building (Enclosure attribute), 124
buttons (Stream_Video attribute), 175
bytes (Interface_Mapset attribute), 105

C
calc_move() (Wheel method), 255
calibrate() (I2C_9DOF method), 251
calibrate_port() (Pilot method), 85
calibrate_ports() (Terminal method), 91
Calibrate_Water (class in autopilot.gui.menus.tools),

177
calibration (Hardware property), 221
calibration_curve() (Pilot method), 86
call_series() (in module autopilot.setup.run_script),

365
cam (Camera property), 225
cam_info (Stream_Video attribute), 175
Camera (class in autopilot.hardware.cameras), 222
Camera_CV (class in autopilot.hardware.cameras), 229
camera_selected() (Stream_Video method), 175
Camera_Spinnaker (class in autopi-

lot.hardware.cameras), 231
capture() (Camera method), 224
capture_deinit() (Camera method), 226
capture_deinit() (Camera_Spinnaker method), 232
capture_deinit() (PiCamera method), 228
capture_init() (Camera method), 226
capture_init() (Camera_Spinnaker method), 232
capture_init() (MLX90640 method), 253
capture_init() (PiCamera method), 228
check_all() (Psychometric method), 173
check_compatible() (Transform method), 315
check_depends() (Protocol_Wizard method), 172
check_slice() (DLCSlice method), 328
check_thresh() (Wheel method), 255
Child (class in autopilot.tasks.children), 298
children (Group attribute), 122
children (H5F_Group attribute), 108
CHILDREN (REGISTRIES attribute), 354
choices (LiteralInput attribute), 203
chunk() (Gap method), 293
chunk() (Jack_Sound method), 287
clean_prefs() (in module tests.test_prefs), 411
clear() (in module autopilot.prefs), 373
clear_cb() (Digital_In method), 243
clear_params() (Protocol_Wizard method), 171
clear_scripts() (in module autopilot.hardware.gpio),

237
closeEvent() (Stream_Video method), 175
closeEvent() (Terminal method), 91
closing (Net_Node attribute), 268
coerce_discrete() (in module autopi-

lot.utils.common), 339
Color (class in autopilot.transform.units), 334
Colorspaces (class in autopilot.transform.units), 334
COLS (Accuracy attribute), 304
COLS (Graduation attribute), 303
columns (Free_Water.TrialData attribute), 302

Index 423

Autopilot Documentation, Release 0.5.0a1

columns (Task.TrialData attribute), 297
comboboxes (Stream_Video attribute), 174
commit (Git_Spec attribute), 356
COMMON (Scopes attribute), 369
Compare (class in autopilot.transform.logical), 326
compute_calibration() (in module autopilot.prefs),

373
compute_correction() (Stim_Manager method), 276
Condition (class in autopilot.transform.logical), 325
context (Net_Node attribute), 268
CONTINUOUS (in module autopilot.stim.sound.jackclient),

281
continuous_data (Step_Data attribute), 141
continuous_group (Step_Group attribute), 137
CONTINUOUS_LOOP (in module autopi-

lot.stim.sound.jackclient), 281
CONTINUOUS_QUEUE (in module autopi-

lot.stim.sound.jackclient), 281
Control_Panel (class in autopi-

lot.gui.widgets.terminal), 212
conversion (Interface_Map attribute), 103
CONVERSIONS (Color attribute), 335
conversions (Log_Format attribute), 347
correct (Nafc.TrialData attribute), 310
correction (Nafc.TrialData attribute), 310
create_modelzoo() (DLC method), 325
create_subject() (Control_Panel method), 213
create_subject() (Pilot_Panel method), 215
current_camera (Stream_Video property), 175
current_pilot (Stream_Video property), 175
current_trial (Protocol_Status attribute), 155
current_trial (Subject property), 98

D
data (Data_Extract attribute), 352
DATA (Free_Water attribute), 302
data (Subject_Schema attribute), 168
Data_Extract (class in autopilot.utils.log_parsers), 351
date (Weights attribute), 149
datetime (Interface_Mapset attribute), 105
DatetimeInput (class in autopilot.gui.widgets.input),

202
DC_timestamp (Nafc.TrialData attribute), 310
default (LiteralInput attribute), 203
default() (NumpyEncoder method), 341
dehydrate() (in module autopilot.utils.hydration), 344
delete_all_scripts() (Digital_Out method), 241
delete_script() (Digital_Out method), 241
description (Biography attribute), 133
description (H5F_Table attribute), 109
description_to_model() (in module autopi-

lot.data.interfaces.tables), 111
device_info (Camera_Spinnaker property), 234
dict() (ListModelWidget method), 206, 209

dict() (ModelWidget method), 205, 208
DictInput (class in autopilot.gui.widgets.input), 203
Digital_In (class in autopilot.hardware.gpio), 241
Digital_Out (class in autopilot.hardware.gpio), 239
DIRECTORY (Scopes attribute), 369
discrim() (Nafc method), 310
Distance (class in autopilot.transform.geometry), 316
DLC (class in autopilot.transform.image), 323
dlc_dir (DLC property), 325
dlc_paths (DLC property), 324
DLCSlice (class in autopilot.transform.selection), 327
do_bias() (Stim_Manager method), 275
do_correction() (Stim_Manager method), 275
dob (Biography attribute), 133
download_plugin() (Plugins method), 174
Drag_List (class in autopilot.gui.widgets.list), 216
dragEnterEvent() (Drag_List method), 217
dragMoveEvent() (Drag_List method), 217
dropEvent() (Drag_List method), 217
dropEvent() (Subject_List method), 214
dur_from_vol() (Solenoid method), 247
duration (Solenoid property), 247
DURATION_MIN (Solenoid attribute), 247

E
ENABLED (in module autopilot.hardware.gpio), 237
enclosure (Biography attribute), 133
end() (Free_Water method), 303
end() (Jack_Sound method), 289
end() (Stim_Manager method), 276
end() (Task method), 298
end() (Wheel_Child method), 299
entries (Log attribute), 351
equals (Interface_Map attribute), 103
event() (Invoker method), 346
EVENT_TYPE (InvokeEvent attribute), 345
example (Log_Format attribute), 347
expand() (Message method), 271
expectedrows (H5F_Table attribute), 109
export_model() (DLC method), 325
exposure (Camera_Spinnaker property), 233
extract_data() (in module autopi-

lot.utils.log_parsers), 352

F
FIFO (TransformRhythm attribute), 314
File (class in autopilot.stim.sound.sounds), 291
file_block (Pilot attribute), 84
fileDropped (Drag_List attribute), 217
FILO (TransformRhythm attribute), 314
Filter_IIR (class in autopilot.transform.timeseries),

328
filters (H5F_Node attribute), 107
find_class() (in module autopilot.utils.common), 338

424 Index

Autopilot Documentation, Release 0.5.0a1

find_key_recursive() (in module autopi-
lot.utils.common), 339

find_key_value() (in module autopilot.utils.common),
339

fit() (Spheroid method), 320
flash() (LED_RGB method), 246
flash_leds() (Nafc method), 311
flash_leds() (Task method), 298
flatten_dict() (in module autopilot.utils.common),

340
float (Interface_Mapset attribute), 104
FloatInput (class in autopilot.gui.widgets.input), 201
format (Log_Format attribute), 347
format_in (Angle attribute), 317
format_in (Color attribute), 335
format_in (Condition property), 326
format_in (Distance attribute), 317
format_in (DLC property), 325
format_in (DLCSlice attribute), 328
format_in (Image property), 323
format_in (Rescale attribute), 334
format_in (Slice attribute), 327
format_in (Transform property), 315
format_out (Angle attribute), 317
format_out (Color attribute), 335
format_out (Condition property), 326
format_out (Distance attribute), 317
format_out (DLC property), 325
format_out (DLCSlice attribute), 328
format_out (Image property), 323
format_out (Rescale attribute), 334
format_out (Slice attribute), 327
format_out (Transform property), 315
forward() (Transformer method), 300
fps (Camera_CV property), 230
fps (Camera_Spinnaker property), 233
fps (MLX90640 property), 253
fps (PiCamera property), 228
frame_trigger (Camera_Spinnaker property), 233
Free_Water (class in autopilot.tasks.free_water), 301
Free_Water.TrialData (class in autopi-

lot.tasks.free_water), 302
from_logfile() (Log class method), 351
from_pytables_description() (Table class method),

119
from_string() (LogEntry class method), 349
from_type() (Input class method), 199
FS (in module autopilot.stim.sound.jackclient), 280

G
Gammatone (class in autopilot.stim.sound.sounds), 293
Gammatone (class in autopilot.transform.timeseries), 329
Gap (class in autopilot.stim.sound.sounds), 292
generate() (Spheroid method), 320

genes (Genotype attribute), 127
genotype (Biography attribute), 133
get() (Camera_Spinnaker method), 234
get() (in module autopilot.prefs), 371
get() (in module autopilot.utils.registry), 354
get() (Interface_Mapset method), 105
get_hardware() (in module autopilot.utils.registry),

354
get_invoker() (in module autopilot.utils.invoker), 346
get_ip() (Pilot method), 84
get_ip() (Station method), 261
get_name() (Hardware method), 221
get_names() (in module autopilot.utils.registry), 354
get_nsamples() (Jack_Sound method), 288
get_nsamples() (Sound method), 285
get_sound_class() (in module autopi-

lot.stim.sound.base), 289
get_stream() (Net_Node method), 269
get_task() (in module autopilot.utils.registry), 355
get_timestamp() (Message method), 272
get_trial_data() (Subject method), 100
get_weight() (Subject method), 101
git (Python_Package attribute), 357
Git_Spec (class in autopilot.utils.requires), 356
git_version() (in module autopilot.prefs), 372
GPIO (class in autopilot.hardware.gpio), 237
Graduation (class in autopilot.tasks.graduation), 303
GRADUATION (REGISTRIES attribute), 353
group (Interface_Mapset attribute), 105
group (Trial_Data attribute), 135
gui_event() (in module autopilot.gui.plots.plot), 181
gyro (I2C_9DOF property), 251
gyro_filter (I2C_9DOF property), 250
GYRO_HPF_CUTOFF (I2C_9DOF attribute), 250
gyro_polarity (I2C_9DOF property), 250
gyro_scale (I2C_9DOF property), 250
GYROSCALE_2000DPS (I2C_9DOF attribute), 250
GYROSCALE_245DPS (I2C_9DOF attribute), 250
GYROSCALE_500DPS (I2C_9DOF attribute), 250

H
handle_listen() (Net_Node method), 268
handle_listen() (Station method), 261
handle_trigger() (Task method), 297
handshake() (Pilot method), 84
Hardware (class in autopilot.hardware), 220
HARDWARE (Free_Water attribute), 302
HARDWARE (Nafc attribute), 310
HARDWARE (REGISTRIES attribute), 353
HARDWARE (Task attribute), 297
HARDWARE (Wheel_Child attribute), 299
hardware_plugin() (in module tests.test_plugins), 410
hash (Hashes attribute), 148
hashes (History_Group attribute), 153

Index 425

Autopilot Documentation, Release 0.5.0a1

hashes (Subject property), 98
header (Data_Extract attribute), 352
heartbeat() (Terminal method), 89
history (History_Group attribute), 153
history (Subject property), 98
history (Subject_Schema attribute), 168
HLine (class in autopilot.gui.plots.geom), 194
HLS (Colorspaces attribute), 334
HSV (Colorspaces attribute), 334
hydrate() (in module autopilot.utils.hydration), 345

I
I2C_9DOF (class in autopilot.hardware.i2c), 248
id (Biography attribute), 133
id (Hashes attribute), 148
id (Net_Node attribute), 268
Image (class in autopilot.transform.image), 323
ImageItem_TimedUpdate (class in autopi-

lot.gui.plots.video), 197
import_dlc() (DLC method), 325
import_plugins() (in module autopilot.utils.plugins),

352
import_spec (Python_Package property), 357
IMU_Orientation (class in autopi-

lot.transform.geometry), 317
info (Subject property), 97
info (Subject_Schema attribute), 168
init() (in module autopilot.prefs), 372
init_audio() (Pilot method), 86
init_cam() (Camera method), 226
init_cam() (Camera_CV method), 230
init_cam() (Camera_Spinnaker method), 232
init_cam() (MLX90640 method), 253
init_cam() (PiCamera method), 228
init_gui() (Video method), 196
init_hardware() (Task method), 297
init_logger() (in module autopilot.utils.loggers), 346
init_manager() (in module autopilot.stim.managers),

273
init_networking() (Hardware method), 221
init_networking() (Net_Node method), 268
init_pigpio() (GPIO method), 238
init_pigpio() (Pilot method), 86
init_plots() (Plot method), 183
init_plots() (Plot_Widget method), 181
init_sound() (File method), 292
init_sound() (Gap method), 292
init_sound() (Jack_Sound method), 287
init_sound() (Noise method), 291
init_sound() (Tone method), 290
init_sounds() (Stim_Manager method), 275
init_sounds_grouped() (Proportional method), 277
init_sounds_individual() (Proportional method),

278

init_ui() (Bandwidth_Test method), 176
init_ui() (Calibrate_Water method), 178
init_ui() (Control_Panel method), 213
init_ui() (Pilot_Panel method), 215
init_ui() (Pilot_Ports method), 180
init_ui() (Plugins method), 173
init_ui() (Psychometric method), 172
init_ui() (Reassign method), 178
init_ui() (Stream_Video method), 175
init_ui() (Weights method), 179
initUI() (Terminal method), 88
input (Camera attribute), 224
Input (class in autopilot.gui.widgets.input), 199
input (Digital_In attribute), 242
input (Hardware attribute), 221
input (Wheel attribute), 255
inputs (ModelWidget attribute), 205, 208
int (Interface_Mapset attribute), 104
int_to_float() (in module autopi-

lot.stim.sound.sounds), 293
Integrate (class in autopilot.transform.timeseries), 333
integrate_frames (MLX90640 property), 253
interpolate (MLX90640 property), 253
interpolate_frame() (MLX90640 method), 253
IntInput (class in autopilot.gui.widgets.input), 201
Introspect (class in autopilot.utils.decorators), 342
INVERSE_PULL_MAP (in module autopi-

lot.hardware.gpio), 236
INVERSE_TRIGGER_MAP (in module autopi-

lot.hardware.gpio), 236
InvokeEvent (class in autopilot.utils.invoker), 345
Invoker (class in autopilot.utils.invoker), 345
ip (Net_Node property), 270
is_trigger (Digital_In attribute), 242
is_trigger (Hardware attribute), 221
iter_continuous() (Jack_Sound method), 288
iter_continuous() (Noise method), 291

J
Jack_Sound (class in autopilot.stim.sound.base), 286
JackClient (class in autopilot.stim.sound.jackclient),

281
join() (ReturnThread method), 338

K
Kalman (class in autopilot.transform.timeseries), 331
kwargs (Input attribute), 199
kwargs (Interface_Map attribute), 103

L
l_bandwidth() (Pilot method), 85
l_cal_port() (Pilot method), 85
l_cal_result() (Pilot method), 85
l_change() (Pilot_Station method), 265

426 Index

Autopilot Documentation, Release 0.5.0a1

l_change() (Terminal_Station method), 263
l_child() (Pilot_Station method), 265
l_clear() (Wheel method), 255
l_cohere() (Pilot_Station method), 264
l_confirm() (Net_Node method), 269
l_confirm() (Station method), 261
l_continuous() (Pilot_Station method), 265
l_continuous() (Terminal_Station method), 263
l_data() (Plot method), 183
l_data() (Terminal method), 89
l_data() (Terminal_Station method), 263
l_file() (Pilot_Station method), 265
l_file() (Terminal_Station method), 263
l_forward() (Pilot_Station method), 265
l_frame() (Stream_Video method), 175
l_handshake() (Terminal method), 90
l_handshake() (Terminal_Station method), 263
l_init() (Terminal_Station method), 262
l_kill() (Station method), 261
l_measure() (Wheel method), 255
l_noop() (Pilot_Station method), 264
l_param() (Pilot method), 85
l_param() (Plot method), 184
l_ping() (Pilot_Station method), 265
l_ping() (Terminal method), 90
l_ping() (Terminal_Station method), 262
l_process() (Transformer method), 300
l_progress() (Pilot_Ports method), 180
l_start() (Camera method), 225
l_start() (Pilot method), 84
l_start() (Pilot_Station method), 265
l_start() (Plot method), 183
l_state() (Pilot_Station method), 264
l_state() (Plot method), 184
l_state() (Terminal method), 90
l_state() (Terminal_Station method), 263
l_stop() (Camera method), 225
l_stop() (Pilot method), 85
l_stop() (Pilot_Station method), 265
l_stop() (Plot method), 183
l_stop() (Wheel method), 255
l_stopall() (Terminal_Station method), 263
l_stream() (Net_Node method), 269
l_stream() (Station method), 261
l_stream_video() (Pilot method), 85
LED_RGB (class in autopilot.hardware.gpio), 244
level (LogEntry attribute), 349
Line (class in autopilot.gui.plots.geom), 185
LINEAGE (Scopes attribute), 369
Linefit_Prasad (class in autopi-

lot.transform.geometry), 322
list_classes() (in module autopilot.utils.common),

337
list_modelzoo() (DLC class method), 325

list_options() (Camera_Spinnaker method), 234
list_plugins() (Plugins method), 174
list_scripts() (in module autopilot.setup.run_script),

366
list_spinnaker_cameras() (in module autopi-

lot.hardware.cameras), 235
list_subjects() (in module autopilot.utils.common),

339
list_wiki_plugins() (in module autopi-

lot.utils.plugins), 352
listens (Net_Node attribute), 268
ListInput (class in autopilot.gui.widgets.input), 202
ListModelWidget (class in autopi-

lot.gui.widgets.model), 205, 208
LiteralInput (class in autopilot.gui.widgets.input), 203
litter (Breeding attribute), 125
load_model() (DLC method), 325
load_pilotdb() (in module autopilot.utils.common),

339
locate_user_dir() (in module autopi-

lot.setup.setup_autopilot), 362
Log_Format (class in autopilot.utils.loggers), 347
LOG_FORMATS (in module autopilot.utils.loggers), 347
logger (Digital_In attribute), 243
logger (Digital_Out attribute), 241
logger (Hardware attribute), 221
logger (I2C_9DOF attribute), 251
logger (LED_RGB attribute), 246
logger (MLX90640 attribute), 253
logger (Pilot attribute), 84
logger (PWM attribute), 244
logger (Scale attribute), 256
logger (Solenoid attribute), 247
logger (Wheel attribute), 256
logger_registry_get() (in module

tests.test_registry), 411
loop (Net_Node attribute), 268
loop (Pilot_Station attribute), 265
loop (Station attribute), 260
loop (Terminal_Station attribute), 262
loop_thread (Net_Node attribute), 268

M
mag_gain (I2C_9DOF property), 250
MAGGAIN_12GAUSS (I2C_9DOF attribute), 250
MAGGAIN_16GAUSS (I2C_9DOF attribute), 250
MAGGAIN_4GAUSS (I2C_9DOF attribute), 250
MAGGAIN_8GAUSS (I2C_9DOF attribute), 250
magnetic (I2C_9DOF property), 251
main() (in module autopilot.setup.setup_autopilot), 362
make() (H5F_Group method), 108
make() (H5F_Node method), 107
make() (H5F_Table method), 109
make() (Input method), 200

Index 427

Autopilot Documentation, Release 0.5.0a1

make() (Interface method), 106
make() (LiteralInput method), 204
make() (NWB_Interface method), 117
make() (Subject_Structure method), 156
make() (Tables_Interface method), 110
make_alias() (in module autopi-

lot.setup.setup_autopilot), 361
make_ask_string() (in module autopilot.utils.wiki),

360
make_biography() (in module autopi-

lot.data.interfaces.nwb), 112
make_browse_string() (in module autopi-

lot.utils.wiki), 360
make_dir() (in module autopilot.setup.setup_autopilot),

361
make_ectopic_dirnames() (in module autopi-

lot.setup.setup_autopilot), 362
make_launch_script() (in module autopi-

lot.setup.setup_autopilot), 362
make_punishment() (Stim_Manager method), 276
make_systemd() (in module autopi-

lot.setup.setup_autopilot), 362
make_transform() (in module autopilot.transform), 313
manage_plugins() (Terminal method), 91
map (Interface attribute), 105
map (Tables_Interface attribute), 110
mass (Baselines attribute), 128
maximum (Condition property), 326
measurement_of_state() (Kalman method), 333
Message (class in autopilot.networking.message), 270
message (LogEntry attribute), 349
MESSAGE_FORMATS (in module autopilot.utils.loggers),

348
met (Python_Package property), 357
met (Requirement property), 356
met (Requirements property), 358
method_calls (DatetimeInput attribute), 202
method_calls (Input attribute), 199
minimum (Condition property), 326
minimum_mass (Baselines property), 128
minimum_pct (Baselines attribute), 128
MLX90640 (class in autopilot.hardware.i2c), 251
model (DLC property), 324
MODEL (Scale attribute), 256
model_dir (DLC property), 324
Model_Filler_Dialogue (class in autopi-

lot.gui.widgets.model), 207, 210
model_to_description() (in module autopi-

lot.data.interfaces.tables), 111
model_widgets (ListModelWidget attribute), 206, 209
ModelWidget (class in autopilot.gui.widgets.model), 204,

207
MODES (Wheel attribute), 255
module

autopilot.agents, 81
autopilot.agents.base, 81
autopilot.agents.pilot, 82
autopilot.agents.terminal, 87
autopilot.data, 96
autopilot.data.interfaces, 102
autopilot.data.interfaces.base, 102
autopilot.data.interfaces.nwb, 111
autopilot.data.interfaces.tables, 106
autopilot.data.modeling, 118
autopilot.data.modeling.base, 118
autopilot.data.models, 122
autopilot.data.models.biography, 123
autopilot.data.models.protocol, 134
autopilot.data.models.researcher, 144
autopilot.data.models.subject, 145
autopilot.data.subject, 96
autopilot.data.units, 168
autopilot.gui, 169
autopilot.gui.dialog, 217
autopilot.gui.menus, 169
autopilot.gui.menus.file, 169
autopilot.gui.menus.plots, 172
autopilot.gui.menus.plugins, 173
autopilot.gui.menus.swarm, 174
autopilot.gui.menus.tests, 175
autopilot.gui.menus.tools, 177
autopilot.gui.plots, 180
autopilot.gui.plots.geom, 184
autopilot.gui.plots.info, 195
autopilot.gui.plots.plot, 180
autopilot.gui.plots.video, 196
autopilot.gui.widgets, 198
autopilot.gui.widgets.input, 198
autopilot.gui.widgets.list, 216
autopilot.gui.widgets.model, 204, 207
autopilot.gui.widgets.subject, 210
autopilot.gui.widgets.terminal, 212
autopilot.hardware, 219
autopilot.hardware.cameras, 222
autopilot.hardware.gpio, 235
autopilot.hardware.i2c, 248
autopilot.hardware.usb, 253
autopilot.networking, 257
autopilot.networking.message, 270
autopilot.networking.node, 266
autopilot.networking.station, 258
autopilot.prefs, 367
autopilot.root, 375
autopilot.setup, 361
autopilot.setup.run_script, 365
autopilot.setup.scripts, 362
autopilot.setup.setup_autopilot, 361
autopilot.stim, 273

428 Index

Autopilot Documentation, Release 0.5.0a1

autopilot.stim.managers, 273
autopilot.stim.sound, 280
autopilot.stim.sound.base, 284
autopilot.stim.sound.jackclient, 280
autopilot.stim.sound.pyoserver, 284
autopilot.stim.sound.sounds, 289
autopilot.tasks, 295
autopilot.tasks.children, 298
autopilot.tasks.free_water, 301
autopilot.tasks.graduation, 303
autopilot.tasks.nafc, 305
autopilot.tasks.task, 295
autopilot.transform, 313
autopilot.transform.coercion, 316
autopilot.transform.geometry, 316
autopilot.transform.image, 323
autopilot.transform.logical, 325
autopilot.transform.selection, 326
autopilot.transform.timeseries, 328
autopilot.transform.transforms, 314
autopilot.transform.units, 333
autopilot.utils, 337
autopilot.utils.common, 337
autopilot.utils.decorators, 342
autopilot.utils.hydration, 344
autopilot.utils.invoker, 345
autopilot.utils.log_parsers, 351
autopilot.utils.loggers, 346
autopilot.utils.plugins, 352
autopilot.utils.registry, 353
autopilot.utils.requires, 355
autopilot.utils.types, 359
autopilot.utils.wiki, 359
tests.test_networking, 409
tests.test_plugins, 410
tests.test_prefs, 411
tests.test_registry, 411
tests.test_setup, 412
tests.test_sound, 412
tests.test_utils, 414

MOVE_DTYPE (Wheel attribute), 255

N
Nafc (class in autopilot.tasks.nafc), 305
name (Gene attribute), 126
name (H5F_Node property), 107
name (History attribute), 146
name (LogEntry attribute), 349
name (Python_Package attribute), 358
name (Requirement attribute), 356
name (Researcher attribute), 145
name (System_Library attribute), 358
Net_Node (class in autopilot.networking.node), 266
networking (Pilot attribute), 84

new() (Subject class method), 99
new_pilot() (Terminal method), 90
new_protocol() (Terminal method), 90
new_subject() (Terminal method), 90
New_Subject_Wizard (class in autopi-

lot.gui.widgets.subject), 210
New_Subject_Wizard.Task_Tab (class in autopi-

lot.gui.widgets.subject), 211
next_bias() (Bias_Correction method), 279
next_stim() (Proportional method), 278
next_stim() (Stim_Manager method), 276
no_underscore_all_caps() (in module autopi-

lot.root), 375
node (Interface_Mapset attribute), 105
node (Pilot attribute), 84
Noise (class in autopilot.stim.sound.sounds), 290
noop() (Transformer method), 300
noop() (Video_Child method), 299
noop() (Wheel_Child method), 299
NTrials (class in autopilot.tasks.graduation), 304
NumpyDecoder (class in autopilot.utils.common), 341
NumpyEncoder (class in autopilot.utils.common), 340

O
object_hook() (NumpyDecoder method), 342
open() (Solenoid method), 247
open_file() (Pilot method), 86
OPENCV_LAST_INIT_TIME (in module autopi-

lot.hardware.cameras), 222
Order_Points (class in autopilot.transform.geometry),

320
output (Digital_Out attribute), 240
output (Hardware attribute), 221
output (LED_RGB attribute), 245
output (PWM attribute), 244
output (Solenoid attribute), 247
output_filename (Camera property), 226

P
package_name (Python_Package attribute), 357
package_version (Python_Package property), 357
PARAMS (Accuracy attribute), 304
PARAMS (File attribute), 292
PARAMS (Free_Water attribute), 302
PARAMS (Gammatone attribute), 293
PARAMS (Gap attribute), 292
PARAMS (Graduation attribute), 303
PARAMS (Jack_Sound attribute), 287
PARAMS (Nafc attribute), 307
PARAMS (Noise attribute), 291
PARAMS (NTrials attribute), 305
PARAMS (Sound attribute), 285
PARAMS (Task attribute), 297
PARAMS (Tone attribute), 290

Index 429

Autopilot Documentation, Release 0.5.0a1

PARAMS (Video_Child attribute), 299
PARAMS (Wheel_Child attribute), 299
parent (H5F_Node property), 107
parent (Transform property), 315
parents (Breeding attribute), 125
parse() (Log_Format method), 347
parse_args() (in module autopi-

lot.setup.setup_autopilot), 362
parse_manual_prefs() (in module autopi-

lot.setup.setup_autopilot), 362
parse_message() (LogEntry method), 349
ParseError, 347
past_protocols (History_Group attribute), 153
past_protocols (Subject_Schema attribute), 168
path (H5F_Node attribute), 107
path (Step_Group attribute), 137
permissiveness (FloatInput attribute), 201
permissiveness (Input attribute), 199
permissiveness (IntInput attribute), 201
permissiveness (StrInput attribute), 202
PiCamera (class in autopilot.hardware.cameras), 226
PiCamera.PiCamera_Writer (class in autopi-

lot.hardware.cameras), 228
pig (Digital_In attribute), 243
pig (Digital_Out attribute), 241
pig (LED_RGB attribute), 246
pig (PWM attribute), 244
pig (Solenoid attribute), 247
pigs_function (Digital_Out attribute), 240
pigs_function (PWM attribute), 244
Pilot (class in autopilot.agents.pilot), 82
pilot (Protocol_Status attribute), 155
PILOT (Scopes attribute), 369
Pilot_Button (class in autopilot.gui.widgets.terminal),

215
Pilot_Panel (class in autopilot.gui.widgets.terminal),

214
Pilot_Ports (class in autopilot.gui.menus.tools), 179
Pilot_Station (class in autopilot.networking.station),

264
pilots (Terminal property), 89
pin (GPIO property), 238
pin (Hardware attribute), 221
pin (LED_RGB property), 246
pin_bcm (LED_RGB property), 246
ping_pilot() (Terminal method), 89
PLAY (in module autopilot.stim.sound.jackclient), 281
play() (Gap method), 293
play() (Jack_Sound method), 288
play() (Pyo_Sound method), 285
play_continuous() (Jack_Sound method), 288
play_punishment() (Stim_Manager method), 276
play_started (JackClient attribute), 283
Plot (class in autopilot.gui.plots.plot), 181

PLOT (Free_Water attribute), 302
PLOT (Nafc attribute), 307
PLOT (Task attribute), 297
PLOT_LIST (in module autopilot.gui.plots.geom), 194
plot_params (Psychometric property), 173
plot_psychometric() (Terminal method), 91
plot_timer (Terminal_Station attribute), 262
Plot_Widget (class in autopilot.gui.plots.plot), 181
Plugins (class in autopilot.gui.menus.plugins), 173
Point (class in autopilot.gui.plots.geom), 184
polarity (GPIO property), 238
polarity (PWM property), 244
pop_dialog() (in module autopilot.gui.dialog), 217
populate_cameras() (Stream_Video method), 175
populate_list() (Subject_List method), 214
populate_params() (Protocol_Wizard method), 171
populate_steps() (Psychometric method), 172
populate_steps() (Reassign method), 178
populate_variables() (Psychometric method), 173
port (Net_Node attribute), 268
predict() (Kalman method), 332
prepare_message() (Net_Node method), 269
prepare_message() (Station method), 260
prepare_run() (Subject method), 100
process() (Angle method), 317
process() (Color method), 335
process() (Compare method), 326
process() (Condition method), 326
process() (Distance method), 317
process() (DLC method), 324
process() (DLCSlice method), 328
process() (Filter_IIR method), 329
process() (Gammatone method), 331
process() (IMU_Orientation method), 318
process() (Integrate method), 333
process() (JackClient method), 283
process() (Kalman method), 332
process() (Linefit_Prasad method), 323
process() (Order_Points method), 322
process() (Rescale method), 334
process() (Rotate method), 318
process() (Slice method), 327
process() (Spheroid method), 320
process() (Transform method), 315
process_test() (Bandwidth_Test method), 176
Proportional (class in autopilot.stim.managers), 276
protocol (Protocol_Group attribute), 139
protocol (Protocol_Status attribute), 155
protocol (Subject property), 98
protocol (Subject_Schema attribute), 168
protocol_changed() (New_Subject_Wizard.Task_Tab

method), 211
protocol_name (Protocol_Group attribute), 139
protocol_name (Protocol_Status attribute), 155

430 Index

Autopilot Documentation, Release 0.5.0a1

protocol_name (Subject property), 98
Protocol_Wizard (class in autopilot.gui.menus.file),

169
protocols (Terminal property), 89
Psychometric (class in autopilot.gui.menus.plots), 172
pull (GPIO property), 238
pull (LED_RGB property), 246
PULL_MAP (in module autopilot.hardware.gpio), 236
pulse() (Digital_Out method), 240
pulse() (LED_RGB method), 246
punish() (Nafc method), 311
push() (Station method), 260
pusher (Pilot_Station attribute), 264
pusher (Station attribute), 260
pusher (Terminal_Station attribute), 262
PWM (class in autopilot.hardware.gpio), 243
pyo_server() (in module autopi-

lot.stim.sound.pyoserver), 284
Pyo_Sound (class in autopilot.stim.sound.base), 285
Python_Package (class in autopilot.utils.requires), 356
python_type (BoolInput attribute), 200
python_type (DatetimeInput attribute), 202
python_type (DictInput attribute), 203
python_type (FloatInput attribute), 201
python_type (Input attribute), 199
python_type (IntInput attribute), 201
python_type (ListInput attribute), 203
python_type (LiteralInput attribute), 203
python_type (StrInput attribute), 202

Q
Q_LOCK (in module autopilot.stim.sound.jackclient), 281
quantize_duration() (Jack_Sound method), 288
QUEUE (in module autopilot.stim.sound.jackclient), 281
queue() (Camera method), 225
quit() (JackClient method), 283
quitting (Pilot attribute), 84

R
range (Input attribute), 199
range (LED_RGB property), 245
range (PWM property), 244
readable_attributes (Camera_Spinnaker property),

234
Reassign (class in autopilot.gui.menus.tools), 178
reassign_protocols() (Terminal method), 90
record_event() (Digital_In method), 243
recurse_subclasses() (in module autopi-

lot.utils.common), 338
register_msg() (Bandwidth_Test method), 177
REGISTRIES (class in autopilot.utils.registry), 353
reinforcement() (Nafc method), 310
release() (Camera method), 226
release() (Camera_CV method), 230

release() (Camera_Spinnaker method), 234
release() (Digital_In method), 243
release() (Digital_Out method), 241
release() (GPIO method), 239
release() (Hardware method), 221
release() (LED_RGB method), 246
release() (MLX90640 method), 253
release() (Net_Node method), 270
release() (PiCamera method), 228
release() (PWM method), 244
release() (Station method), 261
release() (Video method), 197
release() (Wheel method), 255
remove_model() (ListModelWidget method), 206, 210
remove_step() (Protocol_Wizard method), 171
remove_subject() (Pilot_Panel method), 215
rename_step() (Protocol_Wizard method), 171
reorder_steps() (Protocol_Wizard method), 171
repeat() (Net_Node method), 269
repeat() (Station method), 261
repeat_interval (Net_Node attribute), 267
repeat_interval (Station attribute), 259
repository (Python_Package attribute), 357
request() (Nafc method), 310
Requirement (class in autopilot.utils.requires), 355
Requirements (class in autopilot.utils.requires), 358
requirements (Requirements attribute), 358
Rescale (class in autopilot.transform.units), 333
reset() (Transform method), 315
reset_ui() (Terminal method), 89
residual_of() (Kalman method), 333
resolution (PiCamera property), 228
resolve() (Python_Package method), 358
resolve() (Requirement method), 356
resolve() (Requirements method), 358
resolve_type() (in module autopi-

lot.data.interfaces.base), 106
respond() (Nafc method), 311
response (Nafc.TrialData attribute), 310
response() (Free_Water method), 302
results_string() (in module autopi-

lot.setup.setup_autopilot), 362
ReturnThread (class in autopilot.utils.common), 338
RGB (Colorspaces attribute), 334
rhythm (Transform property), 315
Roll_Mean (class in autopilot.gui.plots.geom), 191
room (Enclosure attribute), 124
Rotate (class in autopilot.transform.geometry), 318
rotation (I2C_9DOF property), 251
rotation (PiCamera property), 228
router (Net_Node attribute), 268
RQ_timestamp (Nafc.TrialData attribute), 310
run() (JackClient method), 283
run() (ReturnThread method), 338

Index 431

Autopilot Documentation, Release 0.5.0a1

run() (Station method), 260
run() (Video_Writer method), 235
run_form() (in module autopilot.setup.setup_autopilot),

362
run_script() (in module autopilot.setup.run_script),

365
run_scripts() (in module autopilot.setup.run_script),

365
run_task() (Pilot method), 86
running (Pilot attribute), 84
RW_MODES (Camera_Spinnaker attribute), 232

S
save() (Bandwidth_Test method), 177
save_data() (Subject method), 100
save_prefs() (in module autopilot.prefs), 372
Scale (class in autopilot.hardware.usb), 256
schema_ (Interface attribute), 106
schema_ (Tables_Interface attribute), 110
Scopes (class in autopilot.prefs), 368
SCRIPTS (in module autopilot.setup.scripts), 363
Segment (class in autopilot.gui.plots.geom), 188
select_plugin() (Plugins method), 174
select_plugin_type() (Plugins method), 174
send() (Net_Node method), 268
send() (Station method), 260
send_test() (Bandwidth_Test method), 176
senders (Net_Node attribute), 268
sensor_mode (PiCamera property), 228
sent_plot (Terminal_Station attribute), 262
serialize() (Message method), 272
serialize_array() (in module autopilot.networking),

257
series() (Digital_Out method), 240
SERVER (in module autopilot.stim.sound.jackclient), 280
server (Pilot attribute), 84
server_type (Jack_Sound attribute), 287
server_type (Sound attribute), 285
session (Protocol_Status attribute), 155
session (Subject property), 98
session (Trial_Data attribute), 135
session (Weights attribute), 149
session_uuid (Subject property), 98
session_uuid (Trial_Data attribute), 135
set() (Camera_Spinnaker method), 234
set() (Digital_Out method), 240
set() (in module autopilot.prefs), 371
set() (LED_RGB method), 245
set() (PWM method), 244
set_graduation() (Protocol_Wizard method), 171
set_leds() (Task method), 298
set_param() (Protocol_Wizard method), 171
set_protocol() (Reassign method), 178
set_reward() (Task method), 297

set_sounds() (Protocol_Wizard method), 171
set_state() (Pilot_Button method), 216
set_step() (Reassign method), 178
set_trigger() (Jack_Sound method), 287
set_trigger() (Pyo_Sound method), 286
set_triggers() (Proportional method), 278
set_triggers() (Stim_Manager method), 275
set_weight() (Subject method), 101
set_weight() (Weights method), 179
setImage() (ImageItem_TimedUpdate method), 197
setValue() (BoolInput method), 200
setValue() (DatetimeInput method), 202
setValue() (DictInput method), 203
setValue() (FloatInput method), 201
setValue() (Input method), 200
setValue() (IntInput method), 201
setValue() (ListInput method), 203
setValue() (ListModelWidget method), 207, 210
setValue() (LiteralInput method), 204
setValue() (ModelWidget method), 205, 208
setValue() (StrInput method), 202
sex (Biography attribute), 133
SEX (in module autopilot.data.models.biography), 123
Shaded (class in autopilot.gui.plots.geom), 191
shape (Camera_CV property), 230
shape (Image property), 323
SHAPE_SENSOR (MLX90640 attribute), 253
simple_time() (History class method), 147
simple_time() (Weights class method), 149
Slice (class in autopilot.transform.selection), 326
Solenoid (class in autopilot.hardware.gpio), 246
Sound (class in autopilot.stim.sound.base), 284
SOUND (REGISTRIES attribute), 354
species (Biography attribute), 133
Spheroid (class in autopilot.transform.geometry), 319
stage_block (Pilot attribute), 84
STAGE_NAMES (Free_Water attribute), 302
STAGE_NAMES (Nafc attribute), 307
STAGE_NAMES (Task attribute), 297
STAGE_NAMES (Wheel_Child attribute), 299
start (Weights attribute), 149
start() (Bandwidth_Test method), 176
start() (Video_Child method), 299
start() (Wheel method), 255
start_calibration() (Pilot_Ports method), 180
start_date (Biography attribute), 133
start_plot_timer() (Terminal_Station method), 262
start_timer() (Timer method), 195
state (GPIO property), 238
staticMetaObject (Bandwidth_Test attribute), 177
staticMetaObject (Calibrate_Water attribute), 178
staticMetaObject (Control_Panel attribute), 213
staticMetaObject (Drag_List attribute), 217
staticMetaObject (HLine attribute), 194

432 Index

Autopilot Documentation, Release 0.5.0a1

staticMetaObject (ImageItem_TimedUpdate at-
tribute), 198

staticMetaObject (Invoker attribute), 346
staticMetaObject (Line attribute), 188
staticMetaObject (ListModelWidget attribute), 207,

210
staticMetaObject (Model_Filler_Dialogue attribute),

207, 210
staticMetaObject (ModelWidget attribute), 205, 208
staticMetaObject (New_Subject_Wizard attribute),

211
staticMetaObject (New_Subject_Wizard.Task_Tab at-

tribute), 211
staticMetaObject (Pilot_Button attribute), 216
staticMetaObject (Pilot_Panel attribute), 215
staticMetaObject (Pilot_Ports attribute), 180
staticMetaObject (Plot attribute), 184
staticMetaObject (Plot_Widget attribute), 181
staticMetaObject (Plugins attribute), 174
staticMetaObject (Point attribute), 185
staticMetaObject (Protocol_Wizard attribute), 172
staticMetaObject (Psychometric attribute), 173
staticMetaObject (Reassign attribute), 178
staticMetaObject (Roll_Mean attribute), 191
staticMetaObject (Segment attribute), 191
staticMetaObject (Shaded attribute), 194
staticMetaObject (Stream_Video attribute), 175
staticMetaObject (Subject_List attribute), 214
staticMetaObject (Terminal attribute), 91
staticMetaObject (Timer attribute), 195
staticMetaObject (Video attribute), 197
staticMetaObject (Weights attribute), 179
Station (class in autopilot.networking.station), 258
step (Protocol_Status attribute), 155
step (Step_Group attribute), 137
step (Subject property), 98
step_changed() (New_Subject_Wizard.Task_Tab

method), 211
step_name (Step_Group attribute), 137
steps (Protocol_Data attribute), 144
steps (Protocol_Group attribute), 139
stim_end() (Nafc method), 311
Stim_Manager (class in autopilot.stim.managers), 273
stim_start() (Nafc method), 311
STOP (in module autopilot.stim.sound.jackclient), 281
stop (Weights attribute), 149
stop() (Camera method), 226
stop() (Video_Child method), 299
stop_continuous() (Jack_Sound method), 289
stop_run() (Subject method), 100
stop_script() (Digital_Out method), 241
stop_timer() (Timer method), 195
store_groups() (Proportional method), 278
store_series() (Digital_Out method), 240

str (Interface_Mapset attribute), 104
strain (Genotype attribute), 127
stream() (Camera method), 225
Stream_Video (class in autopilot.gui.menus.swarm),

174
stream_video() (Terminal method), 91
STRING_PARAMS (in module autopi-

lot.stim.sound.sounds), 293
StrInput (class in autopilot.gui.widgets.input), 202
Subject (class in autopilot.data.subject), 96
Subject_List (class in autopilot.gui.widgets.terminal),

213
subject_list (Terminal property), 89
subject_protocols (Terminal property), 89
subject_weights() (Terminal method), 90
System_Library (class in autopilot.utils.requires), 358

T
table (File attribute), 292
table (Gammatone attribute), 293
table (Gap attribute), 292
table (Noise attribute), 291
table (Sound attribute), 285
table (Tone attribute), 290
table_wrap() (Pyo_Sound method), 285
tabs (Protocol_Group attribute), 139
tag (Git_Spec attribute), 356
tags (Biography attribute), 133
target (Nafc.TrialData attribute), 309
Task (class in autopilot.tasks.task), 295
task (Pilot attribute), 84
TASK (REGISTRIES attribute), 353
task (Step_Data attribute), 141
task (Subject property), 98
Task.TrialData (class in autopilot.tasks.task), 297
temperature (I2C_9DOF property), 251
Terminal (class in autopilot.agents.terminal), 87
TERMINAL (Scopes attribute), 369
Terminal_Station (class in autopi-

lot.networking.station), 261
test_autoplugin() (in module tests.test_plugins), 410
test_bandwidth() (Terminal method), 91
test_blosc() (in module tests.test_networking), 410
test_except_on_failure() (in module

tests.test_registry), 412
test_get_all() (in module tests.test_registry), 412
test_get_equivalence() (in module

tests.test_registry), 412
test_get_hardware() (in module tests.test_registry),

412
test_get_one() (in module tests.test_registry), 411
test_get_subtree() (in module tests.test_registry),

412
test_get_task() (in module tests.test_registry), 412

Index 433

Autopilot Documentation, Release 0.5.0a1

test_hardware_plugin() (in module
tests.test_plugins), 410

test_init_multichannel_noise() (in module
tests.test_sound), 414

test_init_noise() (in module tests.test_sound), 413
test_make_alias() (in module tests.test_setup), 412
test_multihop() (in module tests.test_networking),

409
test_node() (in module tests.test_networking), 409
test_node_to_node() (in module

tests.test_networking), 409
test_prefs_defaults() (in module tests.test_prefs),

411
test_prefs_deprecation() (in module

tests.test_prefs), 411
test_prefs_warnings() (in module tests.test_prefs),

411
test_quiet_mode() (in module tests.test_setup), 412
test_unpadded_gap() (in module tests.test_sound),

414
tests.test_networking

module, 409
tests.test_plugins

module, 410
tests.test_prefs

module, 411
tests.test_registry

module, 411
tests.test_setup

module, 412
tests.test_sound

module, 412
tests.test_utils

module, 414
threaded_loop() (Net_Node method), 268
thresh_trig() (Wheel method), 255
THRESH_TYPES (Wheel attribute), 255
thresholded_linear() (Bias_Correction method),

279
time (Hashes attribute), 148
time (History attribute), 146
Timer (class in autopilot.gui.plots.info), 195
timestamp (LogEntry attribute), 349
title (H5F_Node attribute), 107
to_df() (Table method), 120
to_pytables_description() (Table class method),

119
toggle() (Digital_Out method), 240
toggle() (LED_RGB method), 246
toggle_start() (Pilot_Button method), 216
toggle_start() (Stream_Video method), 175
toggle_start() (Terminal method), 89
Tone (class in autopilot.stim.sound.sounds), 290
Transform (class in autopilot.transform.transforms), 314

TRANSFORM (REGISTRIES attribute), 354
Transformer (class in autopilot.tasks.children), 299
TransformRhythm (class in autopi-

lot.transform.transforms), 314
trial_data (Step_Data attribute), 141
trial_data (Step_Group attribute), 137
trial_data_table (Step_Data attribute), 141
trial_num (Trial_Data attribute), 135
trigger (GPIO property), 238
trigger (Wheel attribute), 255
TRIGGER_MAP (in module autopilot.hardware.gpio), 236
turn() (Digital_Out method), 240
type (Camera attribute), 224
type (Digital_In attribute), 242
type (Digital_Out attribute), 240
type (File attribute), 292
type (Gammatone attribute), 293
type (Gap attribute), 292
type (Hardware attribute), 221
type (History attribute), 146
type (Jack_Sound attribute), 287
type (LED_RGB attribute), 245
type (MLX90640 attribute), 252
type (Noise attribute), 291
type (PWM attribute), 244
type (Solenoid attribute), 247
type (Sound attribute), 285
type (Tone attribute), 290
type (Wheel attribute), 255

U
unload_plugins() (in module autopilot.utils.plugins),

352
update() (Accuracy method), 304
update() (Bias_Correction method), 279
update() (Graduation method), 303
update() (Kalman method), 332
update() (Line method), 188
update() (NTrials method), 305
update() (Point method), 185
update() (Roll_Mean method), 191
update() (Segment method), 191
update() (Shaded method), 194
update() (Stim_Manager method), 276
update_db() (Control_Panel method), 213
update_frame() (Video method), 196
update_history() (Subject method), 99
update_img() (ImageItem_TimedUpdate method), 198
update_pbar() (Bandwidth_Test method), 177
update_protocols() (Terminal method), 90
update_state() (Pilot method), 84
update_step_box() (New_Subject_Wizard.Task_Tab

method), 211
update_time() (Timer method), 195

434 Index

Autopilot Documentation, Release 0.5.0a1

update_volumes() (Pilot_Ports method), 180
update_weights() (Subject method), 101
upstream (Net_Node attribute), 268
URL (class in autopilot.utils.types), 359
url (Git_Spec attribute), 356

V
v4l_info (Camera_CV property), 230
validate() (Message method), 272
validate() (ModelWidget method), 205, 208
validate_list() (Bandwidth_Test method), 177
validator (FloatInput attribute), 201
validator (Input attribute), 199
validator (IntInput attribute), 201
value (History attribute), 146
value() (BoolInput method), 200
value() (DatetimeInput method), 202
value() (DictInput method), 203
value() (FloatInput method), 201
value() (Input method), 200
value() (IntInput method), 201
value() (ListInput method), 203
value() (ListModelWidget method), 206, 209
value() (LiteralInput method), 204
value() (ModelWidget method), 205, 208
value() (StrInput method), 202
version (Hashes attribute), 148
version (Requirement attribute), 356
Video (class in autopilot.gui.plots.video), 196
Video_Child (class in autopilot.tasks.children), 299
Video_Writer (class in autopilot.hardware.cameras),

234

W
wait_trigger() (Jack_Sound method), 287
walk_dicts() (in module autopilot.utils.common), 340
water() (Free_Water method), 302
Weights (class in autopilot.gui.menus.tools), 178
weights (History_Group attribute), 153
weights (Subject property), 98
Wheel (class in autopilot.hardware.usb), 253
Wheel_Child (class in autopilot.tasks.children), 298
widget (BoolInput attribute), 200
widget (DatetimeInput attribute), 202
widget (DictInput attribute), 203
widget (FloatInput attribute), 201
widget (Input attribute), 199
widget (IntInput attribute), 201
widget (ListInput attribute), 203
widget (LiteralInput attribute), 203
widget (StrInput attribute), 202
writable_attributes (Camera_Spinnaker property),

234
write() (Camera method), 225

write() (Camera_Spinnaker method), 232
write() (PiCamera.PiCamera_Writer method), 229
write_to_outports() (JackClient method), 283
write_video() (Stream_Video method), 175
writer (Stream_Video attribute), 174

Y
YIQ (Colorspaces attribute), 334

Z
zygosity (Gene attribute), 126

Index 435

	Program Structure
	Tasks
	Module Tour
	Quickstart
	Minimal Installation
	Blink an LED
	Capture Video
	Communicate Between Computers
	Realtime DeepLabCut
	Put it Together - Close a Loop!
	Pilot 1 - Image Capture
	GPU Computer
	Pilot 2 - LED

	What Next?

	Installation
	Supported Systems
	Pre-installation
	On the Pilot device
	On the Terminal device

	Installing Autopilot
	Optional dependencies
	Method 1: Installation from PyPI
	Method 2: Installation from source

	Configuration
	Guided Configuration
	Select Agent
	Select scripts
	Configure Agent
	Configure Hardware
	Testing the Installation

	The User Directory
	prefs.json
	pilot_db.json
	launch_autopilot.sh
	calibration
	data
	logs
	plugins
	protocols
	sounds

	Networking
	IP Addresses
	Ports

	Training a Subject
	Connecting the Pilot
	Creating a Protocol
	Using the Protocol Wizard
	Manual Protocol Creation

	Creating a Subject
	Running the Task
	Debugging a Task

	Writing a Task
	The Task class
	Four Task Attributes
	PARAMS
	Data
	PLOT
	HARDWARE

	Initialization
	Stage Methods
	Request
	Discrim
	Reinforcement

	Additional Methods

	Plugins & The Wiki
	Plugins
	Registries
	The Wiki API
	Plugins on the Wiki

	Examples
	Blink
	Preamble
	Params
	TrialData
	Hardware

	Initialization
	Stage Methods
	Full Source

	Distributed Go/No-Go
	Additional Prefs
	Go/No-Go Parameterization
	Initialization
	The Child Task
	A Very Smart Wheel
	Go/No-Go Stage Methods

	FAQ
	Getting Help
	Networking
	Contributing
	Using Python
	Using Virtual Environments

	Agents
	base
	pilot
	terminal

	data
	modeling - Basic Data Types
	models - The Models Themselves
	interfaces - Bridging to Multiple Representations
	Subject - The Main Interface to Data Collection
	units - Explicit SI Unit representation
	Transition Status
	subject
	interfaces
	base
	tables
	datajoint
	nwb

	modeling
	basic classes

	models
	biography
	protocol
	researcher
	subject

	units

	GUI
	menus
	file
	plots
	plugins
	swarm
	tests
	tools

	Plots
	plot
	geom
	info
	video

	widgets
	input
	model
	protocol
	subject
	terminal
	list

	dialog

	hardware
	cameras
	gpio
	i2c
	usb

	networking
	station
	node
	Message

	stim
	managers
	sound
	jackclient
	pyoserver
	base - sound
	sounds

	tasks
	task
	children
	free_water
	graduation
	nafc

	Transformations
	Coercion
	Geometry
	Image
	Logical
	Selection
	Timeseries
	Units

	Utils
	Common Utils
	Decorators
	Hydration
	GUI Invoker
	loggers
	Log Parsers
	Plugins
	Registry
	Requires
	Types
	Wiki

	setup
	scripts
	run_script

	prefs
	Root
	external
	Changelog
	Version 0.5
	v0.5.0a0 - ~The Data Modeling Edition~
	Upgrading From <v0.5.0
	Package Structure
	Major updates
	Minor updates
	Bugfixes
	Regressions
	Prefs
	Packaging & Dependencies
	Docs
	Tests

	Version 0.4
	v0.4.4 - Timing and Sound (February 2nd, 2022)
	New
	Improvements
	Bugfixes
	Docs

	v0.4.3 (October 20th, 2021)
	New Features
	Minor Improvements
	Bugfixes

	v0.4.2 (August 24th)
	Minor Improvements
	Bugfixes
	Documentation

	v0.4.1 (August 17th)
	Bugfixes
	Docs

	v0.4.0 - Become Multifarious (August 3rd, 2021)
	New Features
	Major Improvements
	Minor Improvements
	Bugfixes
	Code Structure
	Docs
	Regressions

	Version 0.3
	v0.3.5 (February 22, 2021)
	Bugfixes

	v0.3.4 (December 13, 2020)
	Improvements
	Bugfixes
	Docs
	Logging

	v0.3.3 (October 25, 2020)
	Bugfixes
	Improvements
	Cleanup

	v0.3.2 (September 28, 2020)
	Bugfixes
	Cleanup

	v0.3.1 (August 4, 2020)
	v0.3.0 (August 4, 2020)
	Major Updates
	Minor Updates
	New Features
	Bugfixes
	Code Structure
	External Libraries
	Regressions

	Version 0.2
	v0.2.0 (October 26, 2019)

	To-Do
	Visions
	Integrations
	Open Ephys Integration
	Multiphoton & High-performance Image Integration
	Bonsai Integration

	Closed-Loop Behavior & Processing Pipelines

	Improvements
	Bugs
	Completed
	Lowest Priority

	References
	Tests
	Networking
	Plugins
	Prefs
	Registry
	Setup
	Sounds
	Terminal
	Transforms
	Utils

	Indices and tables
	Bibliography
	Python Module Index
	Index

