
Autopilot Documentation
Release 0.3.0

Jonny Saunders

Apr 21, 2022

USER GUIDE:

1 Program Structure 3

2 Tasks 5

3 Module Tour 7

4 Quickstart 9

5 Installation 15

6 Training a Subject 23

7 Writing a Task 35

8 Writing a Hardware Class 53

9 Plugins & The Wiki 55

10 Examples 65

11 core 75

12 data 85

13 hardware 97

14 networking 139

15 stim 155

16 tasks 177

17 Transformations 191

18 viz 215

19 Utils 217

20 setup 235

21 prefs 241

22 external 249

i

23 Changelog 251

24 To-Do 267

25 References 275

26 Tests 277

27 Indices and tables 285

Bibliography 287

Python Module Index 289

Index 291

ii

Autopilot Documentation, Release 0.3.0

Autopilot is a Python framework to perform behavioral experiments with one or many Raspberry Pis.

Its distributed structure allows arbitrary numbers and combinations of hardware components to be used in an experi-
ment, allowing users to perform complex, hardware-intensive experiments at scale.

Autopilot integrates every part of your experiment, including hardware operation, task logic, stimulus delivery, data
management, and visualization of task progress – making experiments in behavioral neuroscience replicable from a
single file.

Instead of rigid programming requirements, Autopilot attempts to be a flexible framework with many different modal-
ities of use in order to adapt to the way you do and think about your science rather than the other way around. Use only
the parts of the framework that are useful to you, build on top of it with its plugin system as you would normally, while
also maintaining the provenance and system integration that more rigid systems offer.

For developers of other tools, Autopilot provides a skeleton with minimal assumptions to integrate their work with its
broader collection of tools, for example our integration of DeepLabCut-live as the DLC transform ([KLS+20]).

Our long-range vision is to build a tool that lowers barriers to tool use and contribution, from code to contextual
technical knowledge, so our broad and scattered work can be cumulatively combined without needing a centralized
consortium or adoption of a singular standard.

For a detailed overview of Autopilot’s motivation, design, and structure, see our whitepaper.

What’s New v0.4.4 - Sound and Timing (2022-02-02)
• Big improvements to the sound server! Decoupling sounds from the server, better stability, etc.

• Trigger timing jitter from jack_client is now much closer to microseconds than the milliseconds it was formerly!

• New hydration module for re-creating objects across processes and agents!

• New decorators and types and requires modules prefacing the architectural changes in v0.5.0

• See the changelog for more!

This documentation is very young and is very much a work in progress! Please submit an issue with any incomplete-
nesses, confusion, or errors!

Todo: This page is still under construction! For a more detailed description, see the whitepaper, particularly “Program
Structure”

https://www.biorxiv.org/content/10.1101/807693v1

USER GUIDE: 1

https://www.raspberrypi.org/
https://github.com/DeepLabCut/DeepLabCut-live
https://www.biorxiv.org/content/10.1101/807693v1
https://github.com/wehr-lab/autopilot/issues/new
https://www.biorxiv.org/content/10.1101/807693v1

Autopilot Documentation, Release 0.3.0

2 USER GUIDE:

CHAPTER

ONE

PROGRAM STRUCTURE

Autopilot performs experiments by distributing them over a network of desktop computers and Raspberry Pis. Each
Computer or Pi runs an Autopilot agent, like the user-facing Terminal or a Raspberry Pi Pilot .

The Terminal agent provides a gui to operate the system, manage Subject s and experimental protocols, and plots
for visualizing data from ongoing experiments.

Each Terminal manages a swarm of Pilot s that actually perform the experiments. Each Pilot coordinates
hardware and stim uli in a Task . Pilot s can, in turn, coordinate their own swarm of networked Children that can
manage additional hardware components – allowing Task s to use effectively arbitrary numbers and combinations of
hardware.

3

Autopilot Documentation, Release 0.3.0

4 Chapter 1. Program Structure

CHAPTER

TWO

TASKS

Behavioral experiments in Autopilot consist of Task s. Tasks define the parameters, coordinate the hardware, and
perform the logic of an experiment.

Tasks may consist of one or multiple stages, completion of which constitutes a trial. Stages are analogous to states
in a finite-state machine, but don’t share their limitations: Tasks can use arbitrary transitions between stages and have
computation or hardware operation persist between stages.

Multiple Tasks can be combined to make protocols, in which subjects move between different tasks according to
graduation criteria like accuracy or number of trials. Protocols can thus be used to automate shaping routines that
introduce a subject to the experimental apparatus and task structure.

For more details on tasks, see guide_task

5

Autopilot Documentation, Release 0.3.0

6 Chapter 2. Tasks

CHAPTER

THREE

MODULE TOUR

Todo: A more comprehensive overview is forthcoming, but the documentation for the most important modules can
be found in the API documentation. A short tour for now. . .

• Terminal - user facing agent class used to control and configure program operation. See setup_terminal and
setup.setup_terminal

• gui - GUI classes built with PySide2/Qt5 used by the terminal

• plots - Classes to plot data from ongoing tasks

• pilot - Experimental agent that runs tasks on Raspberry Pis

• networking - Networking modules used for communication between agents, tasks, and hardware objects

• subject - Data and metadata storage

• hardware - Hardware objects that can be used in tasks

• tasks - Customizable and extendable Task templates

• stim - Stimulus generation & presentation, of which sound is currently the most heavily developed

7

Autopilot Documentation, Release 0.3.0

8 Chapter 3. Module Tour

CHAPTER

FOUR

QUICKSTART

Autopilot is an integrated system for coordinating all parts of an experiment, but it is also designed to be permissive
about how it is used and to make transitioning from existing lab tooling gentler – so its modules can be used indepen-
dently.

To get a sample of autopilot, you can check out some of its modules without doing a fully configured Installation . As
you get more comfortable using Autopilot, adopting more of its modules and usage patterns makes integrating each of
the separate modules simpler and more powerful, but we’ll get there in time.

4.1 Minimal Installation

Say you have a Raspberry Pi with Raspbian installed . Install autopilot and its basic system dependencies & configu-
ration like this:

pip3 install auto-pi-lot
python3 -m autopilot.setup.run_script env_pilot pigpiod

4.2 Blink an LED

Say you connect an LED to one of the gpio pins - let’s say (board numbered) pin 7. Love 7. Great pin.

Control the LED by using the gpio.Digital_Out class:

from autopilot.hardware.gpio import Digital_Out
led = Digital_Out(pin=7)

turn it on!
led.set(1)

turn if off!
led.set(0)

Or, blink “hello” in morse code using series() !

letters = [
['dot', 'dot', 'dot', 'dot'], # h
['dot'], # e
['dot', 'dash', 'dot', 'dot'], # l
['dot', 'dash', 'dot', 'dot'], # l

(continues on next page)

9

https://www.raspberrypi.org/documentation/installation/installing-images/README.md

Autopilot Documentation, Release 0.3.0

(continued from previous page)

['dash', 'dash', 'dash'] # o
]
make a series of 1's and 0's, which will last for the time_unit
times = {'dot': [1, 0], 'dash': [1, 1, 1, 0], 'space':[0]*3}
binary_letters = []
for letter in letters:

binary_letters.extend([value for char in letter for value in times[char]])
binary_letters.extend(times['space'])

time_unit = 100 #ms
led.series(id='hello', values=binary_letters, durations=time_unit)

4.3 Capture Video

Say you have a Raspberry Pi Camera Module , capture some video! First make sure the camera is enabled:

python3 -m autopilot.setup.run_script picamera

and then capture a video with cameras.PiCamera and write it to test_video.mp4:

from autopilot.hardware.cameras import PiCamera
cam = PiCamera(name="my_picamera", fps=30)
cam.write('test_video.mp4')
cam.capture(timed=10)

Note: Since every hardware object in autopilot is by default nonblocking (eg. work happens in multiple threads, you
can make other calls while the camera is capturing, etc.), this will work in an interactive python session but would
require that you sleep or call cam.stoppping.join() or some other means of keeping the process open.

While the camera is capturing, you can access its current frame in its frame attribute, or to make sure you get every
frame, by calling queue() .

4.4 Communicate Between Computers

Synchronization and coordination of code across multiple computers is a very general problem, and an increasingly
common one for neuroscientists as we try to combine many hardware components to do complex experiments.

Say our first raspi has an IP address 192.168.0.101 and we get another raspi whose IP is 192.168.0.102 . We can
send messages between the two using two networking.Net_Node s. networking.Net_Node s send messages with
a key and value , such that the key is used to determine which of its listens methods/functions it should call to
handle value .

For this example, how about we make pilot 1 ping pilot 2 and have it respond with the current time?

On pilot 2, we make a node that listens for messages on port 5000. The upstream and port arguments here don’t
matter since this node doesn’t initiate any connection, just received them (we’ll use a global variable here and hardcode
the return id since we’re in scripting mode, but there are better ways to do this in autopilot proper):

10 Chapter 4. Quickstart

https://www.raspberrypi.org/products/camera-module-v2/

Autopilot Documentation, Release 0.3.0

from autopilot.networking import Net_Node
from datetime import datetime
global node_2

def thetime(value):
global node_2
node_2.send(

to='pilot_1', key='THETIME',
value=datetime.now().isoformat()

)

node_2 = Net_Node(
id='pilot_2', router_port=5000, upstream='', port=9999,
listens={'WHATIS':thetime}

)

On pilot 1, we can then make a node that connects to pilot 2 and prints the time when it receives a response:

from autopilot.networking import Net_Node

node_1 = Net_Node(
id='pilot_1', upstream='pilot_2',
port=5000, upstream_ip = '192.168.0.102',
listens = {'THETIME':print}

)

node_1.send(to='pilot_1', key='WHATIS')

4.5 Realtime DeepLabCut

Autopilot integrates DeepLabCut-Live [KLS+20] ! You can use your own pretrained models (stored in your autopilot
user directory under /dlc) or models from the Model Zoo .

Now let’s say we have a desktop linux machine with DeepLabCut and dlc-live installed. DeepLabCut-Live is imple-
mented in Autopilot with the transform.image.DLC object, part of the transform module.

First, assuming we have some image img (as a numpy array), we can process the image to get an array of x,y positions
for each of the tracked points:

from autopilot import transform as t
import numpy as np

dlc = t.image.DLC(model_zoo='full_human')
points = dlc.process(img)

Autopilot’s transform module lets us compose multiple data transformations together with + to make deploying chains
of computation to other computers. How about we process an image and determine whether the left hand in the image
is raised above the head?:

select the two body parts, which will return a 2x2 array
dlc += t.selection.DLCSlice(select=('wrist1', 'forehead'))

(continues on next page)

4.5. Realtime DeepLabCut 11

https://github.com/DeepLabCut/DeepLabCut-live/
http://www.mackenziemathislab.org/dlc-modelzoo

Autopilot Documentation, Release 0.3.0

(continued from previous page)

slice out the 1st column (y) with a tuple of slice objects
dlc += t.selection.Slice(select=(

slice(start=0,stop=2),
slice(start=1,stop=2)

))

compare the first (wrist) y position to the second (forehead)
dlc += t.logical.Compare(np.greater)

use it!
dlc.process(img)

4.6 Put it Together - Close a Loop!

We’ve tried a few things, why not put them together?

Let’s use our two raspberry pis and our desktop GPU-bearing computer to record a video of someone and turn an LED
on when their hand is over their head. We could do this two (or one) computer as well, but let’s be extravagant.

Let’s say pilot 1, pilot 2, and the gpu computer have ip addresses of 192.168.0.101, 192.168.0.102, and 192.
168.0.103, respectively.

4.6.1 Pilot 1 - Image Capture

On pilot 1, we configure our PiCamera to stream to the gpu computer. While we’re at it, we might as well also save a
local copy of the video to watch later. The camera won’t stop capturing, streaming, or writing until we call capture():

from autopilot.hardware.cameras import PiCamera
cam = PiCamera()
cam.stream(to='gpu', ip='192.168.0.103', port=5000)
cam.write('cool_video.mp4')

4.6.2 GPU Computer

On the gpu computer, we need to receive frames, process them with the above defined transformation chain, and send
the results on to pilot 2, which will control the LED. We could do this with the objects that we’ve already seen (make
the transform object, make some callback function that sends a frame through it and give it to a Net_Node as a listen
method), but we’ll make use of the Transformer “child” object – which is a peculiar type of Task designed to perform
some auxiliary function in an experiment.

Rather than giving it an already-instantiated transform object, we instead give it a schematic representation of the
transform to be constructed – When used with the rest of autopilot, this is to both enable it to be dispatched flexibly to
different computers, but also to preserve a clear chain of data provenance by keeping logs of every parameter used to
perform an experiment.

The Transformer class uses make_transform() to reconstitute it, receives messages containing data to process,
and then forwards them on to some other node. We use its trigger mode, which only sends the value on to the final
recipient with the key 'TRIGGER' when it changes.:

12 Chapter 4. Quickstart

Autopilot Documentation, Release 0.3.0

from autopilot.tasks.children import Transformer
import numpy as np

transform_description = [
{

"transform": "DLC",
"kwargs": {'model_zoo':'full_human'}

},
{

"transform": "DLCSlice",
"kwargs": {"select": ("wrist1", "forehead")}

}
{

"transform": "Slice",
"kwargs": {"select":(

slice(start=0,stop=2),
slice(start=1,stop=2)

)}
},
{

"transform": "Compare",
"args": [np.greater],

},
]

transformer = Transformer(
transform = transform_description
operation = "trigger",
node_id = "gpu",
return_id = 'pilot_2',
return_ip = '192.168.0.102',
return_port = 5001,
return_key = 'TRIGGER',
router_port = 5000

)

4.6.3 Pilot 2 - LED

And finally on pilot 2 we just write a listen callback to handle the incoming trigger:

from autopilot.hardware.gpio import Digital_Out
from autopilot.networking.Net_Node

global led
led = Digital_Out(pin=7)

def led_trigger(value:bool):
global led
led.set(value)

node = Net_Node(
(continues on next page)

4.6. Put it Together - Close a Loop! 13

Autopilot Documentation, Release 0.3.0

(continued from previous page)

id='pilot_2', router_port=5001, upstream='', port=9999,
listens = {'TRIGGER':led_trigger}

)

There you have it! Just start capturing on pilot 1:

cam.capture()

4.7 What Next?

The rest of Autopilot expands on this basic use by providing tools to do the rest of your experiment, and to make
replicable science easy.

• write standardized experimental protocols that consist of multiple Task s linked by flexible graduation criteria

• extend the library to use your custom hardware, and make your work available to anyone with our plugins
system integrated with the autopilot wiki

• Use our GUI that makes managing many experimental rigs simple from a single computer.

and so on. . .

14 Chapter 4. Quickstart

https://wiki.auto-pi-lot.com

CHAPTER

FIVE

INSTALLATION

Autopilot must be installed on the devices running the Terminal and the Pilot agents. The Pilot runs on a Raspberry
Pi (remember: Pi for “Pilot”) and the Terminal runs on a regular desktop computer. So Autopilot must be installed on
both. This document will show you how to do that.

5.1 Supported Systems

OS
• Pilot: raspiOS >=Buster (lite recommended)
• Terminal: Ubuntu >=16.04

Python Version >=3.7,<3.10
Raspberry Pi >=3b

Autopilot is linux/mac only, and supports Python 3.7 - 3.9 (3.10 will be supported after updating the terminal to use
PySide 6). Some parts might accidentally work in Windows but we make no guarantees.

We have tried to take care to make certain platform-specific dependencies not break the entire package, so if you have
some difficulty installing autopilot on a non-raspberry-pi linux machine please submit an issue!

Note: The latest version of raspiOS (bullseye) causes a lot of problems with the Jack audio that we have not figured
out a workaround for. If you intend to use sound, we recommend sticking with Buster for now (available from their
legacy downloads section).

5.2 Pre-installation

5.2.1 On the Pilot device

For Pilots, we recommend starting with a fresh Raspbian Lite image (see the raspi installation documentation). Note
that the Lite image doesn’t include a desktop environment or GUI, just a command-line interface, but that’s all we need
for the Pilot. It’s easiest to connect a monitor and keyboard directly to the Pi while configuring it. Once it’s configured,
you won’t need to leave the monitor and keyboard attached, and/or you can choose to connect to it with ssh.

After the Pi has been started up for the first time, run sudo raspi-config to do things like connect to a wifi network, set
the time zone, and so on. It’s very important to change the password for the pi user account to a new one of your choice
so that you don’t get hacked, especially if you’re opening up ssh access.

It’s also best to update the Pi’s operating system at this time:

15

https://www.raspberrypi.com/software/operating-systems/#raspberry-pi-os-legacy
https://downloads.raspberrypi.org/raspios_lite_armhf_latest.torrent
https://www.raspberrypi.org/documentation/installation/installing-images/README.md

Autopilot Documentation, Release 0.3.0

sudo apt update
sudo apt upgrade -y

Now install the system packages that are required by Autopilot. You can do this by running this command, or it’s
also available as a setup script in the guided installation of Autopilot. (python -m autopilot.setup.run_script
env_pilot)

sudo apt install -y \
python3-dev \
python3-pip \
git \
libatlas-base-dev \
libsamplerate0-dev \
libsndfile1-dev \
libreadline-dev \
libasound-dev \
i2c-tools \
libportmidi-dev \
liblo-dev \
libhdf5-dev \
libzmq-dev \
libffi-dev

5.2.2 On the Terminal device

The following system packages are required by PySide2 (which no longer packages xcb):

sudo apt-get update && \
sudo apt-get install -y \
libxcb-icccm4 \
libxcb-image0 \
libxcb-keysyms1 \
libxcb-randr0 \
libxcb-render-util0 \
libxcb-xinerama0 \
libxcb-xfixes0

5.3 Installing Autopilot

Now we’re ready to install Autopilot on both the Pilot and Terminal devices. Follow the same instructions on both the
Pi and the computer.

We recommend using autopilot within a virtual environment. Since v0.5.0 autopilot has been packaged with po-
etry , which manages its own environment, but instructions for using virtualenv and conda are in the guide page
guide_venvs .

16 Chapter 5. Installation

https://python-poetry.org/
https://python-poetry.org/

Autopilot Documentation, Release 0.3.0

5.3.1 Optional dependencies

Since autopilot is intended to be deployed as differentiable agents, we have separated the requirements into different
groups of optional dependencies. In each of the following commands, use the appropriate package specifier like pip
install auto-pi-lot[pilot] or poetry install -E pilot

• pilot - includes pigpio to control GPIO pins and other pi-specific requirements

• terminal - includes PySide2 and other terminal-specific requirements

• docs - includes Sphinx et al.

• tests - includes pytest et al.

5.3.2 Method 1: Installation from PyPI

If you’re just taking a look at Autopilot, the easiest way to get started is to install it from PyPI!

pip3 install auto-pi-lot

5.3.3 Method 2: Installation from source

If you want to start writing your own experiments and tinkering with Autopilot, suggest you clone or fork the repository
. One of the design goals of autopilot is to minimize the distinction between “developer” and “user,” so we like to
encourage people to get their hands dirty with the source so your wonderful work can be integrated later.

First clone the repository:

git clone https://github.com/wehr-lab/autopilot.git
cd autopilot

Install with poetry - if you have poetry installed (pip install poetry), it is easiest to use it to manage your autopilot
environment:

poetry shell
poetry install
or if installing optional dependencies
poetry install -E <optional>

Install with pip - install an “editable” version with -e, this makes it so python uses the source code in your cloned
repository, rather than from the system/venv libraries:

pip3 install -e . [<optional>]

Note: Depending on your permissions, eg. if you are not installing to a virtual environment, you may get a permissions
error and need to install with the --user flag

Note: Development work is done on the dev branch, which may have additional features/bugfixes but is much less
stable! To use it just git checkout dev from your repository directory.

5.3. Installing Autopilot 17

https://github.com/wehr-lab/autopilot/

Autopilot Documentation, Release 0.3.0

5.3.4 Extra Dependencies

Different deployments depend on different packages! Eg. `Pilot`s on raspberry pis need some means of interacting
with the GPIO pins, and `Terminal`s need packages for the GUI. Rather than requiring them all for every installation,
we use a set of optional dependencies.

Depending on how you intend to use it, you will likely need some additional set of packages, specified like:

pip install auto-pi-lot[pilot]
or
pip install auto-pi-lot[terminal]
or if using an editable install
pip install .[pilot]

5.4 Configuration

After installation, set Autopilot up! Autopilot comes with a “guided installation” process where you can select the
actions you want and they will be run for you. The setup routine will:

• install needed system packages

• prepare your operating system and environment

• set system preferences

• create a user directory (default ~/autopilot) to store prefs, logs, data, etc.

• create a launch script

To start the guided process, run the following line.

python3 -m autopilot.setup

5.4.1 Select agent

Each runtime of Autopilot is called an “Agent”, each of which performs different roles within a system, and thus have
different requirements. If you’re running the setup script on the Pi, select “Pilot”. If you’re running the setup script on
a desktop computer, select “Terminal”. If you’re configuring multiple Pis, then select “Child” on the child Pis. Then
hit “OK”.

You can navigate this interface with the arrow keys, tab key, and enter key.

18 Chapter 5. Installation

Autopilot Documentation, Release 0.3.0

5.4.2 Select scripts

Now you will see a menu of potential scripts that can be run. Select the scripts you want to run, and then hit “OK”.
Note that even the simplest task (“free water”) requires pigpio, so you may want to include that one. You can see
the commands that will be run in each of these scripts with setup.run_script in the setup.scripts.SCRIPTS
dictionary.

5.4. Configuration 19

Autopilot Documentation, Release 0.3.0

Note: Autopilot uses a slightly modified version of pigpio (https://github.com/sneakers-the-rat/pigpio) that allows it
to get absolute timestamps (rather than system ticks) from gpio callbacks, increases the max number of scripts, etc. so
if you have a different version of pigpio installed you will need to remove it and replace it with this one (you can do so
with python -m autopilot.setup.run_script pigpiod

5.4.3 Configure Agent

Each agent has a set of systemwide preferences stored in <AUTOPILOT_DIR>/prefs.json and accessible from
autopilot.prefs.

5.4.4 Configure Hardware

If configuring a Pilot, you’ll be asked to configure your hardware.

Press ctrl+x to add Hardware, and fill in the relevant parameters (most are optional and can be left blank). Consult
the relevant page on the docs to see which arguments are relevant and how to use them.

20 Chapter 5. Installation

https://github.com/sneakers-the-rat/pigpio

Autopilot Documentation, Release 0.3.0

After completing this step, the file prefs.json will be created if necessary and populated with the information you just
provided. If it already exists, it will modified with the new information while preserving the previous preferences.

You can also manually edit the prefs.json file if you prefer. A template version for the Pilot is available that defines the
ports, LEDs, and solenoids that are necessary for the “free water” task, which may be a useful way to get started.

5.5 Networking

Note: Networking is a point of major future development, particularly how agents discover one another and how
ports are assigned. Getting networking to work is still a bit cumbersome, but you can track progress or contribute to
improving networking at issue #48

5.5.1 IP Addresses

Pilots connect to a terminal whose IP address is specified as TERMINALIP in prefs.json

The Pilot and Terminal devices must be on the same network and capable of reaching one another. You must first figure
out the IP address of each device with this command:

ipconfig

Let’s say your Terminal is at 192.168.1.42 and your Pilot is at 192.168.1.200. Replace these values with whatever you
actually find using ipconfig.

Then, you can test that each device can see the other with ping. On the Terminal, run:

ping 192.168.1.200

And on the Pilot, run:

5.5. Networking 21

https://groups.google.com/g/autopilot-users/c/_MqzLDDq3CE
https://github.com/wehr-lab/autopilot/issues/48

Autopilot Documentation, Release 0.3.0

ping 192.168.1.42

If that doesn’t work, there is something preventing the computers from communicating from one another, typically this
is the case if the computers are on university/etc. internet that makes it difficult for devices to connect to one another.
We recommend networking agents together using a local router or switch (though some have reported being able to use
their smartphone’s hotspot in a pinch).

5.5.2 Ports

Agents use two prefs to configure their ports

• MSGPORT is the port that the agent receives messages on

• PUSHPORT is the port of the ‘upstream’ agent that it connects to.

So, if connecting a Pilot to a Terminal, the PUSHPORT of the Pilot should match the MSGPORT of the Terminal.

Ports need to be “open,” but the central operation of a firewall is to “close” them. To open a port if, for example, you
are using ufw on ubuntu (replacing with whatever port you’re trying to open to whatever ip address):

sudo ufw allow from 192.168.1.200 to any port 5560

5.6 Testing the Installation

A launch script should have been created by setup_autopilot at <AUTOPILOT_DIR>/launch_autopilot.sh –
this is the primary entrypoint to autopilot, as it allows certain system-level commands to precede launch (eg. activating
virtual environments, enlarging shared memory, killing conflicting processes, launching an x server, etc.).

To launch autopilot:

~/autopilot/launch_autopilot.sh

Note: Selecting the script alias in setup_autopilot allows you to call the launch script by just typing autopilot

The actual launch call to autopilot resembles:

python3 -m autopilot.core.<AGENT_NAME> -f ~/autopilot/prefs.json

22 Chapter 5. Installation

https://groups.google.com/g/autopilot-users/c/JvWIPpYY0TI/m/fzSBET8PAAAJ
https://groups.google.com/g/autopilot-users/c/JvWIPpYY0TI/m/fzSBET8PAAAJ

CHAPTER

SIX

TRAINING A SUBJECT

After you have set up a Terminal and a Pilot, launch the Terminal.

6.1 Connecting the Pilot

If the TERMINAL_IP and port information is correctly set in the prefs.json file of the Pilot, it should automatically
attempt to connect to the Terminal when it starts. It will send a handshake message that lets the Terminal know of its
existence, its IP address, and its state. Once the Terminal receives its initial message, it will refresh, adding an entry to
its pilot_db.json file and displaying a control panel for the pilot.

If the Pilot is not automatically detected, a pilot can be manually added with its name and IP using the “New Pilot”
command in the file menu.

6.2 Creating a Protocol

A Protocol is one or a collection of tasks which the subject can ‘graduate’ through based on configurable graduation
criteria. Protocols are stored as .json files in the protocols directory within prefs.BASEDIR.

23

Autopilot Documentation, Release 0.3.0

6.2.1 Using the Protocol Wizard

Warning: The Protocol Wizard does not currently support any Reward type except time, and the stimulus specifi-
cation widget is limited to specifying ‘L’(eft) and ‘R’(ight) sounds. This is related to the unification of the parameter
structure in Autopilot 0.3 (see To-Do). Protocols can be edited after creation in the Protocol Wizard using the format
examples in the manual protocol creation section below.

The Protocol Wizard allows you to build protocols using all the tasks in autopilot.tasks (specifically that are
registered in the TASK_LIST). It extracts the PARAMS dictionary from each task class, adds a few general parameters,
and allows the user to fill them.

For this example, we will create a protocol for a freely-moving two-alternative forced choice task1 . This task has three
‘nosepokes,’ which consist of an IR break beam sensor, a solenoid, and an LED. The subject is supposed to poke in the
center port to present a stimulus and begin a trial, and then report the identity of that stimulus category by poking in
the nosepokes on either side. If the subject is correct, they are rewarded with water.

It is relatively challenging for an animal subject to learn this task without having a few beginning shaping steps that
introduce it to the nature of the arena and the structure of the task. In this example we will program a three-step shaping
regimen:

• Step 1 - Free Water: The subject will be rewarded for merely poking the IR sensor in order to let them know
that in this universe water comes out of these particular holes in the wall

• Step 2 - Request Rewards: The task will operate as normal (stimuli are presented, etc.), but the subject will be
rewarded for the initial center-poke as well as for a correct answer. This teaches them the temporal structure of
the task – center first, then side ports.

• Step 3 - Frequency Discrimination: The final step of the protocol, the mouse is taught to respond left to a
low-frequency tone and right to a high-frequency tone.

1. To start, select New Protocol from the ‘file’ menu.

2. Add a step from the list of tasks in the leftmost column by selecting it and pressing the ‘+’ button. Here we are
adding the Free Water step.

3. Specify the parameters for the task in the rightmost window – we give 20ms of water every time the subject poke,
etc.

4. Add the second “Request Rewards” step, the remaining options that are configured are: * list * of * options

5. Press ok, save and name the protocol file.

6. That leaves us with a protocol file:

[
{

"allow_repeat": false,
"graduation": {

"type": "n_trials",
"value": {

"current_trial": "0",
"n_trials": "100",
"type": "n_trials"

}
},

(continues on next page)

1 Yes we are aware that the “two-alternative forced choice” task described here is actually maybe called a “yes-no task” because there is only one
stimulus presented at a time. The literature appears stuck with this term, however.

24 Chapter 6. Training a Subject

Autopilot Documentation, Release 0.3.0

6.2. Creating a Protocol 25

Autopilot Documentation, Release 0.3.0

(continued from previous page)

"reward": "20",
"step_name": "Free Water",
"task_type": "Free Water"

},
{

"bias_mode": 0,
"correction": true,
"correction_pct": "10",
"graduation": {

"type": "n_trials",
"value": {

"current_trial": "0",
"n_trials": "200",
"type": "n_trials"

}
},
"punish_stim": false,
"req_reward": true,
"reward": "20",
"step_name": "request_rewards",
"stim": {

"sounds": {
"L": [

{
"amplitude": "0.01",
"duration": "100",
"frequency": "4000",

(continues on next page)

26 Chapter 6. Training a Subject

Autopilot Documentation, Release 0.3.0

6.2. Creating a Protocol 27

Autopilot Documentation, Release 0.3.0

(continued from previous page)

"type": "Tone"
}

],
"R": [

{
"amplitude": "0.01",
"duration": "100",
"frequency": "10000",
"type": "Tone"

}
]

},
"tag": "Sounds",
"type": "sounds"

},
"task_type": "2AFC"

},
{

"bias_mode": 0,
"correction": true,
"correction_pct": "10",
"graduation": {

"type": "accuracy",
"value": {

"threshold": "80",
"type": "accuracy",
"window": "1000"

}
},
"punish_stim": false,
"req_reward": false,
"reward": "20",
"step_name": "2AFC",
"stim": {

"sounds": {
"L": [

{
"amplitude": "0.01",
"duration": "25",
"frequency": "100",
"type": "Tone"

}
],
"R": [

{
"amplitude": "0.01",
"duration": "100",
"frequency": "100",
"type": "Tone"

}
]

},

(continues on next page)

28 Chapter 6. Training a Subject

Autopilot Documentation, Release 0.3.0

(continued from previous page)

"tag": "Sounds",
"type": "sounds"

},
"task_type": "2AFC"

}
]

6.2.2 Manual Protocol Creation

Protocols can be created manually by. . .

1. Extracting the task specific parameters, eg:

params = autopilot.tasks.Nafc.PARAMS
for example...
params['param_1'] = value_1

2. Adding general task parameters stim, reward, graduation, step_name, and task_type. These are just exam-
ples, the stim and reward fields can be any parameters consumed by a Reward_Manager or Stimulus_Manager.
The graduation field can be any parameters consumed by a Graduation object. The step_name and task_type
need to be strings, the task_type corresponding to a key in the TASK_LIST.:

params.update({
'stim': {

'type': 'sounds',
'sounds': {

'L':[...],
'R':[...]

}
},
'reward': {

'type': 'volume',
'value': 2.5

},
'graduation': {

'type': 'accuracy',
'value': {

'threshold': 0.8,
'window': 1000

}
},
'step_name': 'cool_new_step',
'task_type': 'NAFC'

})

An example for our speech task can be found in autopilot.tasks.protocol_scripts.

6.2. Creating a Protocol 29

Autopilot Documentation, Release 0.3.0

6.3 Creating a Subject

A Subject stores the data, protocol, and history of a subject. Each subject is implicitly assigned to a Pilot by virtue
of the structure of the pilot_db.json file, but they can be switched by editing that file.

1. Create a subject by clicking the + button in the control panel of a particular Pilot

2. Fill out the basic biographical information

Todo: Currently the biographical fields are hardcoded in the Subject class. In the future we will allow users to create
their own Subject schema where, for example, ‘genotype’ may not be as relevant.

3. Assign the subject to a protocol and step. Notice how the task we created earlier is here!

By creating one, we create an HDF5 file that stores a serialized version of the .json protocol file that was generated
above, as well as the basic directory and table structure to enable the subject to store data from running the task.

30 Chapter 6. Training a Subject

Autopilot Documentation, Release 0.3.0

6.3. Creating a Subject 31

Autopilot Documentation, Release 0.3.0

32 Chapter 6. Training a Subject

Autopilot Documentation, Release 0.3.0

6.4 Running the Task

1. Select the subject’s name and press the start button! The Terminal will send a START message to the Pilot that
includes the parameter dictionary for the current step, and if the Pilot is configured with the hardware required
in the HARDWARE dictionary of the task, it should run.

2. The Terminal will initialize the Pilot’s plot using the parameters in the task’s PLOT dictionary and display data
as it is received.

6.5 Debugging a Task

If a Pilot doesn’t start the task appropriately, if you have installed the Pilot as a system daemon you can retrieve the logs
and see the stack trace by accessing the pilot via SSH:

ssh pi@your.pi.ip.address

Note: Because Raspberry Pis are common prey on the internet, we strongly advise changing the default password,
installing RSA keys to access the pi, and disabling password access via SSH.

and then printing the end of the logs with journalctl:

print the -end of the logs for system -unit autopilot
journalctl -u autopilot -e

Important: This guide and guide_hardware are lightly out of date with v0.4.0 of autopilot, but still largely reflect the
program design and its operation. For a simpler task, see Blink .

Many of these things can be done more elegantly, more simply, etc. now but we are a very small team and can only do
so much work between releases! We’d be happy to get documentation requests or even a pull request or two to help us
out until we can get to it :)

6.4. Running the Task 33

https://github.com/wehr-lab/autopilot/issues/32

Autopilot Documentation, Release 0.3.0

34 Chapter 6. Training a Subject

CHAPTER

SEVEN

WRITING A TASK

Some concepts of task design are also discussed in section 3.1 of the whitepaper.

7.1 The Nafc Task

The Nafc class serves as an example for new task designs.

To demonstrate the general structure of Autopilot tasks, let’s build it from scratch.

7.1.1 The Task class

We start by subclassing the Task class and initializing it.

from autopilot.tasks import Task

class Nafc(Task):

def __init__(self):
super(Nafc, self).__init__()

This gives our new task some basic attributes and methods, including the init_hardware() method for initializing
the HARDWARE dictionary and the handle_trigger() method for handling GPIO triggers.

7.1.2 Four Task Attributes

We then add the four elements of a task description:

1. A PARAMS dictionary defines what parameters are needed to define the task

2. A Data (tables.IsDescription) descriptor describes what data will be returned from the task

3. A PLOT dictionary that maps the data output to graphical elements in the GUI.

4. A HARDWARE dictionary that describes what hardware will be needed to run the task.

35

https://www.biorxiv.org/content/10.1101/807693v1

Autopilot Documentation, Release 0.3.0

PARAMS

Each parameter needs a human readable tag that will be used for GUI elements, and a type, currently one of:

• int: integers

• bool: boolean (checkboxes in GUI)

• list: list of possible values in {‘Name’:int} pairs

• sounds: a autopilot.core.gui.Sound_Widget to define sounds.

To maintain order when opened by the GUI we use a odict rather than a normal dictionary.

from collections import odict

PARAMS = odict()
PARAMS['reward'] = {'tag':'Reward Duration (ms)',

'type':'int'}
PARAMS['req_reward'] = {'tag':'Request Rewards',

'type':'bool'}
PARAMS['punish_stim'] = {'tag':'White Noise Punishment',

'type':'bool'}
PARAMS['punish_dur'] = {'tag':'Punishment Duration (ms)',

'type':'int'}
PARAMS['correction'] = {'tag':'Correction Trials',

'type':'bool'}
PARAMS['correction_pct'] = {'tag':'% Correction Trials',

'type':'int',
'depends':{'correction':True}}

PARAMS['bias_mode'] = {'tag':'Bias Correction Mode',
'type':'list',
'values':{'None':0,

'Proportional':1,
'Thresholded Proportional':2}}

PARAMS['bias_threshold'] = {'tag': 'Bias Correction Threshold (%)',
'type':'int',
'depends':{'bias_mode':2}}

PARAMS['stim'] = {'tag':'Sounds',
'type':'sounds'}

Note: See the Nafc class for descriptions of the task parameters.

These will be taken as key-value pairs when the task is initialized. ie.:

PARAMS['correction'] = {'tag': 'Correction Trials',
'type': 'bool'}

will be used to initialize the task like:

Nafc(correction=True) # or False

36 Chapter 7. Writing a Task

Autopilot Documentation, Release 0.3.0

Data

There are two types of data,

• TrialData - where a single value for several variables is returned per ‘trial’, and

• ContinuousData - where values and timestamps are taken continuously, with either a fixed or variable interval

Both are defined by pytables tables.IsDescription objects. Specify each variable that will be returned and its type
using a tables.Col object:

Note: See the pytables documentation for a list of Col types

import tables

class TrialData(tables.IsDescription):
trial_num = tables.Int32Col()
target = tables.StringCol(1)
response = tables.StringCol(1)
correct = tables.Int32Col()
correction = tables.Int32Col()
RQ_timestamp = tables.StringCol(26)
DC_timestamp = tables.StringCol(26)
bailed = tables.Int32Col()

The column types are names with their type and their bit depth except for the StringCol which takes a string length
in characters.

The TrialData object is used by the Subject class when a task is assigned to create the data storage table.

PLOT

The PLOT dictionary maps the data returned from the task to graphical elements in the Terminal’s Plot. Specifically,
when the task is started, the Plot object creates the graphical element (eg. a Point) and then calls its update method
with any data that is received through its Node.

Data-to-graphical mappings are defined in a data subdictionary, and additional parameters can be passed to the plot –
in the below example, for example, a chance_bar is drawn as a horizontal line across the plot. By default it is drawn at
0.5, but its height can be set with an additional parameter chance_level. Available graphical primitives are registered
in the plots.PLOT_LIST, and additional parameters are documented in the Plot class.

Data is plotted either by trial (default) or by timestamp (if PLOT['continuous'] != True). Numerical data is plotted
(on the y-axis) as expected, but further mappings can be defined by extending the graphical element’s update method
– eg. ‘L’(eft) maps to 0 and ‘R’(ight) maps to 1 by default.

PLOT = {
'data': {

'target' : 'point',
'response' : 'segment',
'correct' : 'rollmean'

},
'chance_bar' : True, # Draw a red bar at 50%
'roll_window' : 50 # n trials to take rolling mean over

}

7.1. The Nafc Task 37

https://www.pytables.org/index.html
https://www.pytables.org/usersguide/libref/declarative_classes.html#col-sub-classes

Autopilot Documentation, Release 0.3.0

The above PLOT dictionary produces this pretty little plot:

Todo: screenshot of default nafc plot

HARDWARE

The HARDWARE dictionary maps a hardware type (eg. POKES) and identifier (eg. 'L') to a Hardware object. The task
uses the hardware parameterization in the prefs file (also see setup_pilot) to instantiate each of the hardware objects,
so their naming system must match (ie. there must be a prefs.PINS['POKES']['L'] entry in prefs for a task that
has a task.HARDWARE['POKES']['L'] object).

from autopilot.core import hardware

HARDWARE = {
'POKES':{

'L': hardware.Beambreak,
'C': hardware.Beambreak,
'R': hardware.Beambreak

},
'LEDS':{

'L': hardware.LED_RGB,
'C': hardware.LED_RGB,
'R': hardware.LED_RGB

},
'PORTS':{

'L': hardware.Solenoid,
'C': hardware.Solenoid,
'R': hardware.Solenoid

}
}

7.1.3 Initialization

First, the parameters that are given to the task when it is initialized are stored as attributes, either by unpacking
**kwargs. . .

class Nafc(Task):

def __init__(**kwargs):
for key, value in kwargs.items():

setattr(self, key, value)

Or explicitly, which is recommended as it is more transparent:

class Nafc(Task):

def __init__(self, stage_block=None, stim=None, reward=50, req_reward=False,
punish_stim=False, punish_dur=100, correction=False, correction_pct=50.,
bias_mode=False, bias_threshold=20, current_trial=0, **kwargs):

(continues on next page)

38 Chapter 7. Writing a Task

Autopilot Documentation, Release 0.3.0

(continued from previous page)

self.req_reward = bool(req_reward)
self.punish_stim = bool(punish_stim)
self.punish_dur = float(punish_dur)
self.correction = bool(correction)
self.correction_pct = float(correction_pct)/100
self.bias_mode = bias_mode
self.bias_threshold = float(bias_threshold)/100

etc...

Then the hardware is instantiated using a method inherited from the Task class:

self.init_hardware()

Stimulus managers need to be instantiated separately. Currently, stimulus management details like correction trial
percentage or bias correction are given as separate parameters, but will be included in the stim parameter in the future:

use the init_manager wrapper to choose the correct stimulus manager
self.stim_manager = init_manager(stim)

give the sounds a function to call when they end
self.stim_manager.set_triggers(self.stim_end)

if self.correction:
self.stim_manager.do_correction(self.correction_pct)

if self.bias_mode:
self.stim_manager.do_bias(mode=self.bias_mode,

thresh=self.bias_threshold)

There are a few attributes that can be set at initialization that are unique:

• stage_block - if the task is structured such that the Pilot calls each stage method and returns the resulting data,
this threading.Event is used to wait between stages – an example will be shown below.

• stages - an iterator or generator that yields stage methods.

In this example we have structured the task such that its stages (described below) are called in an endless cycle:

This allows us to cycle through the task by just repeatedly calling self.stages.next()
stage_list = [self.request, self.discrim, self.reinforcement]
self.stages = itertools.cycle(stage_list)

7.1.4 Stage Methods

The logic of a task is implemented in one or several stages. This example Nafc class uses three:

1. request - precomputes the target and distractor ports, caches the stimulus, and sets the stimulus to play when
the center port is entered

2. discrim - sets the reward and punishment triggers for the target and distractor ports

3. reinforcement - computes the trial result and readies the task for the next trial.

7.1. The Nafc Task 39

https://docs.python.org/3/library/threading.html#threading.Event

Autopilot Documentation, Release 0.3.0

This task does not call its own stage methods, as we will see in the Wheel task example, but allows the Pilot to control
them, and advances through stages using a stage_block that allows passage whenever a GPIO trigger is activated.
Data is returned from each of the stage methods and is then returned to the Terminal by the Pilot.

Request

First, the stage_block is cleared so that the task will not advance until one of the triggers is called. The target and
distractor ports are yielded by the stim_manager along with the stimulus object.

def request(self, *args, **kwargs):
Set the event block
self.stage_block.clear()

get next stim
self.target, self.distractor, self.stim = self.stim_manager.next_stim()
buffer it
self.stim.buffer()

Then triggers are stored under the name of the trigger (eg. ‘C’ for a trigger that comes from the center poke). All
triggers need to be callable, and can be set either individually or as a series, as in this example. A lambda function is
used to set a trigger with arguments – the center LED is set from green to blue when the stimulus starts playing.

A single task class can support multiple operating modes depending on its parameters. If the task has been asked to
give request rewards (see Training a Subject), it adds an additional trigger to open the center solenoid.

set the center light to green before the stimulus is played.
self.set_leds({'C': [0, 255, 0]})

Set sound trigger and LEDs
We make two triggers to play the sound and change the light color
change_to_blue = lambda: self.pins['LEDS']['C'].set_color([0,0,255])

set triggers
if self.req_reward is True:

self.triggers['C'] = [self.stim.play,
self.stim_start,
change_to_blue,
self.pins['PORTS']['C'].open]

else:
self.triggers['C'] = [self.stim.play,

self.stim_start,
change_to_blue]

Finally, the data for this stage of the trial is gathered and returned to the Pilot. Since stimuli have variable numbers
and names of parameters, both the table set up by the Subject and the data returning routine here extract stimulus
parameters programmatically.

self.current_trial = self.trial_counter.next()
data = {

'target' : self.target,
'trial_num' : self.current_trial,
'correction' : self.correction_trial

}
get stim info and add to data dict

(continues on next page)

40 Chapter 7. Writing a Task

Autopilot Documentation, Release 0.3.0

(continued from previous page)

sound_info = {k:getattr(self.stim, k) for k in self.stim.PARAMS}
data.update(sound_info)
data.update({'type':self.stim.type})

return data

At the end of this function, the center LED is green, and if the subject pokes the center port the stimulus will play and
then the next stage method will be called.

The center LED also turns from green to blue when the stimulus begins to play and then turns off when it is finished.
This relies on additional methods that will be explained below.

Discrim

The discrim method simply sets the next round of triggers and returns the request timestamp from the current trial.
If either the target or distractor ports are triggered, the appropriate solenoid is opened or the punish method is
called.

The trial_num is returned each stage for an additional layer of redundancy in data alignment.

def discrim(self,*args,**kwargs):
clear stage block to wait for triggers
self.stage_block.clear()

set triggers
self.triggers[self.target] = [lambda: self.respond(self.target),

self.pins['PORTS'][self.target].open]
self.triggers[self.distractor] = [lambda: self.respond(self.distractor),

self.punish]

Only data is the timestamp
data = {'RQ_timestamp' : datetime.datetime.now().isoformat(),

'trial_num' : self.current_trial}
return data

Todo: pigpio can give us 5 microsecond measurement precision for triggers, currently we just use datetime.
datetime.now() for timestamps, but highly accurate timestamps can be had by stashing the ticks argument given
by pigpio to the handle_trigger() method. We will implement this if you don’t first :)

Reinforcement

This method computes the results of the tasks and returns them with another timestamp. This stage doesn’t clear the
stage_block because we want the next trial to be started immediately after this stage completes.

The results of the current trial are given to the stimulus manager’s update() method so that it can keep track of trial
history and do things like bias correction, etc.

The TRIAL_END flag in the data signals to the Subject class that the trial is finished and its row of data should be
written to disk. This, along with providing the trial_num on each stage, ensure that data is not misaligned between
trials.

7.1. The Nafc Task 41

https://docs.python.org/3/library/datetime.html#datetime.datetime.now
https://docs.python.org/3/library/datetime.html#datetime.datetime.now

Autopilot Documentation, Release 0.3.0

def reinforcement(self,*args,**kwargs):

if self.response == self.target:
self.correct = 1

else:
self.correct = 0

update stim manager
self.stim_manager.update(self.response, self.correct)

data = {
'DC_timestamp' : datetime.datetime.now().isoformat(),
'response' : self.response,
'correct' : self.correct,
'trial_num' : self.current_trial,
'TRIAL_END' : True

}
return data

7.1.5 Additional Methods

Autopilot doesn’t confine the logic of a task to its stage methods, instead users can use additional methods to give their
task additional functionality.

These can range from trivial methods that just store values, such as the respond and stim_start methods:

def respond(self, pin):
self.response = pin

def stim_start(self):
self.discrim_playing = True

To more complex methods that operate effectively like stages, like the punish method, which flashes the LEDs and
plays a punishment stimulus like white noise if it has been configured to do so:

def punish(self):
clear the punish block to the task doesn't advance while
punishment is delivered
self.punish_block.clear()

if there is some punishment stimulus, play it
if self.punish_stim:

self.stim_manager.play_punishment()

flash LEDs and then clear the block once they are finished.
self.flash_leds()
threading.Timer(self.punish_dur / 1000.,

self.punish_block.set).start()

Additionally, since we gave the stimulus manager a trigger method that is called when the stimulus ends, we can turn
the light blue when a stimulus is playing, and turn it off when it finishes

42 Chapter 7. Writing a Task

Autopilot Documentation, Release 0.3.0

def stim_end(self):
"""
called by stimulus callback

set outside lights blue
"""
Called by the discrim sound's table trigger when playback is finished
Used in punishing leaving early
self.discrim_playing = False
#if not self.bailed and self.current_stage == 1:
self.set_leds({'L':[0,255,0], 'R':[0,255,0]})

7.2 Distributed Go/No-Go - Using Child Agents

To demonstrate the use of Child agents, we’ll build the distributed Go/No-Go task de-
scribed in section 4.3 of the Autopilot whitepaper.

In short, a subject runs on a circular running wheel whose velocity is measured by a laser
computer mouse. When the subject ‘fixates’ by slowing below a threshold velocity, an
drifting Gabor grating is presented. If the grating changes angles, the subject is rewarded
if they lick in an IR beambreak sensor. If the grating doesn’t change angles, the subject
is rewarded if they refrain from licking until the stimulus has ended.

7.2.1 Additional Prefs

To use a Child with this task, we will need to have a second Raspberry Pi setup with the
same routine as a Pilot, except it needs the following values in its prefs.json file:

Child Prefs

{
"NAME" : "wheel_child",
"LINEAGE" : "CHILD",
"PARENTID" : "parent_pilot",
"PARENTIP" : "ip.of.parent.pilot",
"PARENTPORT": "<MSGPORT of parent>",

}

And the parent pilot needs to have

Parent Prefs

{
"NAME": "parent_pilot",
"CHILDID": "wheel_child",
"LINEAGE": "PARENT"

}

7.2. Distributed Go/No-Go - Using Child Agents 43

Autopilot Documentation, Release 0.3.0

7.2.2 Go/No-Go Parameterization

The parameterization for this task is similar to that of the Nafc task above with a few
extensions. . .

from autopilot.tasks import Task

class GoNoGo(Task):

Task parameterization
PARAMS = odict()
PARAMS['reward'] = {'tag': 'Reward Duration (ms)',

'type': 'int'}
PARAMS['timeout'] = {'tag':'Delay Timeout (ms)',

'type':'int'}
PARAMS['stim'] = {'tag': 'Visuals',

'type': 'visuals'}

Plot parameterization
PLOT = {

'data': {
'x': 'shaded',
'target': 'point',
'response': 'segment'

},
our plot will use time as its x-axis rather than the␣

→˓trial number
'continuous': True

}

TrialData descriptor
class TrialData(tables.IsDescription):

trial_num = tables.Int32Col()
target = tables.BoolCol()
response = tables.StringCol(1)
correct = tables.Int32Col()
RQ_timestamp = tables.StringCol(26)
DC_timestamp = tables.StringCol(26)
shift = tables.Float32Col()
angle = tables.Float32Col()
delay = tables.Float32Col()

We add one additional data descriptor that describes the continuous data that will be
sent from the Wheel object:

class ContinuousData(tables.IsDescription):
x = tables.Float64Col()
y = tables.Float64Col()
t = tables.Float64Col()

The hardware specification is also similar, with one additional Flag object which behaves identically to the Beambreak
object with reversed logic (triggered by 0->1 rather than 1->0).

44 Chapter 7. Writing a Task

Autopilot Documentation, Release 0.3.0

HARDWARE = {
'POKES': {

'C': hardware.Beambreak,
},
'LEDS': {

'C': hardware.LED_RGB,
},
'PORTS': {

'C': hardware.Solenoid,
},
'FLAGS': {

'F': hardware.Flag
}

}

Finally, we add an additional CHILDREN dictionary to specify the type of Child that we need to run the task, as well as
any additional parameters needed to configure it.

The task_type must refer to some key in the autopilot.tasks.CHILDREN_LIST.

Note: The Child agent is a subconfiguration of the Pilot agent, they will be delineated more explicitly as the agent
framework is solidified.

CHILDREN = {
'WHEEL': {

'task_type': "Wheel Child",
}

}

7.2.3 Initialization

When initializing this task, we need to make our own Net_Node object as well as initialize our child. Assuming that
the child is connected to the parent and appropriately configured (see the additional params above), then things should
go smoothly.

Warning: Some of the parameters – most egregiously the Grating stimulus – are hardcoded in the initialization
routine. This is bad practice but an unfortunately necessary evil because the visual stimulus infrastructure is not
well developed yet.

from autopilot.stim.visual.visuals import Grating

def __init__(self, stim=None, reward = 50., timeout = 1000., stage_block = None,
punish_dur = 500., **kwargs):

super(GoNoGo, self).__init__()

we receive a stage_block from the pilot as usual, we won't use it
for task operation though.
self.stage_block = stage_block
self.trial_counter = itertools.count()

(continues on next page)

7.2. Distributed Go/No-Go - Using Child Agents 45

Autopilot Documentation, Release 0.3.0

(continued from previous page)

save parameters passed to us as arguments
self.punish_dur = punish_dur
self.reward = reward
self.timeout = timeout
self.subject = kwargs['subject']

init hardware and set reward as before
self.init_hardware()
self.set_reward(self.reward)

hardcoding stimulus while visual stim still immature
self.stim = Grating(angle=0, freq=(4,0), rate=1, size=(1,1), debug=True)

self.stages = itertools.cycle([self.request, self.discrim, self.reinforce])

Initializing the Net Node.
The Net_Node gets the following arguments:

• id: The name that is used to identify the task’s networking object so other networking objects can send it mes-
sages. We prefix the pilot’s prefs.NAME with T_ because it is a task, though this is not required.

• upstream: The name of the network node that is directly upstream from us, we will be sending our messages to
the Pilot that is running us – and thus address it by its name

• port: The port of our upstream mode, most commonly the prefs.MSGPORT

• listens: A dictionary that maps messages with different ``KEY``s to specific handling methods. Since we
don’t need to receive any data for this task, this is blank,

• instance: Optional, denotes whether this node shouldn’t be the only node that exists within the Agent – ie. it
uses the same instance of the tornado IOLoop as other nodes.

self.node = Net_Node(id="T_{}".format(prefs.NAME),
upstream=prefs.NAME,
port=prefs.MSGPORT,
listens={},
instance=True)

And then to initialize our Child we construct a message to send along to it.

Note that we send the message to prefs.NAME – we don’t want to have to know the IP address/etc. for our child because
it connects to us – so the Station object handles sending it along with its Pilot_Station.l_child() listen.

construct a message to send to the child
value = {

'child': {'parent': prefs.NAME, 'subject': self.subject},
'task_type': self.CHILDREN['WHEEL']['task_type'],
'subject': self.subject

}

send to the station object with a 'CHILD' key
self.node.send(to=prefs.NAME, key='CHILD', value=value)

46 Chapter 7. Writing a Task

Autopilot Documentation, Release 0.3.0

7.2.4 The Child Task

The Wheel_Child task is a very thin wrapper around a Wheel object, which does most of the work.

It creates a stages iterator with a function that returns nothing to fit in with the general task structure.

class Wheel_Child(object):
STAGE_NAMES = ['collect']

PARAMS = odict()
PARAMS['fs'] = {'tag': 'Velocity Reporting Rate (Hz)',

'type': 'int'}
PARAMS['thresh'] = {'tag': 'Distance Threshold',

'type': 'int'}

HARDWARE = {
"OUTPUT": Digital_Out,
"WHEEL": Wheel

}

def __init__(self, stage_block=None, fs=10, thresh=100, **kwargs):
self.fs = fs
self.thresh = thresh

self.hardware = {}
self.hardware['OUTPUT'] = Digital_Out(prefs.PINS['OUTPUT'])
self.hardware['WHEEL'] = Wheel(digi_out = self.hardware['OUTPUT'],

fs = self.fs,
thresh = self.thresh,
mode = "steady")

self.stages = cycle([self.noop])
self.stage_block = stage_block

def noop(self):
just fitting in with the task structure.
self.stage_block.clear()
return {}

def end(self):
self.hardware['WHEEL'].release()
self.stage_block.set()

7.2. Distributed Go/No-Go - Using Child Agents 47

Autopilot Documentation, Release 0.3.0

7.2.5 A Very Smart Wheel

Most of the Child’s contribution to the task is performed by the Wheel object.

The Wheel accesses a USB mouse connected to the Pilot, continuously collects its movements, and reports them back
to the Terminal with a specified frequency (fs) with an internal Net_Node

An abbreviated version. . .

from inputs import devices

class Wheel(Hardware):

def __init__(self, mouse_idx=0, fs=10, thresh=100, thresh_type='dist', start=True,
digi_out = False, mode='vel_total', integrate_dur=5):

self.mouse = devices.mice[mouse_idx]
self.fs = fs
self.thresh = thresh
time between updates
self.update_dur = 1./float(self.fs)

The Wheel has three message types,

• 'MEASURE' - the main task is telling us to monitor for a threshold crossing, ie. previous trial is over and it’s
ready for another one.

• 'CLEAR' - stop measuring for a threshold crossing event!

• 'STOP' - the task is over, clear resources and shut down.

initialize networking
self.listens = {'MEASURE': self.l_measure,

'CLEAR' : self.l_clear,
'STOP' : self.l_stop}

self.node = Net_Node('wheel_{}'.format(mouse_idx),
upstream=prefs.NAME,
port=prefs.MSGPORT,
listens=self.listens,
)

if we are being used in a child object,
we send our trigger via a GPIO pin
self.digi_out = digi_out

self.thread = None

if start:
self.start()

def start(self):
self.thread = threading.Thread(target=self._record)
self.thread.daemon = True
self.thread.start()

48 Chapter 7. Writing a Task

Autopilot Documentation, Release 0.3.0

The wheel starts two threads, one that captures mouse movement events and puts them in a queue, and another that
processes movements, transmits them to the Terminal, and handles the threshold triggers when the subject falls below
a certain velocity.

def _mouse(self):
read mouse movements and put them in a queue
while self.quit_evt:

events = self.mouse.read()
self.q.put(events)

def _record(self):

threading.Thread(target=self._mouse).start()

a threading.Event is used to terminate the wheel's operation
while not self.quit_evt.is_set():

... mouse movements are collected into a 2d numpy array ...

if the main task has told us to measure for a velocity threshold
we check if our recent movements (move) trigger the threshold
if self.measure_evt.is_set():

do_trigger = self.check_thresh(move)
if do_trigger:

self.thresh_trig()
self.measure_evt.clear()

and we report recent movements back to the Terminal
the recent velocities and timestamp have been calculated as
x_vel, y_vel, and nowtime
self.node.send(key='CONTINUOUS',

value={
'x':x_vel,
'y':y_vel,
't':nowtime

})

If the threshold is triggered, a method (. . . ``thresh_trig``. . .) is called that sends a voltage pulse through the
Digital_Out given to it by the Child task.

def thresh_trig(self):
if self.digi_out:

self.digi_out.pulse()

7.2. Distributed Go/No-Go - Using Child Agents 49

Autopilot Documentation, Release 0.3.0

7.2.6 Go/No-Go Stage Methods

After the child is initialized, the Parent pilot begins to call the three stage functions for the task in a cycle

Very similar to the Nafc task above. . .

• request - Tell the Child to begin measuring for a velocity threshold crossing, prepare the stimulus for delivery

• discrim - Present the stimulus

• reinforce - Reward the subject if they were correct

The code here has been abbreviated for the purpose of the example:

def request(self):
Set the event lock
self.stage_block.clear()
wait on any ongoing punishment stimulus
self.punish_block.wait()

set triggers
self.triggers['F'] = [

lambda: self.stim.play('shift', self.shift)
]

tell our wheel to start measuring
self.node.send(to=[prefs.NAME, prefs.CHILDID, 'wheel_0'],

key="MEASURE",
value={'mode':'steady',

'thresh':100})

return data from current stage
self.current_trial = self.trial_counter.next()
data = {

'target': self.target, # whether to 'go' or 'not go'
'shift': self.shift, # how much to shift the

angle of the stimulus
'trial_num': self.current_trial

}

return data

def discrim(self):
if the subject licks on a good trial, reward.
set a trigger to respond false if delay time elapses
if self.target:

self.triggers['C'] = [lambda: self.respond(True), self.pins['PORTS']['C'].open]
self.triggers['T'] = [lambda: self.respond(False), self.punish]

otherwise punish
else:

self.triggers['C'] = [lambda: self.respond(True), self.punish]
self.triggers['T'] = [lambda: self.respond(False), self.pins['PORTS']['C'].open]

(continues on next page)

50 Chapter 7. Writing a Task

Autopilot Documentation, Release 0.3.0

(continued from previous page)

the stimulus has just started playing, wait a bit and then shift it (if we're gonna
choose a random delay
delay = 0.0
if self.shift != 0:

delay = (random()*3000.0)+1000.0
a delay timer is set that shifts the stimulus after
<delay> milliseconds
self.delayed_set(delay, 'shift', self.shift)

trigger the timeout in 5 seconds
self.timer = threading.Timer(5.0, self.handle_trigger, args=('T', True, None)).

→˓start()

return data to the pilot
data = {

'delay': delay,
'RQ_timestamp': datetime.datetime.now().isoformat(),
'trial_num': self.current_trial

}

return data

def reinforce(self):

stop timer if it's still going
try:

self.timer.cancel()
except AttributeError:

pass
self.timer = None

data = {
'DC_timestamp': datetime.datetime.now().isoformat(),
'response': self.response,
'correct': self.correct,
'trial_num': self.current_trial,
'TRIAL_END': True

}
return data

Viola.

Important: This guide and guide_task are lightly out of date with v0.4.0 of autopilot, but still largely reflect the
program design and its operation. This guide in particular became obsolete because most extensions to hardware objects
are now done by subclassing generic hardware classes like hardware.gpio.GPIO and their descendents, which make
it relatively clear what parts of the object need to be modified.

As such, this part of the docs was deprecated in v0.3.0 and has been mostly removed in v0.4.0 pending a fuller rewrite.

For now, see the API documentation section for hardware for more details on how to extend hardware classes :)

Sorry for the inconvenience, we are a very small team and can only do so much work between releases! We’d be happy

7.2. Distributed Go/No-Go - Using Child Agents 51

Autopilot Documentation, Release 0.3.0

to get documentation requests or even a pull request or two to help us out until we can get to it :)

52 Chapter 7. Writing a Task

https://github.com/wehr-lab/autopilot/issues/32

CHAPTER

EIGHT

WRITING A HARDWARE CLASS

There are precious few requirements for Hardware objects in Autopilot.

• Each class should have a release() method that stops any running threads and releases any system resources
– especially those held by pigpio.

• Each class should define a handful of class attributes when relevant
– trigger (bool) - whether the device is used to trigger an event. if True, assign_cb() must be

defined and the device will be given a callback function by the instantiating Task class

– type (str) - what this device should be known as in prefs. Not enforced currently, but will be.

– input and output (bool) - whether the device is an input or output device, if either

• When making threaded methods, care should be taken not to spawn an excessive number of running threads, but
this is a performance rather than a structural limit.

To use a hardware object in a task, its parameters (especially the pin number for pigpio-based hardware) should be
stored in prefs.json.

A few basic Hardware classes are dissected in this section to illustrate basic principles of their design, but we expect
Hardware objects to be extremely variable in their implementation and application.

8.1 GPIO with pigpio

Autopilot uses pigpio to interface with the Raspberry Pi’s GPIO pins. All pigpio objects require that a pigpiod daemon
is running as a background process. This used to be done by a launch script that started the pilots, but is now typically
launched by autopilot.external.start_pigpiod(), which is called by GPIO.init_pigpio() so in general you
shouldn’t need to worry about it. If pigpiod is open in a separate process, or left open from a previous crashed run of
Autopilot, you will likely need to kill that process before you can use more GPIO-based autopilot objects.

When instantiating a piece of hardware, it must connect to pigpiod by creating a pigpio.pi object, which allows com-
munication with the GPIO. This is provided by the GPIO.pig property. The rest of the methods of GPIO-based objects
are built around abstractions of commands to the pig. See gpio.LED_RGB for an example of a subclass that overrides
some methods from the gpio.GPIO metaclass to be able to control three PWM objects with a similar syntax as other
GPIO outputs.

53

http://abyz.me.uk/rpi/pigpio/
http://abyz.me.uk/rpi/pigpio/
http://abyz.me.uk/rpi/pigpio/python.html#pigpio.pi

Autopilot Documentation, Release 0.3.0

54 Chapter 8. Writing a Hardware Class

CHAPTER

NINE

PLUGINS & THE WIKI

Autopilot is integrated with a semantic wiki, a powerful tool that merges human-readable text with computer-readable
structured information, and blurs the lines between the two in the empowering interface of a wiki that allows anyone to
edit it. The autopilot wiki is available at:

https://wiki.auto-pi-lot.com

In addition to a system for storing, discussing, and knitting together a library of technical knowledge, the wiki is used
to manage Autopilot’s plugin system. The integrated plugin/wiki system is designed to

• make it easier to extend and hack existing autopilot classes, particularly Hardware and Task classes, without
needing to modify any of the core library code

• make it easier to share code across multiple rigs-in-use by allowing you to specify the name of the plugin on the
autopilot wiki so you don’t need to manually keep the code updated on all computers it’s used on

• make a gentler scaffold between using and contributing to the library – by developing in a plugin folder,
your code is likely very close, if it isn’t already, ready to integrate back into the main autopilot library. In the
meantime, anyone that is curious

• make it possible to encode semantic metadata about the plugin so that others can discover, modify, and
improve on it. eg. your plugin might control an array of stepper motors, and from that someone can cherrypick
code to run a single one, even if it wasn’t designed to do that.

• decentralize the development of autopilot, allowing anyone to extend it in arbitrary ways without needing
to go through a fork/merge process that is ultimately subject to the whims of the maintainer(s) (me), or even
an approval process to submit or categorize plugins. Autopilot seeks to be as noncoercive as possible while
embracing and giving tools to support the heterogeneity of its use.

• make it trivial for users to not only contribute plugins but design new types of plugin-like public interfaces. For
example, if you wanted to design an interface where users can submit the parameters they use for different tasks,
one would only need to build the relevant semantic mediawiki template and form, and then program the API calls
to the wiki to index them.

• todo — fully realize the vision of decentralized development by allowing plugins to replace existing core au-
topilot modules. . .

55

https://www.semantic-mediawiki.org/wiki/Semantic_MediaWiki
https://wiki.auto-pi-lot.com

Autopilot Documentation, Release 0.3.0

9.1 Plugins

Plugins are now the recommended way to use Autopilot! They make very few assumptions about the structure of your
code, so they can be used like familiar script-based experimental tools, but they also encourage the development of
modular code that can easily be used by others and cumulatively contribute to a shared body of tools.

Using plugins is simple! Anything inside of the directory indicated by prefs.get('PLUGINDIR') is a plugin! Plugins
provide objects that inherit from Autopilot classes supported by an entry in registry.REGISTRIES .

For example, we want to write a task that uses some special hardware that we need. We could start by making a directory
within 'PLUGINDIR' like this:

plugins
my-autopilot-plugin

README.md
test_hardware.py
test_task.py

Where within test_hardware.py you define some custom hardware class that inherits from gpio.Digital_Out

from autopilot.hardware.gpio import Digital_Out

class Only_On_Pin(Digital_Out):
"""
you can only turn this GPIO pin on
"""
def __init__(self, pin, *args, **kwargs):

super(Only_On_Pin, self).__init__(pin=pin, *args, **kwargs)
self.set(1)

def set(self, val):
"""override base class"""
if val not in (1, True, 'on'):

raise ValueError('This pin only turns on')
else:

super(Only_On_Pin, self).set(val)

def release(self):
print('I release nothing. the pin stays on.')

You can then use it in some task! Autopilot will use its registry autopilot.get() methods to find it after importing
all your plugins. For example, we can refer to it as a string in our HARDWARE dictionary in our special task:

from datetime import datetime
import threading
import numpy as np
from autopilot.tasks import Task
from tables import IsDescription, StringCol

class My_Task(Task):
"""
I will personally subject myself to the labor of science and through careful hours␣

→˓spent meditating on an LED powered by an unsecured Raspberry Pi with the default␣
→˓password i will become attuned to the dance of static pixels fluctuating on the␣
→˓fundamentalfrequencies of ransomware and ssh bombardment to harnessthe power of both␣
→˓god and anime

(continues on next page)

56 Chapter 9. Plugins & The Wiki

Autopilot Documentation, Release 0.3.0

(continued from previous page)

"""

PARAMS = {'infinite_light': {
'tag': 'leave the light on indefinitely? are you sure you want to leave␣

→˓the rest of the world behind and never cease your pursuit of this angelic orb?',
'type': 'bool'}}

HARDWARE = {'esoterica': {'the_light': 'Only_On_Pin'}}

class TrialData(IsDescription):
ontime = StringCol(26)

def __init__(self, infinite_light:bool=True, *args, **kwargs):
super(My_Task, self).__init__(*args, **kwargs)
self.init_hardware()
self.hardware['esoterica']['the_light'].set(True)

if not infinite_light:
infinite_light = True

self.infinite_light = infinite_light

self.stages = [self.only_on]

def only_on(self):
self.stage_block.clear()

if not self.infinite_light:
threading.Timer(np.random.rand()*10e100, self.cease_your_quest).start()

return {'ontime': datetime.now().isoformat()}

def cease_your_quest(self):
self.stage_block.set()
self.hardware['esoterica']['the_light'].release()

Both your hardware object and task will be available to the rest of Autopilot, including in the GUI elements that let you
easily parameterize and assign it to your experimental subjects.

Todo: We are still working on formalizing the rest of a plugin architecture, specifically dependency resolution among
python packages, autopilot scripts, and dependencies on other plugins. All this in time! For now the wiki asks for a
specific autopilot version that a plugin supports when they are submitted, so we will be able to track plugins that need
to be updated for changes in the plugin API as it is developed.

9.1. Plugins 57

Autopilot Documentation, Release 0.3.0

9.2 Registries

Plugins are supported by the functions in the utils.registry module. Registries allow us to make definite but
abstract references to classes of objects that can therefore be extended with plugins.

Since for now Autopilot objects are not guaranteed to have a well-defined inheritance structure, registries are available
to the classes of objects listed in the registry.REGISTRIES enum. Currently they are:

class REGISTRIES(str, Enum):
"""
Types of registries that are currently supported,
ie. the possible values of the first argument of :func:`.registry.get`

Values are the names of the autopilot classes that are searched for
inheriting classes, eg. ``HARDWARE == "autopilot.hardware.Hardware"`` for␣

→˓:class:`autopilot.Hardware`
"""
HARDWARE = "autopilot.hardware.Hardware"
TASK = "autopilot.tasks.Task"
GRADUATION = "autopilot.tasks.graduation.Graduation"
TRANSFORM = "autopilot.transform.transforms.Transform"
CHILDREN = "autopilot.tasks.children.Child"
SOUND = "autopilot.stim.sound.sounds.BASE_CLASS"

Each entry in the enum refers to the absolute package.module.class name of the topmost metaclass that is to be searched.

The autopilot.get() method first gets the base class with find_class(), ensures that plugins have been imported
with import_plugins() , and searches for a subclass with a matching name with recurse_subclasses() . If none
is found in the currently imported files, it parses the ast of any files below the base class in the path hierarchy. The
distinction is because while we do assume that we can import anything we have made/put in our plugins directory, we
currently don’t make that assumption of the core library of autopilot – we want to be able to offer the code for tasks and
hardware that have diverse dependencies while giving ourselves some protection against writing squirrelly edge cases
everywhere.

In practice, anywhere you go to make an explicit import of an autopilot class that is suported by a registry, it is good
practice to use autopilot.get instead. It is called like:

autopilot.get('registry_name', 'object_name')
eg.
autopilot.get('hardware', 'Digital_Out')

Note how the registry name is not case sensitive but the object name is. There are a few convenience methods/calling
patterns here too. Eg. to list all available objects in a registry:

autopilot.get('hardware')

or to list just a list of strings instead of the objects themselves:

autopilot.get_names('hardware')

or you can pass an object itself as the registry type in order to only find subclasses of that class:

GPIO = autopilot.get('hardware', 'GPIO')
autopilot.get(GPIO)

58 Chapter 9. Plugins & The Wiki

https://docs.python.org/3/library/ast.html

Autopilot Documentation, Release 0.3.0

Todo: In the future, we will extend registries to all autopilot objects by implementing a unitary inheritance structure.
This will also clean up a lot of the awkward parts of the library and pave the way to rebuilding eg. the networking
modules to be much simpler to use.

That work will be the defining feature of v0.5.0, you can track progress and contribute by seeing the relevant issue:
https://github.com/wehr-lab/autopilot/issues/31

as well as the issues in the v0.5.0 milestone: https://github.com/wehr-lab/autopilot/milestone/2

9.3 The Wiki API

The wiki’s semantic information can be accessed with the functions in the utils.wiki module.

Specifically, we make a function that wraps the Semantic Mediawiki Ask API that consists of a

• query or a set of filters that select relevant pages using their categories and properties, and then

• the properties to retrieve from those pages.

You can see a list of the categories and properties that can be used on the wiki.

For Filters:
• Both types of filters are specified with the [[Double Brackets]] of mediawiki

• Categories are specified with a single colon1 like [[Category:Hardware]]

• Properties are specified with double colons, and take a property and a value like [[Created By::Jonny
Saunders]]

The queried properties are specified with a list of strings like ['Has Datasheet', 'Has STL']

So, for example, one could query the manufacturer, price, and url of the audio hardware documented in the wiki like:

from autopilot.utils import wiki

wiki.ask(
filters=[

"[[Category:Hardware]]",
"[[Modality::Audio]]"

],
properties=[

"Manufactured By",
"Has Product Page",
"Has USD Price"

]
)

which would return a list of dictionaries like:

[{
'Has Product Page': 'https://www.hifiberry.com/shop/boards/hifiberry-amp2/',
'Has USD Price': 49.9,
'Manufactured By': 'HiFiBerry',

(continues on next page)

1 This is because categories are a part of mediawiki itself, but properties are implemented by semantic mediawiki. The two have slightly different
meanings – categories denote the “type of something that a page is” and properties denote “the attributes that a page has”

9.3. The Wiki API 59

https://github.com/wehr-lab/autopilot/issues/31
https://github.com/wehr-lab/autopilot/milestone/2
https://www.semantic-mediawiki.org/wiki/Help:API:ask
https://wiki.auto-pi-lot.com/index.php/Special:Categories
https://wiki.auto-pi-lot.com/index.php/Special:Properties

Autopilot Documentation, Release 0.3.0

(continued from previous page)

'name': 'HiFiBerry Amp2',
'url': 'https://wiki.auto-pi-lot.com/index.php/HiFiBerry_Amp2'

},
{

'Has Datasheet': 'https://wiki.auto-pi-lot.com/index.php/File:HiVi-RT13WE-spec-sheet.
→˓pdf',
'Has Product Page': 'https://www.parts-express.com/HiVi-RT1.3WE-Isodynamic-Tweeter-

→˓297-421',
'Has USD Price': 37.98,
'Is Part Type': 'Speakers',
'Manufactured By': 'HiVi',
'name': 'HiVi RT1.3WE',
'url': 'https://wiki.auto-pi-lot.com/index.php/HiVi_RT1.3WE'

}]

These functions can be used on their own to provide interactive, programmatic access to the wiki, but maybe more
importantly it serves as a bridge between the wiki and Autopilot’s software. By building API calls into the various
modules of autopilot that can query structured information from the wiki, the software can be made to take advantage
of communally curated experimental and technical knowledge.

Additionally, since it is relatively simple to create new templates and forms (see the Page Forms and Page Schemas
extensions that are used to create and manage them)t o accept different kinds of submissions and link them to the rest
of the wiki, and the plugin and registry system allow anyone to build the classes needed to take advantage of them,
it becomes possible for anyone to create new kinds of public knowledge interfaces to autopilot. For example, if
there was desire to share and describe parameterizations of a particular Task along with summaries of the data, then
it would be possible to make a form and template on the wiki to accept them, and provide a GUI plugin to select
empirically optimal parameters for a given outcome measurement , which would make all the hard-won rules of thumb
and superstition that guides a lot of the fine decisions in behavioral research obsolete in an afternoon.

The use of the wiki to have communal control over plugins and interfaces makes it possible for us to move autopilot
to a model of decentralized governance where the “official” repository becomes one version among many, but the
plugins remain integrated with the system rather than live on as unrelated forks.

9.4 Plugins on the Wiki

Autopilot plugins can be found on the wiki here: https://wiki.auto-pi-lot.com/index.php/Autopilot_Plugins

(at the moment the cupboard is relatively bare, but it always starts that way.)

Within Autopilot, you can use the utils.plugins.list_wiki_plugins() function to list the available functions
and return their basic metadata, which is a very thin wrapper around utils.wiki.ask()

To submit new plugin, one would use the relevant form: https://wiki.auto-pi-lot.com/index.php/Form:Autopilot_Plugin

So we might submit our plugin “Fancy New Plugin” (by entering that on the form entry page), and filling in the fields
in the form as requested:

Where we provide a description and other metadata – most important some git repository url – that describes the plugin.
There are free text fields where appropriate, but also autocompleting token fields that let us keep some semblance of
consistency in the semantic links we create. At the end you are then given a free-text field that accepts all common
wiki markup as well as free declaration of any semantic links that aren’t asked for in the form.

After you submit, it’s immediately available in the gui.Plugins manager!

Each plugin has one or multiple Plugin Type(s) that corresponds to a particular entry in REGISTRIES for filtering
plugins that provide different types of objects.

60 Chapter 9. Plugins & The Wiki

https://www.mediawiki.org/wiki/Extension:Page_Forms
https://www.mediawiki.org/wiki/Extension:Page_Schemas
https://wiki.auto-pi-lot.com/index.php/Autopilot_Plugins
https://wiki.auto-pi-lot.com/index.php/Form:Autopilot_Plugin
https://www.mediawiki.org/wiki/Help:Formatting

Autopilot Documentation, Release 0.3.0

9.4. Plugins on the Wiki 61

Autopilot Documentation, Release 0.3.0

62 Chapter 9. Plugins & The Wiki

Autopilot Documentation, Release 0.3.0

Todo: Currently the plugin manager is just a proof of concept, though it would require relatively little to add a
routine to clone the git repo into the plugins directory, as mentioned above, we are working on integrating dependency
management in a way that’s unified throughout the package (instead of, say, needing to manually run python -m
autopilot.setup.run_script picamera to enable the camera, objects are able to specify and request that their
dependencies be met automatically).

For now just git clone <plugin_url> ~/autopilot/plugins or wherever your PLUGINDIR is!

9.4. Plugins on the Wiki 63

Autopilot Documentation, Release 0.3.0

64 Chapter 9. Plugins & The Wiki

CHAPTER

TEN

EXAMPLES

We’re working on writing more examples! Please let us know in the discussion board what you’d like to see :)

Also see the examples folder in the repository for jupyter notebooks we haven’t set up Sphinx rendering for yet ;)

10.1 Blink

A very simple task: Blink an LED

Written by @mikewehr in the mike branch: https://github.com/wehr-lab/autopilot/blob/mike/autopilot/tasks/blink.py

Demonstrates the basic structure of a task with one stage, described in the comments throughout the task.

This page is rendered in the docs here in order to provide links to the mentioned objects/classes/etc., but it was written
as source code initially and translated to .rst, so the narrative flow is often inverted: text follows code as comments,
rather than text introducing and narrating code.

10.1.1 Preamble

import itertools
import tables
import time
from datetime import datetime

from autopilot.hardware import gpio
from autopilot.tasks import Task
from collections import OrderedDict as odict

class Blink(Task):
"""
Blink an LED.

Args:
pulse_duration (int, float): Duration the LED should be on, in ms
pulse_interval (int, float): Duration the LED should be off, in ms

"""

Note that we subclass the Task class (Blink(Task)) to provide us with some methods useful for all Tasks, and to
make it available to the task registry (see Plugins & The Wiki).

65

https://github.com/wehr-lab/autopilot/blob/mike/autopilot/tasks/blink.py

Autopilot Documentation, Release 0.3.0

Tasks need to have a few class attributes defined to be integrated into the rest of the system See here for more about
class vs. instance attributes https://www.toptal.com/python/python-class-attributes-an-overly-thorough-guide

Params

STAGE_NAMES = ["pulse"] # type: list
"""
An (optional) list or tuple of names of methods that will be used as stages for the task.

See ``stages`` for more information
"""

PARAMS = odict()
PARAMS['pulse_duration'] = {'tag': 'LED Pulse Duration (ms)', 'type': 'int'}
PARAMS['pulse_interval'] = {'tag': 'LED Pulse Interval (ms)', 'type': 'int'}

PARAMS - A dictionary that specifies the parameters that control the operation of the task – each task presumably has
some range of options that allow slight variations (eg. different stimuli, etc.) on a shared task structure. This dictionary
specifies each PARAM as a human-readable tag and a type that is used by the gui to create an appropriate input object.
For example:

PARAMS['pulse_duration'] = {'tag': 'LED Pulse Duration (ms)', 'type': 'int'}

When instantiated, these params are passed to the __init__ method.

A collections.OrderedDict is used so that parameters can be presented in a predictable way to users.

TrialData

class TrialData(tables.IsDescription):
trial_num = tables.Int32Col()
timestamp_on = tables.StringCol(26)
timestamp_off = tables.StringCol(26)

TrialData declares the data that will be returned for each “trial” – or complete set of executed task stages. It is used by
the Subject object to make a data table with the correct data types. Declare each piece of data using a pytables Column
descriptor (see https://www.pytables.org/usersguide/libref/declarative_classes.html#col-sub-classes for available data
types, and the pytables guide: https://www.pytables.org/usersguide/tutorials.html for more information)

For each trial, we’ll return two timestamps, the time we turned the LED on, the time we turned it off, and the trial
number. Note that we use a 26-character tables.StringCol for the timestamps,

Hardware

HARDWARE = {
'LEDS': {

'dLED': gpio.Digital_Out
}

}

Declare the hardware that will be used in the task. Each hardware object is specified with a group and an id as nested
dictionaries. These descriptions require a set of hardware parameters in the autopilot prefs.json (typically generated

66 Chapter 10. Examples

https://www.toptal.com/python/python-class-attributes-an-overly-thorough-guide
https://docs.python.org/3/library/collections.html#collections.OrderedDict
https://www.pytables.org/usersguide/libref/declarative_classes.html#col-sub-classes
https://www.pytables.org/usersguide/tutorials.html

Autopilot Documentation, Release 0.3.0

by autopilot.setup.setup_autopilot) with a matching group and id structure. For example, an LED declared
like this in the HARDWARE attribute:

HARDWARE = {'LEDS': {'dLED': gpio.Digital_Out}}

requires an entry in prefs.json like this:

"HARDWARE": {"LEDS": {"dLED": {
"pin": 1,
"polarity": 1

}}}

that will be used to instantiate the hardware.gpio.Digital_Out object, which is then available for use in the task
like:

self.hardware['LEDS']['dLED'].set(1)

10.1.2 Initialization

first we call the superclass (‘Task’)’s initialization method. All tasks should accept *args and **kwargs to pass
parameters not explicitly specified by subclass up to the superclass.:

def __init__(self, stage_block=None, pulse_duration=100, pulse_interval=500, *args,␣
→˓**kwargs):

super(Blink, self).__init__(*args, **kwargs)

store parameters given on instantiation as instance attributes
self.pulse_duration = int(pulse_duration)
self.pulse_interval = int(pulse_interval)
self.stage_block = stage_block # type: "threading.Event"

This allows us to cycle through the task by just repeatedly calling self.stages.
→˓next()

self.stages = itertools.cycle([self.pulse])

Some generator that returns the stage methods that define the operation of the task.

To run a task, the pilot.Pilot object will call each stage function, which can return some dictionary of data (see
pulse()) and wait until some flag (stage_block) is set to compute the next stage. Since in this case we want
to call the same method (pulse()) over and over again, we use an itertools.cycle object (if we have more
than one stage to call in a cycle, we could provide them like itertools.cycle([self.stage_method_1, self.
stage_method_2]) . More complex tasks can define a custom generator for finer control over stage progression.:

self.trial_counter = itertools.count()
"""
Some counter to keep track of the trial number
"""

Hardware is initialized by the superclass’s Task.init_hardware() method, which creates all the hardware objects
defined in HARDWARE according to their parameterization in prefs.json , and makes them available in the hardware
dictionary.:

self.init_hardware()
self.logger.debug('Hardware initialized')

10.1. Blink 67

Autopilot Documentation, Release 0.3.0

All task subclass objects have an logger – a logging.Logger that allows users to easily debug their tasks and see
feedback about their operation. To prevent stdout from getting clogged, logging messages are printed and stored ac-
cording to the LOGLEVEL pref – so this message would only appear if LOGLEVEL == "DEBUG":

self.stage_block.set()

We set the stage block and never clear it so that the Pilot doesn’t wait for a trigger to call the next stage – it just does
it as soon as the previous one completes.

See run_task() for more detail on this loop.

10.1.3 Stage Methods

def pulse(self, *args, **kwargs):
"""
Turn an LED on and off according to :attr:`~examples.tasks.Blink.pulse_duration` and␣

→˓:attr:`~examples.tasks.Blink.pulse_interval`

Returns:
dict: A dictionary containing the trial number and two timestamps.

"""

turn light on

use :meth:`.hardware.gpio.Digital_Out.set` method to turn the LED on
self.hardware['LEDS']['dLED'].set(1)
store the timestamp
timestamp_on = datetime.now().isoformat()
log status as a debug message
self.logger.debug('light on')
sleep for the pulse_duration
time.sleep(self.pulse_duration / 1000)

turn light off, same as turning it on.

self.hardware['LEDS']['dLED'].set(0)
timestamp_off = datetime.now().isoformat()
self.logger.debug('light off')
time.sleep(self.pulse_interval / 1000)

count and store the number of the current trial
self.current_trial = next(self.trial_counter)

data = {
'trial_num': self.current_trial,
'timestamp_on': timestamp_on,
'timestamp_off': timestamp_off

}
return data

Create the data dictionary to be returned from the stage. Note that each of the keys in the dictionary must correspond
to the names of the columns declared in the TrialData descriptor.

68 Chapter 10. Examples

https://docs.python.org/3/library/logging.html#logging.Logger

Autopilot Documentation, Release 0.3.0

At the conclusion of running the task, we will be able to access the data from the run with Subject.
get_trial_data(), which will be a pandas.DataFrame with a row for each trial, and a column for each of the
fields here.

10.1.4 Full Source

1 """
2 A very simple task: Blink an LED
3

4 Written by @mikewehr in the ``mike`` branch: https://github.com/wehr-lab/autopilot/blob/
→˓mike/autopilot/tasks/blink.py

5

6 Demonstrates the basic structure of a task with one stage,
7 described in the comments throughout the task.
8

9 See the main tutorial for more detail: https://docs.auto-pi-lot.com/en/latest/guide.task.
→˓html#

10

11 This page is rendered in the docs here in order to provide links to the mentioned␣
→˓objects/classes/etc., but

12 this example was intended to be read as source code, as some comments will only be␣
→˓visible there.

13 """
14 import itertools
15 import tables
16 import time
17 from datetime import datetime
18

19 from autopilot.hardware import gpio
20 from autopilot.tasks import Task
21 from collections import OrderedDict as odict
22

23 class Blink(Task):
24 """
25 Blink an LED.
26

27 Note that we subclass the :class:`~autopilot.tasks.Task` class (``Blink(Task)``) to␣
→˓provide us with some methods

28 useful for all Tasks.
29

30 Args:
31 pulse_duration (int, float): Duration the LED should be on, in ms
32 pulse_interval (int, float): Duration the LED should be off, in ms
33

34 """
35 # Tasks need to have a few class attributes defined to be integrated into the rest␣

→˓of the system
36 # See here for more about class vs. instance attributes https://www.toptal.com/

→˓python/python-class-attributes-an-overly-thorough-guide
37

38 STAGE_NAMES = ["pulse"] # type: list
39 """

(continues on next page)

10.1. Blink 69

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame

Autopilot Documentation, Release 0.3.0

(continued from previous page)

40 An (optional) list or tuple of names of methods that will be used as stages for the␣
→˓task.

41

42 See :attr:`~examples.tasks.Blink.stages` for more information
43 """
44

45 PARAMS = odict()
46 """
47 A dictionary that specifies the parameters that control the operation of the task --␣

→˓each task presumably has some
48 range of options that allow slight variations (eg. different stimuli, etc.) on a␣

→˓shared task structure. This
49 dictionary specifies each ``PARAM`` as a human-readable ``tag`` and a ``type`` that is␣

→˓used by the gui to
50 create an appropriate input object. For example::
51

52 PARAMS['pulse_duration'] = {'tag': 'LED Pulse Duration (ms)', 'type': 'int'}
53

54 When instantiated, these params are passed to the ``__init__`` method.
55

56 A :class:`collections.OrderedDict` is used so that parameters can be presented in a␣
→˓predictable way to users.

57 """
58 PARAMS['pulse_duration'] = {'tag': 'LED Pulse Duration (ms)', 'type': 'int'}
59 PARAMS['pulse_interval'] = {'tag': 'LED Pulse Interval (ms)', 'type': 'int'}
60

61 class TrialData(tables.IsDescription):
62 """
63 This class declares the data that will be returned for each "trial" -- or␣

→˓complete set of executed task
64 stages. It is used by the :class:`~autopilot.data.subject.Subject` object to make␣

→˓a data table with the
65 correct data types. Declare each piece of data using a pytables Column descriptor
66 (see https://www.pytables.org/usersguide/libref/declarative_classes.html#col-sub-

→˓classes for available
67 data types, and the pytables guide: https://www.pytables.org/usersguide/

→˓tutorials.html for more information)
68

69 For each trial, we'll return two timestamps, the time we turned the LED on, the␣
→˓time we turned it off,

70 and the trial number. Note that we use a 26-character :class:`tables.StringCol`␣
→˓for the timestamps,

71 which are given as an isoformatted string like ``'2021-02-16T18:11:35.752110'``
72 """
73 trial_num = tables.Int32Col()
74 timestamp_on = tables.StringCol(26)
75 timestamp_off = tables.StringCol(26)
76

77

78 HARDWARE = {
79 'LEDS': {
80 'dLED': gpio.Digital_Out

(continues on next page)

70 Chapter 10. Examples

Autopilot Documentation, Release 0.3.0

(continued from previous page)

81 }
82 }
83 """
84 Declare the hardware that will be used in the task. Each hardware object is␣

→˓specified with a ``group`` and
85 an ``id`` as nested dictionaries. These descriptions require a set of hardware␣

→˓parameters in the autopilot
86 ``prefs.json`` (typically generated by :mod:`autopilot.setup.setup_autopilot`) with a␣

→˓matching ``group`` and
87 ``id`` structure. For example, an LED declared like this in the :attr:`~examples.tasks.

→˓Blink.HARDWARE` attribute::
88

89 HARDWARE = {'LEDS': {'dLED': gpio.Digital_Out}}
90

91 requires an entry in ``prefs.json`` like this::
92

93 "HARDWARE": {"LEDS": {"dLED": {
94 "pin": 1,
95 "polarity": 1
96 }}}
97

98 that will be used to instantiate the :class:`.hardware.gpio.Digital_Out` object,␣
→˓which is then available for use

99 in the task like::
100

101 self.hardware['LEDS']['dLED'].set(1)
102 """
103

104 def __init__(self, stage_block=None, pulse_duration=100, pulse_interval=500, *args,␣
→˓**kwargs):

105 # first we call the superclass ('Task')'s initialization method. All tasks should␣
→˓accept ``*args``

106 # and ``**kwargs`` to pass parameters not explicitly specified by subclass up to␣
→˓the superclass.

107 super(Blink, self).__init__(*args, **kwargs)
108

109 # store parameters given on instantiation as instance attributes
110 self.pulse_duration = int(pulse_duration)
111 self.pulse_interval = int(pulse_interval)
112 self.stage_block = stage_block # type: "threading.Event"
113

114 # This allows us to cycle through the task by just repeatedly calling self.
→˓stages.next()

115 self.stages = itertools.cycle([self.pulse])
116 """
117 Some generator that returns the stage methods that define the operation of the␣

→˓task.
118

119 To run a task, the :class:`.pilot.Pilot` object will call each stage function,␣
→˓which can return some dictionary

120 of data (see :meth:`~examples.tasks.Blink.pulse`) and wait until some flag␣
→˓(:attr:`~examples.tasks.Blink.stage_block`) is set to compute the

(continues on next page)

10.1. Blink 71

Autopilot Documentation, Release 0.3.0

(continued from previous page)

121 next stage. Since in this case we want to call the same method (:meth:`~examples.
→˓tasks.Blink.pulse`) over and over again,

122 we use an :class:`itertools.cycle` object (if we have more than one stage to call␣
→˓in a cycle, we could provide

123 them like ``itertools.cycle([self.stage_method_1, self.stage_method_2])`` . More␣
→˓complex tasks can define a custom

124 generator for finer control over stage progression.
125 """
126

127 self.trial_counter = itertools.count()
128 """
129 Some counter to keep track of the trial number
130 """
131

132

133 self.init_hardware()
134

135 """
136 Hardware is initialized by the superclass's :meth:`.Task.init_hardware` method,␣

→˓which creates all the
137 hardware objects defined in :attr:`~examples.tasks.Blink.HARDWARE` according to␣

→˓their parameterization in
138 ``prefs.json`` , and makes them available in the :attr:`~examples.tasks.Blink.

→˓hardware` dictionary.
139 """
140

141 self.logger.debug('Hardware initialized')
142

143 """
144 All task subclass objects have an :attr:`~autopilot.tasks.Task.logger` -- a␣

→˓:class:`logging.Logger` that allows
145 users to easily debug their tasks and see feedback about their operation. To␣

→˓prevent stdout from
146 getting clogged, logging messages are printed and stored according to the␣

→˓``LOGLEVEL`` pref -- so this
147 message would only appear if ``LOGLEVEL == "DEBUG"``
148 """
149

150 self.stage_block.set()
151

152 """
153 We set the stage block and never clear it so that the :class:`.Pilot` doesn't␣

→˓wait for a trigger
154 to call the next stage -- it just does it as soon as the previous one completes.
155

156 See :meth:`~autopilot.core.pilot.Pilot.run_task` for more detail on this loop.
157 """
158

159

160 ##
161 # Stage Functions
162 ##

(continues on next page)

72 Chapter 10. Examples

Autopilot Documentation, Release 0.3.0

(continued from previous page)

163 def pulse(self, *args, **kwargs):
164 """
165 Turn an LED on and off according to :attr:`~examples.tasks.Blink.pulse_duration`␣

→˓and :attr:`~examples.tasks.Blink.pulse_interval`
166

167 Returns:
168 dict: A dictionary containing the trial number and two timestamps.
169 """
170 # -------------
171 # turn light on
172

173 # use :meth:`.hardware.gpio.Digital_Out.set` method to turn the LED on
174 self.hardware['LEDS']['dLED'].set(1)
175 # store the timestamp
176 timestamp_on = datetime.now().isoformat()
177 # log status as a debug message
178 self.logger.debug('light on')
179 # sleep for the pulse_duration
180 time.sleep(self.pulse_duration / 1000)
181

182 # ------------
183 # turn light off, same as turning it on.
184

185 self.hardware['LEDS']['dLED'].set(0)
186 timestamp_off = datetime.now().isoformat()
187 self.logger.debug('light off')
188 time.sleep(self.pulse_interval / 1000)
189

190 # count and store the number of the current trial
191 self.current_trial = next(self.trial_counter)
192

193

194 data = {
195 'trial_num': self.current_trial,
196 'timestamp_on': timestamp_on,
197 'timestamp_off': timestamp_off
198 }
199

200 """
201 Create the data dictionary to be returned from the stage. Note that each of the␣

→˓keys in the dictionary
202 must correspond to the names of the columns declared in the :attr:`~examples.

→˓tasks.Blink.TrialData` descriptor.
203

204 At the conclusion of running the task, we will be able to access the data from␣
→˓the run with

205 :meth:`.Subject.get_trial_data`, which will be a :class:`pandas.DataFrame` with a␣
→˓row for each trial, and

206 a column for each of the fields here.
207 """
208

209 # return the data dictionary from the stage method and yr done :)

(continues on next page)

10.1. Blink 73

Autopilot Documentation, Release 0.3.0

(continued from previous page)

210 return data

74 Chapter 10. Examples

CHAPTER

ELEVEN

CORE

11.1 gui

11.2 loggers

Data:

_LOGGERS List of instantiated loggers, used in init_logger() to
return existing loggers without modification

LOG_FORMATS //github.com/r1chardj0n3s/parse>`_
MESSAGE_FORMATS Additional parsing patterns for logged messages

Functions:

init_logger([instance, module_name, ...]) Initialize a logger

Exceptions:

ParseError Error parsing a logfile

Classes:

Log_Format(format, example[, conversions])

LogEntry(*, timestamp, name, level, message) Single entry in a log
Log(*, entries) Representation of a logfile in memory

_LOGGERS: list = ['data.interfaces.tables', 'data.interfaces.tables.H5F_Group',
'data.models.subject', 'data.models.subject._Hash_Table',
'data.models.subject._History_Table', 'data.models.subject._Weight_Table']

List of instantiated loggers, used in init_logger() to return existing loggers without modification

init_logger(instance=None, module_name=None, class_name=None, object_name=None)→ logging.Logger
Initialize a logger

Loggers are created such that. . .

• There is one logger per module (eg. all gpio objects will log to hardware.gpio)

• If the passed object has a name attribute, that name will be prefixed to its log messages in the file

75

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/logging.html#logging.Logger

Autopilot Documentation, Release 0.3.0

• The loglevel for the file handler and the stdout is determined by prefs.get('LOGLEVEL'), and if none is
provided WARNING is used by default

• logs are rotated according to prefs.get('LOGSIZE') (in bytes) and prefs.get('LOGNUM') (number
of backups of prefs.get('LOGSIZE') to cycle through)

Logs are stored in prefs.get('LOGDIR'), and are formatted like:

"%(asctime)s - %(name)s - %(levelname)s : %(message)s"

Loggers can be initialized either by passing an object to the first instance argument, or by specifying any of
module_name , class_name , or object_name (at least one must be specified) which are combined with periods
like module.class_name.object_name

Parameters
• instance – The object that we are creating a logger for! if None, at least one of module,
class_name, or object_name must be passed

• module_name (None, str) – If no instance passed, the module name to create a logger for

• class_name (None, str) – If no instance passed, the class name to create a logger for

• object_name (None, str) – If no instance passed, the object name/id to create a logger for

Returns logging.logger

exception ParseError

Bases: RuntimeError

Error parsing a logfile

class Log_Format(format: str, example: str, conversions: Union[Dict[str, Callable], NoneType] = None)
Bases: object

Attributes:

format A format string parseable by parse
example An example string (that allows for testing)
conversions A dictionary matching keys in the format string to

callables for post-parsing coercion

Methods:

parse(log_entry)

format: str

A format string parseable by parse

example: str

An example string (that allows for testing)

conversions: Optional[Dict[str, Callable]] = None

A dictionary matching keys in the format string to callables for post-parsing coercion

parse(log_entry: str)→ dict

76 Chapter 11. core

https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

Autopilot Documentation, Release 0.3.0

LOG_FORMATS = (Log_Format(format='{timestamp:Timestamp} - {name} - {level} :
{message}', example="2022-03-07 16:56:48,954 - networking.node.Net_Node._T - DEBUG :
RECEIVED: ID: _testpi_9879; TO: T; SENDER: _testpi; KEY: DATA; FLAGS: {'NOREPEAT': True};
VALUE: {'trial_num': 1197, 'timestamp': '2022-03-01T23:52:16.995387', 'frequency':
45255.0, 'amplitude': 0.1, 'ramp': 5.0, 'pilot': 'testpi', 'subject': '0895'}",
conversions={'Timestamp': <function _convert_asc_timestamp at 0x7f44429d8700>}),
Log_Format(format='[{timestamp:Timestamp}] {level} [{name}]: {message}',
example='[2022-03-09 16:13:43,224] INFO [networking.node]: parent, module-level logger
created: networking.node', conversions={'Timestamp': <function _convert_asc_timestamp
at 0x7f44429d8700>}))

//github.com/r1chardj0n3s/parse>`_

Type Possible formats of logging messages (to allow change over versions) as a `parse string <https

MESSAGE_FORMATS = { 'node_msg_recv': '{action}: ID: {message_id}; TO: {to}; SENDER:
{sender}; ' 'KEY: {key}; FLAGS: {flags}; VALUE: {value}', 'node_msg_sent': '{action} -
ID: {message_id}; TO: {to}; SENDER: {sender}; ' 'KEY: {key}; FLAGS: {flags}; VALUE:
{value}'}

Additional parsing patterns for logged messages

• node_msg: Logging messages from networking.node.Net_Node

class LogEntry(*, timestamp: datetime.datetime, name: str, level: Literal['DEBUG', 'INFO', 'WARNING',
'ERROR'], message: Union[str, dict])

Bases: autopilot.root.Autopilot_Type

Single entry in a log

Create a new model by parsing and validating input data from keyword arguments.

Raises ValidationError if the input data cannot be parsed to form a valid model.

Attributes:

timestamp

name

level

message

Methods:

parse_message(format) Parse the message using a format string specified as a
key in the MESSAGE_FORMATS dictionary (or a format
string itself)

from_string(entry[, parse_message]) Create a LogEntry by parsing a string.

timestamp: datetime.datetime

name: str

level: Literal['DEBUG', 'INFO', 'WARNING', 'ERROR']

11.2. loggers 77

https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Literal
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/stdtypes.html#str

Autopilot Documentation, Release 0.3.0

message: Union[str, dict]

parse_message(format: List[str])
Parse the message using a format string specified as a key in the MESSAGE_FORMATS dictionary (or a format
string itself)

replaces the message attribute.

If parsing unsuccessful, no exception is raised because there are often messages that are not parseable in
the logs!

Parameters format (typing.List[str]) – List of format strings to try!

Returns:

classmethod from_string(entry: str, parse_message: Optional[List[str]] = None)→
autopilot.core.loggers.LogEntry

Create a LogEntry by parsing a string.

Try to parse using any of the possible .LOG_FORMATS, raising a ParseError if none are successful

Parameters
• entry (str) – single line of a logging file

• parse_message (Optional[str]) – Parse messages with the MESSAGE_FORMATS key or for-
mat string

Returns LogEntry
Raises .ParseError –

class Log(*, entries: List[autopilot.core.loggers.LogEntry])
Bases: autopilot.root.Autopilot_Type

Representation of a logfile in memory

Create a new model by parsing and validating input data from keyword arguments.

Raises ValidationError if the input data cannot be parsed to form a valid model.

Attributes:

entries

Methods:

from_logfile(file[, include_backups, ...]) Load a logfile (and maybe its backups) from a logfile
location

entries: List[autopilot.core.loggers.LogEntry]

classmethod from_logfile(file: Union[pathlib.Path, str], include_backups: bool = True,
parse_messages: Optional[List[str]] = None)

Load a logfile (and maybe its backups) from a logfile location

Parameters
• file (pathlib.Path, str) – If string, converted to Path. If relative (and relative file is not

found), then attempts to find relative to prefs.LOGDIR

78 Chapter 11. core

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path

Autopilot Documentation, Release 0.3.0

• include_backups (bool) – if True (default), try and load all of the backup logfiles (that
have .1, .2, etc appended)

• parse_messages (Optional[str]) – Parse messages with the MESSAGE_FORMATS key or for-
mat string

Returns Log

11.3 pilot

Classes:

Pilot([splash, warn_defaults]) Drives the Raspberry Pi

class Pilot(splash=True, warn_defaults=True)
Bases: object

Drives the Raspberry Pi

Coordinates the hardware and networking objects to run tasks.

Typically used with a connection to a Terminal object to coordinate multiple subjects and tasks, but a high
priority for future releases is to do the (trivial amount of) work to make this class optionally standalone.

Called as a module with the -f flag to give the location of a prefs file, eg:

python pilot.py -f prefs_file.json

if the -f flag is not passed, looks in the default location for prefs (ie. /usr/autopilot/prefs.json)

Needs the following prefs (typically established by setup.setup_pilot):

• NAME - The name used by networking objects to address this Pilot

• BASEDIR - The base directory for autopilot files (/usr/autopilot)

• PUSHPORT - Router port used by the Terminal we connect to.

• TERMINALIP - IP Address of our upstream Terminal.

• MSGPORT - Port used by our own networking object

• HARDWARE - Any hardware and its mapping to GPIO pins. No pins are required to be set, instead each
task defines which pins it needs. Currently the default configuration asks for

– POKES - hardware.Beambreak

– LEDS - hardware.LED_RGB

– PORTS - hardware.Solenoid

• AUDIOSERVER - Which type, if any, audio server to use (‘jack’, ‘pyo’, or ‘none’)

• NCHANNELS - Number of audio channels

• FS - Sampling rate of audio output

• JACKDSTRING - string used to start the jackd server, see the jack manpages eg:

jackd -P75 -p16 -t2000 -dalsa -dhw:sndrpihifiberry -P -rfs -n3 -s &

• PIGPIOMASK - Binary mask of pins for pigpio to control, see the pigpio docs , eg:

11.3. pilot 79

https://docs.python.org/3/library/functions.html#object
https://linux.die.net/man/1/jackd
http://abyz.me.uk/rpi/pigpio/pigpiod.html

Autopilot Documentation, Release 0.3.0

1111110000111111111111110000

• PULLUPS - Pin (board) numbers to pull up on boot

• PULLDOWNS - Pin (board) numbers to pull down on boot.

Variables
• name (str) – The name used to identify ourselves in networking

• task (tasks.Task) – The currently instantiated task

• running (threading.Event) – Flag used to control task running state

• stage_block (threading.Event) – Flag given to a task to signal when task stages finish

• file_block (threading.Event) – Flag used to wait for file transfers

• state (str) – ‘RUNNING’, ‘STOPPING’, ‘IDLE’ - signals what this pilot is up to

• pulls (list) – list of Pull objects to keep pins pulled up or down

• server – Either a pyo_server() or JackClient , sound server.

• node (networking.Net_Node) – Our Net_Node we use to communicate with our main
networking object

• networking (networking.Pilot_Station) – Our networking object to communicate
with the outside world

• ip (str) – Our IPv4 address

• listens (dict) – Dictionary mapping message keys to methods used to process them.

• logger (logging.Logger) – Used to log messages and network events.

Attributes:

server

logger

running

stage_block

file_block

quitting mp.Event to signal when process is quitting
networking

node

Methods:

80 Chapter 11. core

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/threading.html#threading.Event
https://docs.python.org/3/library/threading.html#threading.Event
https://docs.python.org/3/library/threading.html#threading.Event
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/logging.html#logging.Logger

Autopilot Documentation, Release 0.3.0

get_ip() Get our IP
handshake() Send the terminal our name and IP to signal that we

are alive
update_state() Send our current state to the Terminal, our Station

object will cache this and will handle any future re-
quests.

l_start(value) Start running a task.
l_stop(value) Stop the task.
l_param(value) Change a task parameter mid-run
l_cal_port(value) Initiate the calibrate_port() routine.
calibrate_port(port_name, n_clicks, ...) Run port calibration routine
l_cal_result(value) Save the results of a port calibration
l_bandwidth (value) Send messages with a poissonian process according

to the settings in value
l_stream_video(value) Start or stop video streaming
calibration_curve([path, calibration]) # compute curve to compute duration from desired

volume
init_pigpio()

init_audio() Initialize an audio server depending on the value of
prefs.get('AUDIOSERVER')

blank_LEDs() If any 'LEDS' are defined in prefs.get('HARDWARE')
, instantiate them, set their color to [0,0,0], and then
release them.

open_file() Setup a table to store data locally.
run_task(task_class, task_params) Called in a new thread, run the task.

server = None

logger = None

running = None

stage_block = None

file_block = None

quitting = None

mp.Event to signal when process is quitting

networking = None

node = None

get_ip()

Get our IP

handshake()

Send the terminal our name and IP to signal that we are alive

update_state()

Send our current state to the Terminal, our Station object will cache this and will handle any future requests.

11.3. pilot 81

Autopilot Documentation, Release 0.3.0

l_start(value)
Start running a task.

Get the task object by using value[‘task_type’] to select from autopilot.get_task() , then feed the rest
of value as kwargs into the task object.

Calls autopilot.run_task() in a new thread

Parameters value (dict) – A dictionary of task parameters

l_stop(value)
Stop the task.

Clear the running event, set the stage block.

Todo: Do a coherence check between our local file and the Terminal’s data.

Parameters value – ignored

l_param(value)
Change a task parameter mid-run

Warning: Not Implemented

Parameters value

l_cal_port(value)
Initiate the calibrate_port() routine.

Parameters value (dict) – Dictionary of values defining the port calibration to be run, including
- port - which port to calibrate - n_clicks - how many openings should be performed -
open_dur - how long the valve should be open - iti - ‘inter-trial interval`, or how long
should we wait between valve openings.

calibrate_port(port_name, n_clicks, open_dur, iti)
Run port calibration routine

Open a hardware.gpio.Solenoid repeatedly, measure volume of water dispersed, compute lookup table
mapping valve open times to volume.

Continuously sends progress of test with CAL_PROGRESS messages

Parameters
• port_name (str) – Port name as specified in prefs

• n_clicks (int) – number of times the valve should be opened

• open_dur (int, float) – how long the valve should be opened for in ms

• iti (int, float) – how long we should sleep() between openings

l_cal_result(value)
Save the results of a port calibration

l_bandwidth(value)
Send messages with a poissonian process according to the settings in value

82 Chapter 11. core

https://docs.python.org/3/library/time.html#time.sleep

Autopilot Documentation, Release 0.3.0

l_stream_video(value)
Start or stop video streaming

Parameters value (dict) –

a dictionary of the form:

{
'starting': bool, # whether we're starting (True) or stopping
'camera': str, # the camera to start/stop, of form 'group.camera_

→˓id'
'stream_to': node id that the camera should send to

}

calibration_curve(path=None, calibration=None)
compute curve to compute duration from desired volume

Parameters
• calibration
• path – If present, use calibration file specified, otherwise use default.

init_pigpio()

init_audio()

Initialize an audio server depending on the value of prefs.get(‘AUDIOSERVER’)

• ‘pyo’ = pyoserver.pyo_server()

• ‘jack’ = jackclient.JackClient

blank_LEDs()

If any ‘LEDS’ are defined in prefs.get(‘HARDWARE’) , instantiate them, set their color to [0,0,0], and then
release them.

open_file()

Setup a table to store data locally.

Opens prefs.get(‘DATADIR’)/local.h5, creates a group for the current subject, a new table for the current
day.

Todo: This needs to be unified with a general file constructor abstracted from Subject so it doesn’t
reimplement file creation!!

Returns (tables.File, tables.Table, tables.tableextension.Row): The file, table, and
row for the local data table

run_task(task_class, task_params)
Called in a new thread, run the task.

Opens a file with open_file() , then continually calls task.stages.next to process stages.

Sends data back to the terminal between every stage.

Waits for the task to clear stage_block between stages.

11.3. pilot 83

Autopilot Documentation, Release 0.3.0

11.4 plots

11.5 styles

Qt Stylesheets for Autopilot GUI widgets

See: https://doc.qt.io/qt-5/stylesheet-reference.html#

11.6 terminal

84 Chapter 11. core

https://doc.qt.io/qt-5/stylesheet-reference

CHAPTER

TWELVE

DATA

12.1 subject

Abstraction layer around subject data storage files

Classes:

Subject(name, dir, file, structure[, data, ...]) Class for managing one subject's data and protocol.

Functions:

_update_current(h5f) Update the old 'current' filenode to the new Protocol Sta-
tus

class Subject(name: typing.Optional[str] = None, dir: typing.Optional[pathlib.Path] = None, file:
typing.Optional[pathlib.Path] = None, structure: autopilot.data.models.subject.Subject_Structure
= Subject_Structure(info=H5F_Group(path='/info', title='Subject Biographical Information',
filters=None, attrs=None, children=None), data=H5F_Group(path='/data', title='',
filters=Filters(complevel=6, complib='blosc:lz4', shuffle=True, bitshuffle=False, fletcher32=False,
least_significant_digit=None), attrs=None, children=None),
protocol=H5F_Group(path='/protocol', title='Metadata for the currently assigned protocol',
filters=None, attrs=None, children=None), history=H5F_Group(path='/history', title='',
filters=None, attrs=None, children=[H5F_Group(path='/history/past_protocols', title='Past
Protocol Files', filters=None, attrs=None, children=None), _Hash_Table(path='/history/hashes',
title='Git commit hash history', filters=None, attrs=None, description=<class
'tables.description.Hashes'>, expectedrows=10000), _History_Table(path='/history/history',
title='Change History', filters=None, attrs=None, description=<class
'tables.description.History'>, expectedrows=10000), _Weight_Table(path='/history/weights',
title='Subject Weights', filters=None, attrs=None, description=<class
'tables.description.Weights'>, expectedrows=10000)])))

Bases: object

Class for managing one subject’s data and protocol.

Creates a tables hdf5 file in prefs.get(‘DATADIR’) with the general structure:

/ root
|--- current (tables.filenode) storing the current task as serialized JSON
|--- data (group)
| |--- task_name (group)
| |--- S##_step_name

(continues on next page)

85

https://docs.python.org/3/library/functions.html#object

Autopilot Documentation, Release 0.3.0

(continued from previous page)

| | |--- trial_data
| | |--- continuous_data
| |--- ...
|--- history (group)
| |--- hashes - history of git commit hashes
| |--- history - history of changes: protocols assigned, params changed, etc.
| |--- weights - history of pre and post-task weights
| |--- past_protocols (group) - stash past protocol params on reassign
| |--- date_protocol_name - tables.filenode of a previous protocol's params.
| |--- ...
|--- info - group with biographical information as attributes

Variables
• name (str) – Subject ID

• file (str) – Path to hdf5 file - usually {prefs.get(‘DATADIR’)}/{self.name}.h5

• current_trial (int) – number of current trial

• running (bool) – Flag that signals whether the subject is currently running a task or not.

• data_queue (queue.Queue) – Queue to dump data while running task

• did_graduate (threading.Event) – Event used to signal if the subject has graduated the
current step

Parameters
• name (str) – subject ID

• dir (str) – path where the .h5 file is located, if None, prefs.get(‘DATADIR’) is used

• file (str) – load a subject from a filename. if None, ignored.

• structure (Subject_Schema) – Structure to use with this subject.

Methods:

86 Chapter 12. data

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/queue.html#queue.Queue
https://docs.python.org/3/library/threading.html#threading.Event

Autopilot Documentation, Release 0.3.0

_h5f ([lock]) Context manager for access to hdf5 file.
new(bio[, structure, data, attrs, children, ...]) Create a new subject file, make its structure, and pop-

ulate its Biography .
update_history(type, name, value[, step]) Update the history table when changes are made to

the subject's protocol.
_find_protocol(protocol[, protocol_name]) Resolve a protocol from a name, path, etc.
_make_protocol_structure(protocol_name,
protocol)

Use a Protocol_Group to make the necessary tables
for the given protocol.

assign_protocol(protocol[, step_n, ...]) Assign a protocol to the subject.
prepare_run() Prepares the Subject object to receive data while run-

ning the task.
_data_thread(queue, trial_table_path, ...) Thread that keeps hdf file open and receives data

while task is running.
save_data(data) Alternate and equivalent method of putting data in

the queue as Subject.data_queue.put(data)
stop_run() puts 'END' in the data_queue, which causes

_data_thread() to end.
get_trial_data([step]) Get trial data from the current task.
_get_step_data(step[, groups]) Get individual step data, using the protocol group if

given, otherwise try and recover from pytables de-
scription

_get_timestamp([simple]) Makes a timestamp.
get_weight([which, include_baseline]) Gets start and stop weights.
set_weight(date, col_name, new_value) Updates an existing weight in the weight table.
update_weights([start, stop]) Store either a starting or stopping mass.
_graduate() Increase the current step by one, unless it is the last

step.
_update_structure() Update old formats to new ones

Attributes:

12.1. subject 87

Autopilot Documentation, Release 0.3.0

info Subject biographical information
bio Subject biographical information (alias for info())
protocol

protocol_name

current_trial

session

step

task

session_uuid

history

hashes

weights

_h5f(lock: bool = True)→ tables.file.File
Context manager for access to hdf5 file.

Parameters lock (bool) – Lock the file while it is open, only use False for operations that are
read-only: there should only ever be one write operation at a time.

Examples

with self._h5f as h5f: # . . . do hdf5 stuff

Returns function wrapped with contextmanager that will open the hdf file

property info: autopilot.data.models.biography.Biography

Subject biographical information

property bio: autopilot.data.models.biography.Biography

Subject biographical information (alias for info())

property protocol: Optional[autopilot.data.models.subject.Protocol_Status]

property protocol_name: str

property current_trial: int

property session: int

property step: int

property task: dict

88 Chapter 12. data

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict

Autopilot Documentation, Release 0.3.0

property session_uuid: str

property history: autopilot.data.models.subject.History

property hashes: autopilot.data.models.subject.Hashes

property weights: autopilot.data.models.subject.Weights

classmethod new(bio: autopilot.data.models.biography.Biography, structure:
typing.Optional[autopilot.data.models.subject.Subject_Structure] =
Subject_Structure(info=H5F_Group(path='/info', title='Subject Biographical
Information', filters=None, attrs=None, children=None), data=H5F_Group(path='/data',
title='', filters=Filters(complevel=6, complib='blosc:lz4', shuffle=True, bitshuffle=False,
fletcher32=False, least_significant_digit=None), attrs=None, children=None),
protocol=H5F_Group(path='/protocol', title='Metadata for the currently assigned
protocol', filters=None, attrs=None, children=None),
history=H5F_Group(path='/history', title='', filters=None, attrs=None,
children=[H5F_Group(path='/history/past_protocols', title='Past Protocol Files',
filters=None, attrs=None, children=None), _Hash_Table(path='/history/hashes',
title='Git commit hash history', filters=None, attrs=None, description=<class
'tables.description.Hashes'>, expectedrows=10000),
_History_Table(path='/history/history', title='Change History', filters=None, attrs=None,
description=<class 'tables.description.History'>, expectedrows=10000),
_Weight_Table(path='/history/weights', title='Subject Weights', filters=None, attrs=None,
description=<class 'tables.description.Weights'>, expectedrows=10000)])), path:
typing.Optional[pathlib.Path] = None)→ autopilot.data.subject.Subject

Create a new subject file, make its structure, and populate its Biography .

Parameters
• bio (Biography) – A collection of biographical information about the subject! Stored as

attributes within /info

• structure (Optional[Subject_Structure]) – The structure of tables and groups to use
when creating this Subject. Note: This is not currently saved with the subject file, so if
using a nonstandard structure, it needs to be passed every time on init. Sorry!

• path (Optional[pathlib.Path]) – Path of created file. If None, make a file within the
DATADIR within the user directory (typically ~/autopilot/data) using the subject ID as
the filename. (eg. ~/autopilot/data/{id}.h5)

Returns Subject , Newly Created.

update_history(type, name: str, value: Any, step=None)
Update the history table when changes are made to the subject’s protocol.

The current protocol is flushed to the past_protocols group and an updated filenode is created.

Note: This only updates the history table, and does not make the changes itself.

Parameters
• type (str) – What type of change is being made? Can be one of

– ‘param’ - a parameter of one task stage

– ‘step’ - the step of the current protocol

12.1. subject 89

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any

Autopilot Documentation, Release 0.3.0

– ‘protocol’ - the whole protocol is being updated.

• name (str) – the name of either the parameter being changed or the new protocol

• value (str) – the value that the parameter or step is being changed to, or the protocol dic-
tionary flattened to a string.

• step (int) – When type is ‘param’, changes the parameter at a particular step, otherwise the
current step is used.

_find_protocol(protocol: Union[pathlib.Path, str, List[dict]], protocol_name: Optional[str] = None)→
Tuple[str, List[dict]]

Resolve a protocol from a name, path, etc. into a list of dictionaries

Returns tuple of (protocol_name, protocol)

_make_protocol_structure(protocol_name: str, protocol: List[dict])
Use a Protocol_Group to make the necessary tables for the given protocol.

assign_protocol(protocol: Union[pathlib.Path, str, List[dict]], step_n: int = 0, protocol_name:
Optional[str] = None)

Assign a protocol to the subject.

If the subject has a currently assigned task, stashes it with stash_current()

Creates groups and tables according to the data descriptions in the task class being assigned. eg. as de-
scribed in Task.TrialData.

Updates the history table.

Parameters
• protocol (Path, str, dict) – the protocol to be assigned. Can be one of

– the name of the protocol (its filename minus .json) if it is in prefs.get(‘PROTOCOLDIR’)

– filename of the protocol (its filename with .json) if it is in the
prefs.get(‘PROTOCOLDIR’)

– the full path and filename of the protocol.

– The protocol dictionary serialized to a string

– the protocol as a list of dictionaries

• step_n (int) – Which step is being assigned?

• protocol_name (str) – If passing protocol as a dict, have to give a name to the protocol

prepare_run()→ dict
Prepares the Subject object to receive data while running the task.

Gets information about current task, trial number, spawns Graduation object, spawns data_queue and
calls _data_thread().

Returns
the parameters for the current step, with subject id, step number, current trial, and ses-

sion number included.

Return type Dict

90 Chapter 12. data

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

Autopilot Documentation, Release 0.3.0

_data_thread(queue: queue.Queue, trial_table_path: str, continuous_group_path: str)
Thread that keeps hdf file open and receives data while task is running.

receives data through queue as dictionaries. Data can be partial-trial data (eg. each phase of a trial) as
long as the task returns a dict with ‘TRIAL_END’ as a key at the end of each trial.

each dict given to the queue should have the trial_num, and this method can properly store data without
passing TRIAL_END if so. I recommend being explicit, however.

Checks graduation state at the end of each trial.

Parameters queue (queue.Queue) – passed by prepare_run() and used by other objects to
pass data to be stored.

save_data(data)
Alternate and equivalent method of putting data in the queue as Subject.data_queue.put(data)

Parameters data (dict) – trial data. each should have a ‘trial_num’, and a dictionary with key
‘TRIAL_END’ should be passed at the end of each trial.

stop_run()

puts ‘END’ in the data_queue, which causes _data_thread() to end.

get_trial_data(step: Optional[Union[int, list, str]] = None)→
Union[List[pandas.core.frame.DataFrame], pandas.core.frame.DataFrame]

Get trial data from the current task.

Parameters step (int, list, str, None) – Step that should be returned, can be one of

• None: All steps (default)

• -1: the current step

• int: a single step

• list: of step numbers or step names (excluding S##_)

• string: the name of a step (excluding S##_)

Returns DataFrame of requested steps’ trial data (or list of dataframes).

Return type pandas.DataFrame

_get_step_data(step: int, groups: Optional[autopilot.data.models.protocol.Protocol_Group] = None)→
pandas.core.frame.DataFrame

Get individual step data, using the protocol group if given, otherwise try and recover from pytables descrip-
tion

_get_timestamp(simple: bool = False)→ str
Makes a timestamp.

Parameters simple (bool) –

if True: returns as format ‘%y%m%d-%H%M%S’, eg ‘190201-170811’

if False: returns in isoformat, eg. ‘2019-02-01T17:08:02.058808’

Returns basestring

get_weight(which='last', include_baseline=False)
Gets start and stop weights.

12.1. subject 91

https://docs.python.org/3/library/queue.html#queue.Queue
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/queue.html#queue.Queue
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.List
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Autopilot Documentation, Release 0.3.0

Todo: add ability to get weights by session number, dates, and ranges.

Parameters
• which (str) – if ‘last’, gets most recent weights. Otherwise returns all weights.

• include_baseline (bool) – if True, includes baseline and minimum mass.

Returns dict

set_weight(date, col_name, new_value)
Updates an existing weight in the weight table.

Todo: Yes, i know this is bad. Merge with update_weights

Parameters
• date (str) – date in the ‘simple’ format, %y%m%d-%H%M%S

• col_name (‘start’, ‘stop’) – are we updating a pre-task or post-task weight?

• new_value (float) – New mass.

update_weights(start=None, stop=None)
Store either a starting or stopping mass.

start and stop can be passed simultaneously, start can be given in one call and stop in a later call, but stop
should not be given before start.

Parameters
• start (float) – Mass before running task in grams

• stop (float) – Mass after running task in grams.

_graduate()

Increase the current step by one, unless it is the last step.

_update_structure()

Update old formats to new ones

_update_current(h5f)→ autopilot.data.models.subject.Protocol_Status
Update the old ‘current’ filenode to the new Protocol Status

12.2 interfaces

12.3 modeling

12.3.1 basic classes

Base classes for data models – the Data class itself.

Classes:

92 Chapter 12. data

Autopilot Documentation, Release 0.3.0

Data() A recursive unit of data.
Table() To be made into a table!
Attributes() A set of attributes that's intended to be singular, rather

than made into a table.
Schema() A special type of type intended to be a representation of

an abstract structure/schema of data, rather than a live
container of data objects themselves.

Group(*[, args, kwargs]) A generic representation of a "Group" if present in a
given interface.

Node(*[, args, kwargs]) Group, but for nodes.

class Data

Bases: autopilot.root.Autopilot_Type

A recursive unit of data.

We need to have the abstract representation of data: eg. for this experiment expect this kind of data in
general. It will come in as a series rather than a unit.

and we also need the instantaneous representation of data: using as an instance, link my data to this other
data right here.

There is no distinction between trialwise vs continuous data. A unit of data is just that collection of things that
you would collect in a moment.

So we need
• something that can declare data as a particular type (its representation)

• something that can declare data as a semantic value (this has this particular meaning of a piece
of data, eg. this is a positional series or a

but the relationship between them and it can get especially tricky when you get performance needs in-
volved. eg. you want a very thin wrapper around the literal values of things, so being able to abstract their
implementation from their structure is the whole point: use the ‘pytables’ backend when you want fast
local writing, use some database when you want reliable storage split async across multiple clients, use
nwb to export to but not necessarily to write to (but be able to translate data from another representation
to it).

So a data container should yield an active means of interacting with it. The data object exposes several
APIs * type declaration * reading/writing routines (mixin? context provider? eg like when used by this
object you provide this type?) * link structure between different declared data elements.

Data may have

• A Value – the

Create a new model by parsing and validating input data from keyword arguments.

Raises ValidationError if the input data cannot be parsed to form a valid model.

class Table

Bases: autopilot.data.modeling.base.Data

To be made into a table!

Create a new model by parsing and validating input data from keyword arguments.

Raises ValidationError if the input data cannot be parsed to form a valid model.

Methods:

12.3. modeling 93

Autopilot Documentation, Release 0.3.0

to_pytables_description() Convert the fields of this table to a pytables descrip-
tion

from_pytables_description(description) Create an instance of a table from a pytables descrip-
tion

to_df () Create a dataframe from the lists of fields

classmethod to_pytables_description()→ Type[tables.description.IsDescription]
Convert the fields of this table to a pytables description

classmethod from_pytables_description(description: Type[tables.description.IsDescription])→
autopilot.data.modeling.base.Table

Create an instance of a table from a pytables description

to_df()→ pandas.core.frame.DataFrame
Create a dataframe from the lists of fields

Returns pandas.DataFrame

class Attributes

Bases: autopilot.data.modeling.base.Data

A set of attributes that’s intended to be singular, rather than made into a table.

Create a new model by parsing and validating input data from keyword arguments.

Raises ValidationError if the input data cannot be parsed to form a valid model.

class Schema

Bases: autopilot.root.Autopilot_Type

A special type of type intended to be a representation of an abstract structure/schema of data, rather than a live
container of data objects themselves. This class is used for constructing data containers, translating between
formats, etc. rather than momentary data handling

Create a new model by parsing and validating input data from keyword arguments.

Raises ValidationError if the input data cannot be parsed to form a valid model.

class Group(*, args: list = None, kwargs: dict = None)
Bases: autopilot.root.Autopilot_Type

A generic representation of a “Group” if present in a given interface. Useful for when, for example in a given
container format you want to make an empty group that will be filled later, or one that has to be present for
syntactic correctness.

Create a new model by parsing and validating input data from keyword arguments.

Raises ValidationError if the input data cannot be parsed to form a valid model.

Attributes:

args

kwargs

args: Optional[list]

94 Chapter 12. data

https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/typing.html#typing.Type
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list

Autopilot Documentation, Release 0.3.0

kwargs: Optional[dict]

class Node(*, args: list = None, kwargs: dict = None)
Bases: autopilot.root.Autopilot_Type

Group, but for nodes.

Create a new model by parsing and validating input data from keyword arguments.

Raises ValidationError if the input data cannot be parsed to form a valid model.

Attributes:

args

kwargs

args: Optional[list]

kwargs: Optional[dict]

12.4 models

12.5 units

12.4. models 95

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict

Autopilot Documentation, Release 0.3.0

96 Chapter 12. data

CHAPTER

THIRTEEN

HARDWARE

Classes that manage hardware logic.

Each hardware class should be able to operate independently - ie. not be dependent on a particular task class, etc. Other
than that there are very few design requirements:

• Every class should have a .release() method that releases any system resources in use by the object, eg. objects
that use pigpio must have their pigpio.pi client stopped; LEDs should be explicitly turned off.

• The very minimal class attributes are described in the Hardware metaclass.

• Hardware methods are typically called in their own threads, so care should be taken to make any long-running
operations internally threadsafe.

Note: This software was primarily developed for the Raspberry Pi, which has two types of numbering schemes ,
“board” numbering based on physical position (e.g. pins 1-40, in 2 rows of 20 pins) and “bcm” numbering based on
the broadcom chip numbering scheme (e.g. GPIO2, GPIO27).

Board numbering is easier to use, but pigpio , which we use as a bridge between Python and the GPIOs, uses the BCM
scheme. As such each class that uses the GPIOs takes a board number as its argument and converts it to a BCM number
in the __init__ method.

If there is sufficient demand to make this more flexible, we can implement an additional pref to set the numbering
scheme, but the current solution works without getting too muddy.

Data:

BOARD_TO_BCM Mapping from board (physical) numbering to BCM
numbering.

BCM_TO_BOARD The inverse of BOARD_TO_BCM .

Classes:

Hardware([name, group]) Generic class inherited by all hardware.

BOARD_TO_BCM = { 3: 2, 5: 3, 7: 4, 8: 14, 10: 15, 11: 17, 12: 18, 13: 27, 15:
22, 16: 23, 18: 24, 19: 10, 21: 9, 22: 25, 23: 11, 24: 8, 26: 7, 29: 5, 31: 6,
32: 12, 33: 13, 35: 19, 36: 16, 37: 26, 38: 20, 40: 21}

Mapping from board (physical) numbering to BCM numbering.

See this pinout.

Hardware objects take board numbered pins and convert them to BCM numbers for use with pigpio.

97

https://pinout.xyz/
http://abyz.me.uk/rpi/pigpio/
https://pinout.xyz/

Autopilot Documentation, Release 0.3.0

Type dict

BCM_TO_BOARD = { 2: 3, 3: 5, 4: 7, 5: 29, 6: 31, 7: 26, 8: 24, 9: 21, 10: 19,
11: 23, 12: 32, 13: 33, 14: 8, 15: 10, 16: 36, 17: 11, 18: 12, 19: 35, 20: 38,
21: 40, 22: 15, 23: 16, 24: 18, 25: 22, 26: 37, 27: 13}

The inverse of BOARD_TO_BCM .

Type dict

class Hardware(name=None, group=None, **kwargs)
Bases: object

Generic class inherited by all hardware. Should not be instantiated on its own (but it won’t do anything bad so
go nuts i guess).

Primarily for the purpose of defining necessary attributes.

Variables
• name (str) – unique name used to identify this object within its group.

• group (str) – hardware group, corresponds to key in prefs.json "HARDWARE":
{"GROUP": {"ID": {**params}}}

• is_trigger (bool) – Is this object a discrete event input device? or, will this device be
used to trigger some event? If True, will be given a callback by Task , and assign_cb()
must be redefined.

• pin (int) – The BCM pin used by this device, or None if no pin is used.

• type (str) – What is this device known as in .prefs? Not required.

• input (bool) – Is this an input device?

• output (bool) – Is this an output device?

Attributes:

is_trigger

pin

type

input

output

calibration Calibration used by the hardware object.

Methods:

98 Chapter 13. hardware

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Autopilot Documentation, Release 0.3.0

release() Every hardware device needs to redefine release(),
and must

assign_cb(trigger_fn) Every hardware device that is a trigger must re-
define this to accept a function (typically Task.
handle_trigger()) that is called when that trigger
is activated.

get_name() Usually Hardware is only instantiated with its pin
number, but we can get its name from prefs

init_networking([listens]) Spawn a Net_Node to Hardware.node for stream-
ing or networked command

is_trigger = False

pin = None

type = ''

input = False

output = False

logger: logging.Logger

release()

Every hardware device needs to redefine release(), and must

• Safely unload any system resources used by the object, and

• Return the object to a neutral state - eg. LEDs turn off.

When not redefined, a warning is given.

assign_cb(trigger_fn)
Every hardware device that is a trigger must redefine this to accept a function (typically Task.
handle_trigger()) that is called when that trigger is activated.

When not redefined, a warning is given.

get_name()

Usually Hardware is only instantiated with its pin number, but we can get its name from prefs

init_networking(listens=None, **kwargs)
Spawn a Net_Node to Hardware.node for streaming or networked command

Parameters
• listens (dict) – Dictionary mapping message keys to handling methods

• **kwargs – Passed to Net_Node

Returns:

property calibration: Optional[dict]

Calibration used by the hardware object.

Attempt to read from prefs.get('CALIBRATIONDIR')/group.name.json , if Hardware.group is
None, attempt to read from prefs.get('CALIBRATIONDIR')/name.json

Setting the attribute (over)writes the calibration to disk as a .json file

99

https://docs.python.org/3/library/logging.html#logging.Logger
https://docs.python.org/3/library/stdtypes.html#dict

Autopilot Documentation, Release 0.3.0

Will be different for each hardware type, subclasses should document this property separately (eg. by
overwriting Hardware.calibration.__doc__

Returns if calibration is found, a dictionary of calibration for each property. None if no calibra-
tion found

Return type (dict)

13.1 cameras

autopilot.hardware.Hardware autopilot.hardware.cameras.Camera

autopilot.hardware.cameras.Camera_CV

autopilot.hardware.cameras.Camera_Spinnaker

autopilot.hardware.cameras.PiCamera

autopilot.hardware.cameras.Directory_Writer

autopilot.hardware.cameras.Video_Writermultiprocessing.context.Processmultiprocessing.process.BaseProcess

Classes:

Camera([fps, timed, crop, rotate]) Metaclass for Camera objects.
PiCamera([camera_idx, sensor_mode, ...]) Interface to the Raspberry Pi Camera Module via picam-

era
Camera_CV([camera_idx]) Capture Video from a webcam with OpenCV
Camera_Spinnaker([serial, camera_idx]) Capture video from a FLIR brand camera with the Spin-

naker SDK.
Video_Writer(q, path[, fps, timestamps, blosc]) Encode frames as they are acquired in a separate process.

Functions:

list_spinnaker_cameras() List all available Spinnaker cameras and their
DeviceInformation

OPENCV_LAST_INIT_TIME = <Synchronized wrapper for c_double(0.0)>

Time the last OpenCV camera was initialized (seconds, from time.time()).

v4l2 has an extraordinarily obnoxious . . . feature – if you try to initialize two cameras at ~the same time, you will
get a neverending stream of informative error messages: VIDIOC_QBUF: Invalid argument

The workaround seems to be relatively simple, we just wait ~2 seconds if another camera was just initialized.

class Camera(fps=None, timed=False, crop=None, rotate: int = 0, **kwargs)
Bases: autopilot.hardware.Hardware

Metaclass for Camera objects. Should not be instantiated on its own.

Parameters
• fps (int) – Framerate of video capture

100 Chapter 13. hardware

https://docs.python.org/3/library/stdtypes.html#dict
https://www.raspberrypi.org/products/camera-module-v2/
https://picamera.readthedocs.io/en/latest/
https://picamera.readthedocs.io/en/latest/
https://docs.python.org/3/library/functions.html#int

Autopilot Documentation, Release 0.3.0

• timed (bool, int, float) – If False (default), camera captures indefinitely. If int or float, cap-
tures for this many seconds

• rotate (int) – Number of times to rotate image clockwise (default 0). Note that image rotation
should happen in _grab() or be otherwise implemented in each camera subclass, because
it’s a common enough operation many cameras have some optimized way of doing it.

• **kwargs –

Arguments to stream(), write(), and queue() can be passed as dictionaries, eg.:

stream={'to':'T', 'ip':'localhost'}

When the camera is instantiated and capture() is called, the class uses a series of methods that should be
overwritten in subclasses. Further details for each can be found in the relevant method documentation.

It is highly recommended to instantiate Cameras with a Hardware.name, as it is used in output_filename
and to identify the network stream

Three methods are required to be overwritten by all subclasses:

• init_cam() - required - used by cam , instantiating the camera object so that it can be queried and con-
figured

• _grab() - required - grab a frame from the cam

• _timestamp() - required - get a timestamp for the frame

The other methods are optional and depend on the particular camera:

• capture_init() - optional - any required routine to prepare the camera after it is instantiated but before
it begins to capture

• _process() - optional - the wrapper around a full acquisition cycle, including streaming, writing, and
queueing frames

• _write_frame() - optional - how to write an individual frame to disk

• _write_deinit() - optional - any required routine to finish writing to disk after acquisition

• capture_deinit() - optional - any required routine to stop acquisition but not release the camera instance.

Variables
• frame (tuple) – The current captured frame as a tuple (timestamp, frame).

• shape (tuple) – Shape of captured frames (height, width, channels)

• blosc (bool) – If True (default), use blosc compression when

• cam – The object used to interact with the camera

• fps (int) – Framerate of video capture

• timed (bool, int, float) – If False (default), camera captures indefinitely. If int or float,
captures for this many seconds

• q (Queue) – Queue that allows frames to be pulled by other objects

• queue_size (int) – How many frames should be buffered in the queue.

• initialized (threading.Event) – Called in init_cam() to indicate the camera has
been initialized

• stopping (threading.Event) – Called to signal that capturing should stop. when set,
ends the threaded capture loop

13.1. cameras 101

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/threading.html#threading.Event
https://docs.python.org/3/library/threading.html#threading.Event

Autopilot Documentation, Release 0.3.0

• capturing (threading.Event) – Set when camera is actively capturing

• streaming (threading.Event) – Set to indicate that the camera is streaming data over the
network

• writing (threading.Event) – Set to indicate that the camera is writing video locally

• queueing (threading.Event) – Indicates whether frames are being put into q

• indicating (threading.Event) – Set to indicate that capture progress is being indicated
in stdout by tqdm

Parameters
• fps
• timed
• crop (tuple) – (x, y of top left corner, width, height)

• **kwargs

Attributes:

input test documenting input
type what are we anyway?
cam Camera object.
output_filename Filename given to video writer.

Methods:

capture([timed]) Spawn a thread to begin capturing.
_capture() Threaded capture method started by capture().
_process() A full frame capture cycle.
stream([to, ip, port, min_size]) Enable streaming frames on capture.
l_start(val) Begin capturing by calling Camera.capture()
l_stop(val) Stop capture by calling Camera.release()
write([output_filename, timestamps, blosc]) Enable writing frames locally on capture
_write_frame() Put frame into the _write_q, optionally compress-

ing it with blosc.pack_array()
_write_deinit() End the Video_Writer.
queue([queue_size]) Enable stashing frames in a queue for a local con-

sumer.
_grab() Capture a frame and timestamp.
_timestamp([frame]) Generate a timestamp for each _grab()
init_cam() Method to initialize camera object
capture_init() Optional: Prepare cam after initialization, but before

capture
capture_deinit() Optional: Return cam to an idle state after capturing,

but before releasing
stop() Stop capture by setting stopping
release() Release resources held by Camera.

input = True

test documenting input

102 Chapter 13. hardware

https://docs.python.org/3/library/threading.html#threading.Event
https://docs.python.org/3/library/threading.html#threading.Event
https://docs.python.org/3/library/threading.html#threading.Event
https://docs.python.org/3/library/threading.html#threading.Event
https://docs.python.org/3/library/threading.html#threading.Event

Autopilot Documentation, Release 0.3.0

type = 'CAMERA'

what are we anyway?

Type (str)

capture(timed=None)
Spawn a thread to begin capturing.

Parameters timed (None, int, float) – if None, record according to timed (default). If numeric,
record for timed seconds.

_capture()

Threaded capture method started by capture().

Captures until stopping is set.

Calls capture methods, in order:

• capture_init() - any required routine to prepare the camera after it is instantiated but before it
begins to capture

• _process() - the wrapper around a full acquisition cycle, including streaming, writing, and queueing
frames

• _grab() - grab a frame from the cam

• _timestamp() - get a timestamp for the frame

• _write_frame() - how to write an individual frame to disk

• _write_deinit() - any required routine to finish writing to disk after acquisition

• capture_deinit() - any required routine to stop acquisition but not release the camera instance.

_process()

A full frame capture cycle.

_grab`s the :attr:().frame`, then handles streaming, writing, queueing, and indicating according to
stream(), write(), queue(), and indicating, respectively.

stream(to='T', ip=None, port=None, min_size=5, **kwargs)
Enable streaming frames on capture.

Spawns a Net_Node with Hardware.init_networking(), and creates a streaming queue with
Net_Node.get_stream() according to args.

Sets Camera.streaming

Parameters
• to (str) – ID of the recipient. Default ‘T’ for Terminal.

• ip (str) – IP of recipient. If None (default), ‘localhost’. If None and to is ‘T’, prefs.
get('TERMINALIP')

• port (int, str) – Port of recipient socket. If None (default), prefs.get('MSGPORT'). If
None and to is ‘T’, prefs.get('TERMINALPORT').

• min_size (int) – Number of frames to collect before sending (default: 5). use 1 to send
frames as soon as they are available, sacrificing the efficiency from compressing multiple
frames together

• **kwargs – passed to Hardware.init_networking() and thus to Net_Node

13.1. cameras 103

https://docs.python.org/3/library/stdtypes.html#str

Autopilot Documentation, Release 0.3.0

l_start(val)
Begin capturing by calling Camera.capture()

Parameters val – unused

l_stop(val)
Stop capture by calling Camera.release()

Parameters val – unused

write(output_filename=None, timestamps=True, blosc=True)
Enable writing frames locally on capture

Spawns a Video_Writer to encode video, sets writing

Parameters
• output_filename (str) – path and filename of the output video. extension should be .mp4,

as videos are encoded with libx264 by default.

• timestamps (bool) – if True, (timestamp, frame) tuples will be put in the _write_q. if
False, timestamps will be generated by Video_Writer (not recommended at all).

• blosc (bool) – if true, compress frames with blosc.pack_array() before putting in
_write_q.

_write_frame()

Put frame into the _write_q, optionally compressing it with blosc.pack_array()

_write_deinit()

End the Video_Writer.

Blocks until the _write_q is empty, holding the release of the object.

queue(queue_size=128)
Enable stashing frames in a queue for a local consumer.

Other objects can get frames as they are acquired from q

Parameters queue_size (int) – max number of frames that can be held in q

property cam

Camera object.

If _cam hasn’t been initialized yet, use init_cam() to do so

Returns Camera object, different for each camera.

property output_filename

Filename given to video writer.

If explicitly set, returns as expected.

If None, or path already exists while the camera isn’t capturing, a new filename is generated in the user
directory.

Returns (str) _output_filename

_grab()

Capture a frame and timestamp.

Method must be overridden by subclass

Returns

104 Chapter 13. hardware

Autopilot Documentation, Release 0.3.0

(str, numpy.ndarray) Tuple of isoformatted (str) or numeric timestamp returned by _timestamp(),
and captured frame

_timestamp(frame=None)
Generate a timestamp for each _grab()

Must be overridden by subclass

Parameters frame – If needed by camera subclass, pass the frame or image object to get times-
tamp

Returns (str, int, float) Either an isoformatted (str) or numeric timestamp

init_cam()

Method to initialize camera object

Must be overridden by camera subclass

Returns camera object

capture_init()

Optional: Prepare cam after initialization, but before capture

Returns None

capture_deinit()

Optional: Return cam to an idle state after capturing, but before releasing

Returns None

stop()

Stop capture by setting stopping

release()

Release resources held by Camera.

Must be overridden by subclass.

Does not raise exception in case some general camera release logic should be put here. . .

class PiCamera(camera_idx: int = 0, sensor_mode: int = 0, resolution: Tuple[int, int] = (1280, 720), fps: int =
30, format: str = 'rgb', *args, **kwargs)

Bases: autopilot.hardware.cameras.Camera

Interface to the Raspberry Pi Camera Module via picamera

Parameters of the picamera.PiCamera class can be set after initialization by modifying the PiCamera.cam
attribute, eg PiCamera().cam.exposure_mode = 'fixedfps' – see the picamera.PiCamera documenta-
tion for full documentation.

Note that some parameters, like resolution, can’t be changed after starting capture() .

The Camera Module is a slippery little thing, and fps and resolution are just requests to the camera, and
aren’t necessarily followed with 100% fidelity. The possible framerates and resolutions are determined by the
sensor_mode parameter, which by default tries to guess the best sensor mode based on the fps and resolution.
See the Sensor Modes documentation for more details.

This wrapper uses a subclass, PiCamera.PiCamera_Writer to capture frames decoded by the gpu directly
from the preallocated buffer object. Currently the restoration from the buffer assumes that RGB, or generally
shape[2] == 3, images are being captured. See this stackexchange post by Dave Jones, author of the picamera
module, for a strategy for capturing grayscale images quickly.

13.1. cameras 105

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://www.raspberrypi.org/products/camera-module-v2/
https://picamera.readthedocs.io/en/latest/
https://picamera.readthedocs.io/en/release-1.13/api_camera.html#picamera.PiCamera
https://picamera.readthedocs.io/en/release-1.13/api_camera.html#picamera.PiCamera
https://picamera.readthedocs.io/en/release-1.13/fov.html#camera-modes
https://raspberrypi.stackexchange.com/a/58941/112948

Autopilot Documentation, Release 0.3.0

This class also currently uses the default Video_Writer object, but it could be more performant to use the
picamera.PiCamera.start_recording() method’s built-in ability to record video to a file — try it out!

Todo: Currently timestamps are constructed with datetime.datetime.now.isoformat(), which is not
altogether accurate. Timestamps should be gotten from the frame attribute, which depends on the clock_mode

References

• https://blog.robertelder.org/recording-660-fps-on-raspberry-pi-camera/

• Fast capture from the author of picamera - https://raspberrypi.stackexchange.com/a/58941/112948

• More on fast capture and processing, see last example in section - https://picamera.readthedocs.io/en/
release-1.12/recipes2.html#rapid-capture

Parameters
• camera_idx (int) – Index of picamera (default: 0, >=1 only supported on compute module)

• sensor_mode (int) – Sensor mode, default 0 detects automatically from resolution and fps,
note that sensor_mode will affect the available resolutions and framerates, see Sensor Modes
for more information

• resolution (tuple) – a tuple of (width, height) integers, but mind the note in the above docu-
mentation regarding the sensor_mode property and resolution

• fps (int) – frames per second, but again mind the note on sensor_mode

• format (str) – Format passed to :class`picamera.PiCamera.start_recording` one of ('rgb'
(default), 'grayscale') The 'grayscale' format uses the 'yuv' format, and ex-
tracts the luminance channel

• *args () – passed to superclass

• **kwargs () – passed to superclass

Attributes:

sensor_mode Sensor mode, default 0 detects automatically from
resolution and fps, note that sensor_mode will affect
the available resolutions and framerates, see Sensor
Modes for more information.

resolution A tuple of ints, (width, height).
fps Frames per second
rotation Rotation of the captured image, derived from

Camera.rotate * 90.

Methods:

106 Chapter 13. hardware

https://picamera.readthedocs.io/en/release-1.13/api_camera.html#picamera.PiCamera.start_recording
https://picamera.readthedocs.io/en/release-1.13/api_camera.html#picamera.PiCamera.frame
https://picamera.readthedocs.io/en/release-1.13/api_camera.html#picamera.PiCamera.clock_mode
https://blog.robertelder.org/recording-660-fps-on-raspberry-pi-camera/
https://raspberrypi.stackexchange.com/a/58941/112948
https://picamera.readthedocs.io/en/release-1.12/recipes2.html#rapid-capture
https://picamera.readthedocs.io/en/release-1.12/recipes2.html#rapid-capture
https://picamera.readthedocs.io/en/release-1.13/fov.html#camera-modes
https://picamera.readthedocs.io/en/release-1.13/fov.html#camera-modes
https://picamera.readthedocs.io/en/release-1.13/fov.html#camera-modes

Autopilot Documentation, Release 0.3.0

init_cam() Initialize and return the picamera.PiCamera ob-
ject.

capture_init() Spawn a PiCamera.PiCamera_Writer ob-
ject to PiCamera._picam_writer and
start_recording() in the set format

_grab() Wait on the grab_event to be set, then clear it before
returning the frame.

capture_deinit() stop_recording() and close() the camera, re-
leasing its resources.

release() Release resources held by Camera.

Classes:

PiCamera_Writer(resolution[, format]) Writer object for processing individual frames, see:
https://raspberrypi.stackexchange.com/a/58941/
112948

property sensor_mode: int

Sensor mode, default 0 detects automatically from resolution and fps, note that sensor_mode will affect the
available resolutions and framerates, see Sensor Modes for more information.

When set, if the camera has been initialized, will change the attribute in PiCamera.cam

Returns int

property resolution: Tuple[int, int]

A tuple of ints, (width, height).

Resolution can’t be changed while the camera is capturing.

See Sensor Modes for more information re: how resolution relates to picamera.PiCamera.sensor_mode

Returns tuple of ints, (width, height)

property fps: int

Frames per second

See Sensor Modes for more information re: how fps relates to picamera.PiCamera.sensor_mode

Returns int - fps

property rotation: int

Rotation of the captured image, derived from Camera.rotate * 90.

Must be one of (0, 90, 180, 270)

Rotation can be changed during capture

Returns int - Current rotation

init_cam()→ picamera.PiCamera
Initialize and return the picamera.PiCamera object.

Uses the stored camera_idx, resolution, fps, and sensor_mode attributes on init.

Returns picamera.PiCamera

13.1. cameras 107

https://picamera.readthedocs.io/en/release-1.13/api_camera.html#picamera.PiCamera
https://picamera.readthedocs.io/en/release-1.13/api_camera.html#picamera.PiCamera.start_recording
https://picamera.readthedocs.io/en/release-1.13/api_camera.html#picamera.PiCamera.stop_recording
https://picamera.readthedocs.io/en/release-1.13/api_camera.html#picamera.PiCamera.close
https://raspberrypi.stackexchange.com/a/58941/112948
https://raspberrypi.stackexchange.com/a/58941/112948
https://docs.python.org/3/library/functions.html#int
https://picamera.readthedocs.io/en/release-1.13/fov.html#camera-modes
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://picamera.readthedocs.io/en/release-1.13/fov.html#camera-modes
https://picamera.readthedocs.io/en/release-1.13/api_camera.html#picamera.PiCamera.sensor_mode
https://docs.python.org/3/library/functions.html#int
https://picamera.readthedocs.io/en/release-1.13/fov.html#camera-modes
https://picamera.readthedocs.io/en/release-1.13/api_camera.html#picamera.PiCamera.sensor_mode
https://docs.python.org/3/library/functions.html#int
https://picamera.readthedocs.io/en/release-1.13/api_camera.html#picamera.PiCamera
https://picamera.readthedocs.io/en/release-1.13/api_camera.html#picamera.PiCamera
https://picamera.readthedocs.io/en/release-1.13/api_camera.html#picamera.PiCamera

Autopilot Documentation, Release 0.3.0

capture_init()

Spawn a PiCamera.PiCamera_Writer object to PiCamera._picam_writer and start_recording()
in the set format

_grab()→ Tuple[str, numpy.ndarray]
Wait on the grab_event to be set, then clear it before returning the frame.

Returns (timestamp, frame) tuple

capture_deinit()

stop_recording() and close() the camera, releasing its resources.

release()

Release resources held by Camera.

Must be overridden by subclass.

Does not raise exception in case some general camera release logic should be put here. . .

class PiCamera_Writer(resolution: Tuple[int, int], format: str = 'rgb')
Bases: object

Writer object for processing individual frames, see: https://raspberrypi.stackexchange.com/a/58941/
112948

Parameters resolution (tuple) – (width, height) tuple used when making numpy array from
buffer

Variables
• grab_event (threading.Event) – Event set whenever a new frame is captured, cleared

by the parent class when the frame is consumed.

• frame (numpy.ndarray) – Captured frame

• timestamp (str) – Isoformatted timestamp of time of capture.

Methods:

write(buf) Reconstutute the buffer into a numpy array in
PiCamera_Writer.frame and make a times-
tamp in PiCamera_Writer.timestamp, then set
the PiCamera_Writer.grab_event

write(buf)
Reconstutute the buffer into a numpy array in PiCamera_Writer.frame and make a timestamp in
PiCamera_Writer.timestamp, then set the PiCamera_Writer.grab_event

Parameters buf () – Buffer given by PiCamera

class Camera_CV(camera_idx=0, **kwargs)
Bases: autopilot.hardware.cameras.Camera

Capture Video from a webcam with OpenCV

By default, OpenCV will select a suitable backend for the indicated camera. Some backends have difficulty
operating multiple cameras at once, so the performance of this class will be variable depending on camera type.

108 Chapter 13. hardware

https://picamera.readthedocs.io/en/release-1.13/api_camera.html#picamera.PiCamera.start_recording
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://picamera.readthedocs.io/en/release-1.13/api_camera.html#picamera.PiCamera.stop_recording
https://picamera.readthedocs.io/en/release-1.13/api_camera.html#picamera.PiCamera.close
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://raspberrypi.stackexchange.com/a/58941/112948
https://raspberrypi.stackexchange.com/a/58941/112948
https://docs.python.org/3/library/threading.html#threading.Event
https://docs.python.org/3/library/stdtypes.html#str

Autopilot Documentation, Release 0.3.0

Note: OpenCV must be installed to use this class! A Prebuilt opencv binary is available for the raspberry pi, but
it doesn’t take advantage of some performance-enhancements available to OpenCV. Use autopilot.setup.
run_script opencv to compile OpenCV with these enhancements.

If your camera isn’t working and you’re using v4l2, to print debugging information you can run:

set the debug log level
echo 3 > /sys/class/video4linux/videox/dev_debug

check logs
dmesg

Parameters
• camera_idx (int) – The index of the desired camera

• **kwargs – Passed to the Camera metaclass.

Variables
• camera_idx (int) – The index of the desired camera

• last_opencv_init (float) – See OPENCV_LAST_INIT_TIME

• last_init_lock (threading.Lock) – Lock for setting last_opencv_init

Attributes:

fps Attempts to get FPS with cv2.CAP_PROP_FPS, uses
30fps as a default

shape Attempts to get image shape from cv2.
CAP_PROP_FRAME_WIDTH and HEIGHT :returns:
(width, height) :rtype: tuple

backend capture backend used by OpenCV for this camera
v4l_info Device information from v4l2-ctl

Methods:

_grab() Reads a frame with cam.read()
_timestamp([frame]) Attempts to get timestamp with cv2.

CAP_PROP_POS_MSEC.
init_cam() Initializes OpenCV Camera
release() Release resources held by Camera.

property fps

Attempts to get FPS with cv2.CAP_PROP_FPS, uses 30fps as a default

Returns framerate

Return type int

property shape

Attempts to get image shape from cv2.CAP_PROP_FRAME_WIDTH and HEIGHT :returns: (width, height)
:rtype: tuple

13.1. cameras 109

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/threading.html#threading.Lock
https://docs.python.org/3/library/functions.html#int

Autopilot Documentation, Release 0.3.0

_grab()

Reads a frame with cam.read()

Returns (timestamp, frame)

Return type tuple

_timestamp(frame=None)
Attempts to get timestamp with cv2.CAP_PROP_POS_MSEC. Frame does not need to be passed to this
method, as timestamps are retrieved from cam

Todo: Convert this float timestamp to an isoformatted system timestamp

Returns milliseconds since capture start

Return type float

property backend

capture backend used by OpenCV for this camera

Returns name of capture backend used by OpenCV for this camera

Return type str

init_cam()

Initializes OpenCV Camera

To avoid overlapping resource allocation requests, checks the last time any Camera_CV object was instan-
tiated and makes sure it has been at least 2 seconds since then.

Returns camera object

Return type cv2.VideoCapture

release()

Release resources held by Camera.

Must be overridden by subclass.

Does not raise exception in case some general camera release logic should be put here. . .

property v4l_info

Device information from v4l2-ctl

Returns Information for all devices available through v4l2

Return type dict

class Camera_Spinnaker(serial=None, camera_idx=None, **kwargs)
Bases: autopilot.hardware.cameras.Camera

Capture video from a FLIR brand camera with the Spinnaker SDK.

Parameters
• serial (str) – Serial number of desired camera

• camera_idx (int) – If no serial provided, select camera by index. Using serial is HIGHLY
RECOMMENDED.

• **kwargs – passed to Camera metaclass

110 Chapter 13. hardware

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

Autopilot Documentation, Release 0.3.0

Note: PySpin and the Spinnaker SDK must be installed to use this class. Please use the install_pyspin.sh
script in setup

See the documentation for the Spinnaker SDK and PySpin here:

https://www.flir.com/products/spinnaker-sdk/

Variables
• serial (str) – Serial number of desired camera

• camera_idx (int) – If no serial provided, select camera by index. Using serial is
HIGHLY RECOMMENDED.

• system (PySpin.System) – The PySpin System object

• cam_list (PySpin.CameraList) – The list of PySpin Cameras available to the system

• nmap – A reference to the nodemap from the GenICam XML description of the device

• base_path (str) – The directory and base filename that images will be written to if object
is writing. eg:

base_path = ‘/home/user/capture_directory/capture_’ image_path = base_path + ‘im-
age1.png’

• img_opts (PySpin.PNGOption) – Options for saving .png images, made by write()

Attributes:

ATTR_TYPES Conversion from data types to pointer types
ATTR_TYPE_NAMES Conversion from data types to human-readable

names
RW_MODES bool, 'write':bool} descriptor
bin Camera Binning.
exposure Set Exposure of camera
fps Acquisition Framerate
frame_trigger Set camera to lead or follow hardware triggers
acquisition_mode Image acquisition mode
readable_attributes All device attributes that are currently readable with

get()
writable_attributes All device attributes that are currently writeable wth

set()
device_info Get all information about the camera

Methods:

13.1. cameras 111

https://www.flir.com/products/spinnaker-sdk/
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Autopilot Documentation, Release 0.3.0

init_cam() Initialize the Spinnaker Camera
capture_init() Prepare the camera for acquisition
capture_deinit() De-initializes the camera after acquisition
_process() Modification of the Camera._process() method

for Spinnaker cameras
_grab() Get next timestamp and PySpin Image
_timestamp([frame]) Get the timestamp from the passed image
write([output_filename, timestamps, blosc]) Sets camera to save acquired images to a directory for

later encoding.
_write_frame() Write frame to base_path + timestamp + '.png' with

PySpin.Image.Save()
_write_deinit() After capture, write images in base_path to video

with Directory_Writer
get(attr) Get a camera attribute.
set(attr, val) Set a camera attribute
list_options(name) List the possible values of a camera attribute.
release() Release all PySpin objects and wait on writer, if still

active.

ATTR_TYPES = {}

Conversion from data types to pointer types

ATTR_TYPE_NAMES = {}

Conversion from data types to human-readable names

RW_MODES = {}

bool, ‘write’:bool} descriptor

Type Conversion from read/write mode to {‘read’

init_cam()

Initialize the Spinnaker Camera

Initializes the camera, system, cam_list, node map, and the camera methods and attributes used by get()
and set()

Returns The Spinnaker camera object

Return type PySpin.Camera

capture_init()

Prepare the camera for acquisition

calls the camera’s BeginAcquisition method and populate shape

capture_deinit()

De-initializes the camera after acquisition

_process()

Modification of the Camera._process() method for Spinnaker cameras

Because the objects returned from the _grab() method are image pointers rather than
:class:`numpy.ndarray`s, they need to be handled differently.

More details on the differences are given in the _write_frame(),

112 Chapter 13. hardware

Autopilot Documentation, Release 0.3.0

_grab()

Get next timestamp and PySpin Image

Returns (timestamp, PySpin.Image)

Return type tuple

_timestamp(frame=None)
Get the timestamp from the passed image

Parameters frame (PySpin.Image) – Currently grabbed image

Returns PySpin timestamp

Return type float

write(output_filename=None, timestamps=True, blosc=True)
Sets camera to save acquired images to a directory for later encoding.

For performance, rather than encoding during acquisition, save each image as a (lossless) .png image in a
directory generated by output_filename.

After capturing is complete, a Directory_Writer encodes the images to an x264 encoded .mp4 video.

Parameters
• output_filename (str) – Directory to write images to. If None (default), generated by
output_filename

• timestamps (bool) – Not used, timestamps are always appended to filenames.

• blosc (bool) – Not used, images are directly saved.

_write_frame()

Write frame to base_path + timestamp + ‘.png’ with PySpin.Image.Save()

_write_deinit()

After capture, write images in base_path to video with Directory_Writer

Camera object will remain open until writer has finished.

property bin

Camera Binning.

Attempts to bin on-device, and use averaging if possible. If averaging not available, uses summation.

Parameters tuple – tuple of integers, (Horizontal, Vertical binning)

Returns (Horizontal, Vertical binning)

Return type tuple

property exposure

Set Exposure of camera

Can be set with

• 'auto' - automatic exposure control. note that this will limit framerate

• float from 0-1 - exposure duration proportional to fps. eg. if fps = 10, setting exposure = 0.5 means
exposure will be set as 50ms

• float or int >1 - absolute exposure time in microseconds

Returns If exposure has been set, return set value. Otherwise return .get('ExposureTime')

13.1. cameras 113

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple

Autopilot Documentation, Release 0.3.0

Return type str, float

property fps

Acquisition Framerate

Set with integer. If set with None, ignored (superclass sets FPS to None on init)

Returns from cam.AcquisitionFrameRate.GetValue()

Return type int

property frame_trigger

Set camera to lead or follow hardware triggers

If 'lead', Camera will send TTL pulses from Line 2.

If 'follow', Camera will follow triggers from Line 3.

See also:

• https://www.flir.com/support-center/iis/machine-vision/application-note/
configuring-synchronized-capture-with-multiple-cameras

• https://www.flir.com/support-center/iis/machine-vision/knowledge-base/
what-external-iidc-trigger-modes-are-supported-by-my-camera/

property acquisition_mode

Image acquisition mode

One of

• 'continuous' - continuously acquire frame camera

• 'single' - acquire a single frame

• 'multi' - acquire a finite number of frames.

Warning: Only 'continuous' has been tested.

property readable_attributes

All device attributes that are currently readable with get()

Returns A dictionary of attributes that are readable and their current values

Return type dict

property writable_attributes

All device attributes that are currently writeable wth set()

Returns A dictionary of attributes that are writeable and their current values

Return type dict

get(attr)
Get a camera attribute.

Any value in readable_attributes can be read. Attempts to get numeric values with .GetValue,
otherwise gets a string with .ToString, so be cautious with types.

If attr is a method (ie. in ._camera_methods, execute the method and return the value

Parameters attr (str) – Name of a readable attribute or executable method

114 Chapter 13. hardware

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://www.flir.com/support-center/iis/machine-vision/application-note/configuring-synchronized-capture-with-multiple-cameras
https://www.flir.com/support-center/iis/machine-vision/application-note/configuring-synchronized-capture-with-multiple-cameras
https://www.flir.com/support-center/iis/machine-vision/knowledge-base/what-external-iidc-trigger-modes-are-supported-by-my-camera/
https://www.flir.com/support-center/iis/machine-vision/knowledge-base/what-external-iidc-trigger-modes-are-supported-by-my-camera/
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

Autopilot Documentation, Release 0.3.0

Returns Value of attr

Return type float, int, str

set(attr, val)
Set a camera attribute

Any value in writeable_attributes can be set. If attribute has a .SetValue method, (ie. accepts
numeric values), attempt to use it, otherwise use .FromString.

Parameters
• attr (str) – Name of attribute to be set

• val (str, int, float) – Value to set attribute

list_options(name)
List the possible values of a camera attribute.

Parameters name (str) – name of attribute to query

Returns Dictionary with {available options: descriptions}

Return type dict

property device_info

Get all information about the camera

Note that this is distinct from camera attributes like fps, instead this is information like serial number,
version, firmware revision, etc.

Returns {feature name: feature value}

Return type dict

release()

Release all PySpin objects and wait on writer, if still active.

class Video_Writer(q, path, fps=None, timestamps=True, blosc=True)
Bases: multiprocessing.context.Process

Encode frames as they are acquired in a separate process.

Must call start() after initialization to begin encoding.

Encoding continues until ‘END’ is put in q.

Timestamps are saved in a .csv file with the same path as the video.

Parameters
• q (Queue) – Queue into which frames will be dumped

• path (str) – output path of video

• fps (int) – framerate of output video

• timestamps (bool) – if True (default), input will be of form (timestamp, frame). if False,
input will just be frames and timestamps will be generated as the frame is encoded (not
recommended)

• blosc (bool) – if True, frames in the q will be compresed with blosc. if False, uncompressed

Variables timestamps (list) – Timestamps for frames, written to .csv on completion of encoding

13.1. cameras 115

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/queue.html#queue.Queue
https://docs.python.org/3/library/stdtypes.html#list

Autopilot Documentation, Release 0.3.0

Methods:

run() Open a skvideo.io.FFmpegWriter and begin pro-
cessing frames from q

run()

Open a skvideo.io.FFmpegWriter and begin processing frames from q

Should not be called by itself, overwrites the multiprocessing.Process.run() method, so should call
Video_Writer.start()

Continue encoding until ‘END’ put in queue.

list_spinnaker_cameras()

List all available Spinnaker cameras and their DeviceInformation

Returns list of dictionaries of device information for each camera.

Return type list

13.2 gpio

autopilot.hardware.Hardware autopilot.hardware.gpio.GPIO

autopilot.hardware.gpio.Digital_In

autopilot.hardware.gpio.Digital_Out

autopilot.hardware.gpio.LED_RGB

autopilot.hardware.gpio.PWM

autopilot.hardware.gpio.Solenoid

Hardware that uses the GPIO pins of the Raspi. These classes rely on pigpio, whose daemon (pigpiod) must be
running in the background – typically this is handled with a launch script/system daemon (see the launch_pilot.sh
script generated by setup_autopilot.py)

Autopilot uses a custom version of pigpio (https://github.com/sneakers-the-rat/pigpio) that returns isoformatted times-
tamps rather than tick numbers in callbacks. See the setup_pilot.sh script.

Note: Autopilot uses the “Board” rather than “Broadcom” numbering system, see the numbering note. GPIO ob-
jects convert internally between board and bcm numbers using GPIO.pin , GPIO.pin_bcm , BOARD_TO_BCM , and
BCM_TO_BOARD .

Note: This module does not include hardware that uses the GPIO pins over a specific protocol like i2c

Data:

ENABLED False if pigpio cannot be imported -- and GPIO devices
cannot be used.

Functions:

116 Chapter 13. hardware

https://docs.python.org/3/library/multiprocessing.html#multiprocessing.Process.run
https://docs.python.org/3/library/stdtypes.html#list
http://abyz.me.uk/rpi/pigpio/
https://github.com/sneakers-the-rat/pigpio

Autopilot Documentation, Release 0.3.0

clear_scripts([max_scripts]) Stop and delete all scripts running on the pigpio client.

Classes:

GPIO([pin, polarity, pull, trigger]) Metaclass for hardware that uses GPIO.
Digital_Out([pin, pulse_width, polarity]) TTL/Digital logic out through a GPIO pin.
Digital_In(pin[, event, record, max_events]) Record digital input and call one or more callbacks on

logic transition.
PWM(pin[, range]) PWM output from GPIO.
LED_RGB([pins, r, g, b, polarity, blink]) An RGB LED, wrapper around three PWM objects.
Solenoid(pin[, polarity, duration, vol]) Solenoid valve for water delivery.

ENABLED = False

False if pigpio cannot be imported – and GPIO devices cannot be used.

True if pigpio can be imported

clear_scripts(max_scripts=256)
Stop and delete all scripts running on the pigpio client.

To be called, eg. between tasks to ensure none are left hanging by badly behaved GPIO devices

Parameters max_scripts (int) – maximum number of scripts allowed by pigpio. Set in pigpio.c
and not exported to the python module, so have to hardcode it again here, default for pigpio fork
is 256

class GPIO(pin=None, polarity=1, pull=None, trigger=None, **kwargs)
Bases: autopilot.hardware.Hardware

Metaclass for hardware that uses GPIO. Should not be instantiated on its own.

Handles initializing pigpio and wraps some of its commonly used methods

Parameters
• pin (int) – The Board-numbered GPIO pin of this object.

• polarity (int) – Logic direction. if 1: on=High=1, off=Low=0; if 0: off=Low=0, on=High=1

• pull (str, int) – state of pullup/down resistor. Can be set as ‘U’/’D’ or 1/0 to pull up/down.
See PULL_MAP

• trigger (str, int, bool) – whether callbacks are triggered on rising (‘U’, 1, True), falling (‘D’,
0, False), or both edges (‘B’, (0,1))

• kwargs – passed to the Hardware superclass.

Variables
• pig (pigpio.pi) – An object that manages connection to the pigpio daemon. See docs at

http://abyz.me.uk/rpi/pigpio/python.html

• CONNECTED (bool) – Whether the connection to pigpio was successful

• pigpiod – Reference to the pigpiod process launched by external.start_pigpiod()

• pin (int) – The Board-numbered GPIO pin of this object.

• pin_bcm (int) – The BCM number of the connected pin – used by pigpio. Converted from
pin passed as argument on initialization, which is assumed to be the board number.

13.2. gpio 117

https://raspberrypi.stackexchange.com/a/12967
http://abyz.me.uk/rpi/pigpio/python.html
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://raspberrypi.stackexchange.com/a/12967
https://docs.python.org/3/library/functions.html#int

Autopilot Documentation, Release 0.3.0

• pull (str, int) – state of pullup/down resistor. Can be set as ‘U’/’D’ or 1/0 to pull
up/down

• polarity (int) – Logic direction. if 1: on=High=1, off=Low=0; if 0: off=Low=0,
on=High=1

• on (int) – if polarity == 1, high/1. if polarity == 0, low/0

• off (int) – if polarity == 1, low/0. if polarity == 0, high/1

• trigger (str, int, bool) – whether callbacks are triggered on rising (‘U’, 1, True),
falling (‘D’, 0, False), or both edges (‘B’, (0,1))

• trigger_edge – The pigpio object representing RISING_EDGE, FALLING_EDGE,
BOTH_EDGES. Set by :attr`.trigger`

Methods:

init_pigpio() Create a socket connection to the pigpio daemon and
set as GPIO.pig

release() Release the connection to the pigpio daemon.

Attributes:

pin //raspberrypi.stackexchange.com/a/12967>`_ GPIO
pin.

state Instantaneous state of GPIO pin, on (True) or off
(False)

pull State of internal pullup/down resistor.
polarity on=High=1, off=Low=0; if 0: off=Low=0,

on=High=1.
trigger Maps strings (('U',1,True), ('D',0,False),

('B',[0,1])) to pigpio edge types (RISING_EDGE,
FALLING_EDGE, EITHER_EDGE), respectively.

init_pigpio()→ bool
Create a socket connection to the pigpio daemon and set as GPIO.pig

Returns True if connection was successful, False otherwise

Return type bool

property pin

//raspberrypi.stackexchange.com/a/12967>`_ GPIO pin.

When assigned, also updates pin_bcm with the BCM-numbered pin.

Type `Board-numbered <https

property state: bool

Instantaneous state of GPIO pin, on (True) or off (False)

Returns bool

property pull

State of internal pullup/down resistor.

See PULL_MAP for possible values.

Returns ‘U’/’D’/None for pulled up, down or not set.

118 Chapter 13. hardware

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Autopilot Documentation, Release 0.3.0

Return type int

property polarity

on=High=1, off=Low=0; if 0: off=Low=0, on=High=1.

When set, updates on and off accordingly

Type Logic direction. if 1

property trigger

Maps strings ((‘U’,1,True), (‘D’,0,False), (‘B’,[0,1])) to pigpio edge types (RISING_EDGE,
FALLING_EDGE, EITHER_EDGE), respectively.

Type dict

release()

Release the connection to the pigpio daemon.

Note: the Hardware metaclass will call this method on object deletion.

class Digital_Out(pin=None, pulse_width=100, polarity=1, **kwargs)
Bases: autopilot.hardware.gpio.GPIO

TTL/Digital logic out through a GPIO pin.

Parameters
• pin (int) – The Board-numbered GPIO pin of this object

• pulse_width (int) – Width of digital output pulse() (us). range: 1-100

• polarity (bool) – Whether ‘on’ is High (1, default) and pulses bring the voltage High, or vice
versa (0)

Variables
• scripts (dict) – maps script IDs to pigpio script handles

• pigs_function (bytes) – when using pigpio scripts, what function is used to set the value
of the output? (eg. ‘w’ for digital out, ‘gdc’ for pwm, more info here: http://abyz.me.uk/rpi/
pigpio/pigs.html)

• script_counter (itertools.count) – generate script IDs if not explicitly given to
series(). generated IDs are of the form ‘series_#’

Attributes:

output

type

pigs_function

Methods:

13.2. gpio 119

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://raspberrypi.stackexchange.com/a/12967
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#bytes
http://abyz.me.uk/rpi/pigpio/pigs.html
http://abyz.me.uk/rpi/pigpio/pigs.html

Autopilot Documentation, Release 0.3.0

set(value) Set pin logic level.
turn([direction]) Change output state using on/off parlance.
toggle() If pin is High, set Low, and vice versa.
pulse([duration]) Send a timed on pulse.
_series_script(values[, durations, unit, ...]) Create a pigpio script to set a pin to a series of values

for a series of durations.
store_series(id, **kwargs) Create, and store a pigpio script for a series of output

values to be called by series()
series([id, delete]) Execute a script that sets the pin to a series of values

for a series of durations.
delete_script(script_id) spawn a thread to delete a script with id script_id
delete_all_scripts() Stop and delete all scripts
stop_script([id]) Stops a running pigpio script
release() Stops and deletes all scripts, sets to off, and calls

GPIO.release()

output = True

type = 'DIGITAL_OUT'

pigs_function = b'w'

set(value: bool)
Set pin logic level.

Default uses pigpio.pi.write(), but can be overwritten by inheriting classes

Stops the last running script when called.

Parameters value (int, bool) – (1, True) to set High, (0, False) to set Low.

turn(direction='on')
Change output state using on/off parlance. logic direction varies based on Digital_Out.polarity

Stops the last running script when called.

Parameters direction (str, bool) – ‘on’, 1, or True to turn to on and vice versa for off

toggle()

If pin is High, set Low, and vice versa.

Stops the last running script when called.

pulse(duration=None)
Send a timed on pulse.

Parameters duration (int) – If None (default), uses duration, otherwise duration of pulse from
1-100us.

_series_script(values, durations=None, unit='ms', repeat=None, finish_off=True)
Create a pigpio script to set a pin to a series of values for a series of durations.

Typically shouldn’t be called by itself, is used by series() or store_series()

For more information on pigpio scripts, see: http://abyz.me.uk/rpi/pigpio/pigs.html#Scripts

Parameters
• values (list) – A list of tuples of (value, duration) or a list of values in (1,0) to set

self.pin_bcm to.

120 Chapter 13. hardware

https://docs.python.org/3/library/functions.html#bool
http://abyz.me.uk/rpi/pigpio/pigs.html#Scripts

Autopilot Documentation, Release 0.3.0

• durations (list) – If values is not a list of tuples, a list of durations. len(durations) must
be either == len(values) or else len(durations) == 1, in which case the duration is repeated.

• unit (“ms”, “us”) – units of durations in milliseconds or microseconds

• repeat (int) – If the script should be repeated, how many times? A value of 2 results in the
script being run 2 times total, not 2 additional times (or, 3 total times)

• finish_off (bool) – If true, the script ends by turning the pin to off

Returns the constructed script string

Return type (str)

store_series(id, **kwargs)
Create, and store a pigpio script for a series of output values to be called by series()

Parameters
• id (str) – shorthand key used to call this series with series()

• kwargs – passed to _series_script()

series(id=None, delete=None, **kwargs)
Execute a script that sets the pin to a series of values for a series of durations.

See _series_script() for series parameterization.

Ideally one would use store_series() and use the returned id to call this function. Otherwise, this
method calls store_series() and runs it.

Parameters
• id (str, int) – ID of the script, if not already created, created with store_script(). If

None (default), an ID is generated with script_counter of the form 'script_#'

• kwargs – passed to _series_script()

delete_script(script_id)
spawn a thread to delete a script with id script_id

This is a ‘soft’ deletion – it checks if the script is running, and waits for up to 10 seconds before actually
deleting it.

The script is deleted from the pigpio daemon, from script_handles and from scripts

Parameters script_id (str) – a script ID in Digital_Out.script_handles

delete_all_scripts()

Stop and delete all scripts

This is a “hard” deletion – the script will be immediately stopped if it’s running.

stop_script(id=None)
Stops a running pigpio script

Parameters id (str, none) – If None, stops the last run script. if str, stops script with that id.

release()

Stops and deletes all scripts, sets to off, and calls GPIO.release()

pig: Optional[pigpio.pi]

logger: logging.Logger

13.2. gpio 121

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/logging.html#logging.Logger

Autopilot Documentation, Release 0.3.0

class Digital_In(pin, event=None, record=True, max_events=256, **kwargs)
Bases: autopilot.hardware.gpio.GPIO

Record digital input and call one or more callbacks on logic transition.

Parameters
• pin (int) – Board-numbered GPIO pin.

• event (threading.Event) – For callbacks assigned with assign_cb() with evented =
True, set this event whenever the callback is triggered. Can be used to handle stage transition
logic here instead of the Task object, as is typical.

• record (bool) – Whether all logic transitions should be recorded as a list of (‘EVENT’,
‘Timestamp’) tuples.

• max_events (int) – Maximum size of the events deque

• **kwargs – passed to GPIO

Sets the internal pullup/down resistor to Digital_In.off and Digital_In.trigger to Digital_In.on upon
instantiation.

Note: pull and trigger are set by polarity on initialization in digital inputs, unlike other GPIO classes. They are
not mutually synchronized however, ie. after initialization if any one of these attributes are changed, the other
two will remain the same.

Variables
• pig (pigpio.pi()) – The pigpio connection.

• pin (int) – Broadcom-numbered pin, converted from the argument given on instantiation

• callbacks (list) – A list of :meth:`pigpio.callback`s kept to clear them on exit

• polarity (int) – Logic direction, if 1: off=0, on=1, pull=low, trigger=high and vice versa
for 0

• events (list) – if record is True, a deque of (‘EVENT’, ‘TIMESTAMP’) tuples of length
max_events

Attributes:

is_trigger

type

input

Methods:

assign_cb(callback_fn[, add, evented, ...]) Sets callback_fn to be called when Digital_In.
trigger is detected.

clear_cb() Tries to call .cancel() on each of the callbacks in
callbacks

record_event(pin, level, timestamp) On either direction of logic transition, record the time
release() Clears any callbacks and calls GPIO.release()

122 Chapter 13. hardware

https://raspberrypi.stackexchange.com/a/12967
https://docs.python.org/3/library/threading.html#threading.Event
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list

Autopilot Documentation, Release 0.3.0

is_trigger = True

type = 'DIGI_IN'

input = True

assign_cb(callback_fn, add=True, evented=False, manual_trigger=None)
Sets callback_fn to be called when Digital_In.trigger is detected.

callback_fn must accept three parameters:

• GPIO (int, 0-31): the BCM number of the pin that was triggered

• level (0-2):

– 0: change to low (falling)

– 1: change to high (rising)

– 2: no change (watchdog timeout)

• timestamp (str): If using the Autopilot version of pigpio, an isoformatted timestamp

Parameters
• callback_fn (callable) – The function to be called when triggered

• add (bool) – Are we adding another callback? If False, the previous callbacks are cleared.

• evented (bool) – Should triggering this event also set the internal event? Note that
Digital_In.event must have been passed.

• manual_trigger (‘U’, ‘D’, ‘B’) – Override Digital_In.trigger if needed.

clear_cb()

Tries to call .cancel() on each of the callbacks in callbacks

record_event(pin, level, timestamp)
On either direction of logic transition, record the time

Parameters
• pin (int) – BCM numbered pin passed from pigpio

• level (bool) – High/Low status of current pin

• timestamp (str) – isoformatted timestamp

release()

Clears any callbacks and calls GPIO.release()

pig: Optional[pigpio.pi]

logger: logging.Logger

class PWM(pin, range=255, **kwargs)
Bases: autopilot.hardware.gpio.Digital_Out

PWM output from GPIO.

Parameters
• pin (int) – Board numbered GPIO pin

• range (int) – Maximum value of PWM duty-cycle. Default 255.

13.2. gpio 123

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/logging.html#logging.Logger

Autopilot Documentation, Release 0.3.0

• **kwargs – passed to Digital_Out

Attributes:

output

type

pigs_function

range Maximum value of PWM dutycycle.
polarity Logic direction.

Methods:

set(value) Sets PWM duty cycle normalized to polarity and
transformed by _clean_value()

release() Turn off and call Digital_Out.release()

output = True

type = 'PWM'

pigs_function = b'pwm'

set(value)
Sets PWM duty cycle normalized to polarity and transformed by _clean_value()

Stops the last running script

Parameters value (int, float) –

• if int > 1, sets value (or PWM.range-value if PWM.polarity is inverted).

• if 0 <= float <= 1, transforms to a proportion of range (inverted if needed as well).

property range

Maximum value of PWM dutycycle.

Doesn’t set duration of PWM, but set values will be divided by this range. eg. if range == 200, calling
PWM.set(100)() would result in a 50% duty cycle

Parameters (int) – 25-40000

property polarity

Logic direction.

• if 1: on=High=:attr:~PWM.range, off=Low=0;

• if 0: off=Low=0, on=High=:attr:~PWM.range.

When set, updates on and off

release()

Turn off and call Digital_Out.release()

Returns:

pig: Optional[pigpio.pi]

124 Chapter 13. hardware

https://docs.python.org/3/library/typing.html#typing.Optional

Autopilot Documentation, Release 0.3.0

logger: logging.Logger

class LED_RGB(pins=None, r=None, g=None, b=None, polarity=1, blink=True, **kwargs)
Bases: autopilot.hardware.gpio.Digital_Out

An RGB LED, wrapper around three PWM objects.

Parameters
• pins (list) – A list of (board) pin numbers. Either pins OR all r, g, b must be passed.

• r (int) – Board number of Red pin - must be passed with g and b

• g (int) – Board number of Green pin - must be passed with r and b

• b (int) – Board number of Blue pin - must be passed with r and g:

• polarity (0, 1) – 0: common anode (low turns LED on) 1: common cathode (low turns LED
off)

• blink (bool) – Flash RGB at the end of init to show we’re alive and bc it’s real cute.

• **kwargs – passed to Digital_Out

Variables channels (dict) – The three PWM objects, {‘r’:PWM, . . . etc}

Attributes:

output

type

range Returns: dict: ranges for each of the LED_RGB.
channels

pin Dict of the board pin number of each channel, ``{'r' :
self.channels['r'].pin, .

pin_bcm Dict of the broadcom pin number of each channel,
``{'r' : self.channels['r'].pin_bcm, .

pull State of internal pullup/down resistor.

Methods:

set([value, r, g, b]) Set the color of the LED.
toggle() If pin is High, set Low, and vice versa.
pulse([duration]) Send a timed on pulse.
_series_script(colors[, durations, unit, ...]) Create a script to flash a series of colors.
flash (duration[, frequency, colors]) Specify a color series by total duration and flash fre-

quency.
release() Release each channel and stop pig without calling su-

perclass.

output = True

type = 'LEDS'

property range: dict

Returns: dict: ranges for each of the LED_RGB.channels

13.2. gpio 125

https://docs.python.org/3/library/logging.html#logging.Logger
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

Autopilot Documentation, Release 0.3.0

set(value=None, r=None, g=None, b=None)
Set the color of the LED.

Can either pass

• a full (R, G, B) tuple to value,

• a single value that is applied to each channel,

• if value is not passed, individual r, g, or b values can be passed (any combination can be set in a
single call)

Stops the last run script

Parameters
• value (int, float, tuple, list) – If list or tuple, an (R, G, B) color. If float or int, applied to

each color channe. Can be set with floats 0-1, or ints >= 1 (See PWM.range). If None, use
r, g, and b.

• r (float, int) – value to set red channel

• g (float, int) – value to set green channel

• b (float, int) – value to set blue channel

pig: Optional[pigpio.pi]

logger: logging.Logger

toggle()

If pin is High, set Low, and vice versa.

Stops the last running script when called.

pulse(duration=None)
Send a timed on pulse.

Parameters duration (int) – If None (default), uses duration, otherwise duration of pulse from
1-100us.

_series_script(colors, durations=None, unit='ms', repeat=None, finish_off=True)
Create a script to flash a series of colors.

Like Digital_Out._series_script(), but sets all pins at once.

Parameters
• colors (list) – a list of (R, G, B) colors, or a list of ((R,G,B),duration) tuples.

• durations (int, list) – Duration of each color. if a single value, used for all colors. if a list,
len(durations) == len(colors). If None, colors must be ((R,G,B),duration)
tuples.

• unit (‘ms’, ‘us’) – unit of durations, milliseconds or microseconds

• repeat (int) – Number of repetitions. If None, script runs once.

• finish_off (bool) – Whether the channels should be set to off when the script completes

Returns constructed pigpio script string.

Return type str

126 Chapter 13. hardware

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/logging.html#logging.Logger
https://docs.python.org/3/library/stdtypes.html#str

Autopilot Documentation, Release 0.3.0

flash(duration, frequency=10, colors=((1, 1, 1), (0, 0, 0)))
Specify a color series by total duration and flash frequency.

Largely a convenience function for on/off flashes.

Parameters
• duration (int, float) – Duration of flash in ms.

• frequency (int, float) – Frequency of flashes in Hz

• colors (list) –

A list of RGB values 0-255 like:

[[255,255,255],[0,0,0]]

release()

Release each channel and stop pig without calling superclass.

property pin

Dict of the board pin number of each channel, {'r' : self.channels['r'].pin, ... }

property pin_bcm

Dict of the broadcom pin number of each channel, {'r' : self.channels['r'].pin_bcm, ... }

property pull

State of internal pullup/down resistor.

See PULL_MAP for possible values.

Returns ‘U’/’D’/None for pulled up, down or not set.

Return type int

class Solenoid(pin, polarity=1, duration=20, vol=None, **kwargs)
Bases: autopilot.hardware.gpio.Digital_Out

Solenoid valve for water delivery.

Parameters
• pin (int) – Board pin number, converted to BCM on init.

• polarity (0, 1) – Whether HIGH opens the port (1) or closes it (0)

• duration (int, float) – duration of open, ms.

• vol (int, float) – desired volume of reward in uL, must have computed calibration results, see
calibrate_ports()

• **kwargs – passed to Digital_Out

Only NC solenoids should be used, as there is no way to guarantee that a pin will maintain its voltage when it is
released, and you will spill water all over the place.

Variables
• calibration (dict) – Dict with with line coefficients fitting volume to open

duration, see calibrate_ports(). Retrieved from prefs, specifically prefs.
get('PORT_CALIBRATION')[name]

• mode ('DURATION', 'VOLUME') – Whether open duration is given in ms, or computed from
calibration

13.2. gpio 127

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict

Autopilot Documentation, Release 0.3.0

• duration (int, float) – Duration of valve opening, in ms. When set, creates a script
‘open’ that is used to open the valve for a precise amount of time

Attributes:

output

type

DURATION_MIN Minimum allowed duration in ms
duration

Methods:

dur_from_vol(vol) Given a desired volume, compute an open duration.
open([duration]) Open the valve.

pig: Optional[pigpio.pi]

logger: logging.Logger

output = True

type = 'SOLENOID'

DURATION_MIN = 2

Minimum allowed duration in ms

property duration

dur_from_vol(vol)
Given a desired volume, compute an open duration.

Must have calibration available in prefs, see calibrate_ports().

Parameters vol (float, int) – desired reward volume in uL

Returns computed opening duration for given volume

Return type int

open(duration=None)
Open the valve.

Uses the ‘open’ script created when assigning duration.

Parameters duration (float) – If provided, open for this duration instead of the duration stored
on instantiation.

128 Chapter 13. hardware

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/logging.html#logging.Logger
https://docs.python.org/3/library/functions.html#int

Autopilot Documentation, Release 0.3.0

13.3 i2c

Classes:

I2C_9DOF([accel, gyro, mag, gyro_hpf, ...]) A Sparkfun 9DOF combined accelerometer, magne-
tometer, and gyroscope.

MLX90640([fps, integrate_frames, interpolate]) A MLX90640 Temperature sensor.

class I2C_9DOF(accel: bool = True, gyro: bool = True, mag: bool = True, gyro_hpf: float = 0.2, accel_range=16,
kalman_mode: str = 'both', invert_gyro=False, *args, **kwargs)

Bases: autopilot.hardware.Hardware

A Sparkfun 9DOF combined accelerometer, magnetometer, and gyroscope.

Sensor Datasheet: https://cdn.sparkfun.com/assets/learn_tutorials/3/7/3/LSM9DS1_Datasheet.pdf

Hardware Datasheet: https://github.com/sparkfun/9DOF_Sensor_Stick

Documentation on calculating position values: https://arxiv.org/pdf/1704.06053.pdf

This device uses I2C, so must be connected accordingly:

• VCC: 3.3V (pin 2)

• Ground: (any ground pin

• SDA: I2C.1 SDA (pin 3)

• SCL: I2C.1 SCL (pin 5)

This class uses code from the Adafruit Circuitfun library, modified to use pigpio

Note: use this for processing?? https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6111698/

Parameters
• accel (bool) – Whether the accelerometer should be made active (default: True)

• gyro (bool) – Whether the gyroscope should be made active (default: True) – accel must be
true if gyro is true

• mag (bool) – Whether the magnetomete should be made active (default: True)

• gyro_hpf (int, float) – Highpass filter cutoff for onboard gyroscope filter. One of
GYRO_HPF_CUTOFF (default: 4), or False to disable

• kalman_mode (‘both’, ‘accel’, None) – Whether to use a kalman filter that integrates ac-
celerometer and gyro readings (‘both’, default), a kalman filter with just the accelerometer
values (‘accel’), or just return the raw calculated orientation values from rotation

• invert_gyro (list, tuple) – if not False (default), a list/tuple of the numerical axis index to
invert on the gyroscope. eg. passing (1, 2) will invert the y and z axes.

Attributes:

13.3. i2c 129

https://www.sparkfun.com/products/13944
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://www.sparkfun.com/products/13944
https://cdn.sparkfun.com/assets/learn_tutorials/3/7/3/LSM9DS1_Datasheet.pdf
https://github.com/sparkfun/9DOF_Sensor_Stick
https://arxiv.org/pdf/1704.06053.pdf
https://github.com/adafruit/Adafruit_CircuitPython_LSM9DS1
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6111698/

Autopilot Documentation, Release 0.3.0

ACCELRANGE_2G

ACCELRANGE_16G

ACCELRANGE_4G

ACCELRANGE_8G

MAGGAIN_4GAUSS

MAGGAIN_8GAUSS

MAGGAIN_12GAUSS

MAGGAIN_16GAUSS

GYROSCALE_245DPS

GYROSCALE_500DPS

GYROSCALE_2000DPS

GYRO_HPF_CUTOFF Highpass-filter cutoff frequencies (keys, in Hz)
mapped to binary flag.

accel_range The accelerometer range.
mag_gain The magnetometer gain.
gyro_scale The gyroscope scale.
gyro_filter Set the high-pass filter for the gyroscope.
gyro_polarity

acceleration The calibrated x, y, z acceleration in m/s^2
magnetic The magnetometer X, Y, Z axis values as a 3-tuple of

gauss values.
gyro The gyroscope X, Y, Z axis values as a 3-tuple of de-

grees/second values.
rotation Return roll (rotation around x axis) and pitch (rota-

tion around y axis) computed from the accelerometer
temperature Returns: float: Temperature in Degrees C

Methods:

calibrate([what, samples, sample_dur]) Calibrate sensor readings to correct for bias and scale
errors

ACCELRANGE_2G = 0

ACCELRANGE_16G = 8

ACCELRANGE_4G = 16

ACCELRANGE_8G = 24

130 Chapter 13. hardware

Autopilot Documentation, Release 0.3.0

MAGGAIN_4GAUSS = 0

MAGGAIN_8GAUSS = 32

MAGGAIN_12GAUSS = 64

MAGGAIN_16GAUSS = 96

GYROSCALE_245DPS = 0

GYROSCALE_500DPS = 8

GYROSCALE_2000DPS = 24

GYRO_HPF_CUTOFF = {0.1: 9, 0.2: 8, 0.5: 7, 1: 6, 2: 5, 4: 4, 8: 3, 15: 2,
30: 1, 57: 0}

Highpass-filter cutoff frequencies (keys, in Hz) mapped to binary flag.

Note: the frequency of a given binary flag is dependent on the output frequency (952Hz by default,
changing frequency is not currently exposed in this object). See Table 52 of the sensor datasheet for more.

property accel_range

The accelerometer range. Must be one of: - I2C_9DOF.ACCELRANGE_2G - I2C_9DOF.ACCELRANGE_4G -
I2C_9DOF.ACCELRANGE_8G - I2C_9DOF.ACCELRANGE_16G

property mag_gain

The magnetometer gain. Must be a value of: - I2C_9DOF.MAGGAIN_4GAUSS - I2C_9DOF.
MAGGAIN_8GAUSS - I2C_9DOF.MAGGAIN_12GAUSS - I2C_9DOF.MAGGAIN_16GAUSS

property gyro_scale

The gyroscope scale. Must be a value of: - I2C_9DOF.GYROSCALE_245DPS - I2C_9DOF.
GYROSCALE_500DPS - I2C_9DOF.GYROSCALE_2000DPS

property gyro_filter: Union[int, float, bool]

Set the high-pass filter for the gyroscope.

Note: the frequency of a given binary flag is dependent on the output frequency (952Hz by default,
changing frequency is not currently exposed in this object). See Table 52 of the sensor datasheet for more.

Parameters gyro_filter (int, float, False) – Filter frequency (in GYRO_HPF_CUTOFF) or False to
disable

Returns current HPF cutoff or False if disabled

Return type float, bool

property gyro_polarity

property acceleration

The calibrated x, y, z acceleration in m/s^2

Returns x, y, z acceleration

Return type accel (tuple)

13.3. i2c 131

https://cdn.sparkfun.com/assets/learn_tutorials/3/7/3/LSM9DS1_Datasheet.pdf
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://cdn.sparkfun.com/assets/learn_tutorials/3/7/3/LSM9DS1_Datasheet.pdf
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#tuple

Autopilot Documentation, Release 0.3.0

property magnetic

The magnetometer X, Y, Z axis values as a 3-tuple of gauss values.

Returns x, y, z gauss values

Return type (tuple)

property gyro

The gyroscope X, Y, Z axis values as a 3-tuple of degrees/second values.

property rotation

Return roll (rotation around x axis) and pitch (rotation around y axis) computed from the accelerometer

Uses transform.geometry.IMU_Orientation to fuse accelerometer and gyroscope with Kalman filter

Returns np.ndarray - [roll, pitch]

property temperature

Returns: float: Temperature in Degrees C

calibrate(what: str = 'accelerometer', samples: int = 10000, sample_dur: Optional[float] = None)→ dict
Calibrate sensor readings to correct for bias and scale errors

Note: Currently only calibrating the accelerometer is implemented.

The accelerometer is calibrated by rotating the sensor slowly in all three rotational dimensions in such a way
that minimizes linear acceleration (not due to gravity). A perfect sensor would output a sphere of points
centered at 0

Parameters
• what (str) – which sensor is to be calibrated (currentlty only “accelerometer” implemented)

• samples (int) – number of samples that should be used to compute the calibration

• sample_dur (float) – number of seconds to sample for, overrides samples if not None
(default)

Returns calibration dictionary (also saved to disk using Hardware.calibration)

Return type dict

logger: logging.Logger

class MLX90640(fps=64, integrate_frames=64, interpolate=3, **kwargs)
Bases: autopilot.hardware.cameras.Camera

A MLX90640 Temperature sensor.

Parameters
• fps (int) – Acquisition framerate, must be one of MLX90640.ALLOWED_FPS

• integrate_frames (int) – Number of frames to average over

• interpolate (int) – Interpolation multiplier – 3 “increases the resolution” 3x

• **kwargs – passed to Camera

Variables
• shape (tuple) – :attr:`~MLX90640.SHAPE_SENSOR

• integrate_frames (int) – Number of frames to average over

132 Chapter 13. hardware

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/logging.html#logging.Logger
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int

Autopilot Documentation, Release 0.3.0

• interpolate (int) – Interpolation multiplier – 3 “increases the resolution” 3x

• _grab_event (threading.Event) – capture thread sets every time it gets a frame, _grab
waits every time, keeps us from returning same frame twice

This device uses I2C, so must be connected accordingly:

• VCC: 3.3V (pin 2)

• Ground: (any ground pin

• SDA: I2C.1 SDA (pin 3)

• SCL: I2C.1 SCL (pin 5)

Uses a modified version of the MLX90640 Library that is capable of outputting 64fps. You must install the
library separately, see the setup_mlx90640.sh script.

Capture works a bit differently from other Cameras – the capture_init() method spawns a
_threaded_capture() thread, which continually puts frames in the _frames array which serves as a
ring buffer. The _grab() method then awaits the _grab_event to be set by the capture thread, and when it is
set returns the mean across frames of the ring buffer.

Note: The setup script modifies the systemwide i2c baudrate to 1MHz, which may interfere with
other I2C devices. It can be returned to 400kHz (default) by editing /config/boot.txt to read
dtparam=i2c_arm_baudrate=400000

Attributes:

type what are we anyway?
ALLOWED_FPS FPS must be one of these
SHAPE_SENSOR (H, W) Output shape of this sensor is always the

same.
fps

integrate_frames

interpolate

Methods:

init_cam() Set the camera object to use our MLX90640.fps
capture_init() Spawn a _threaded_capture() thread
_threaded_capture() Continually capture frames into the _frames ring

buffer
_grab() Await the _grab_event and then average over the

frames stored in _frames
_timestamp([frame]) Just gets Python timestamps for now...
interpolate_frame(frame) Interpolate frame according to interpolate using

scipy.interpolate.griddata()
release() Stops the capture thread, cleans up the camera, and

calls the superclass release method.

13.3. i2c 133

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/threading.html#threading.Event
https://github.com/sneakers-the-rat/mlx90640-library

Autopilot Documentation, Release 0.3.0

type = 'MLX90640'

what are we anyway?

Type (str)

ALLOWED_FPS = (1, 2, 4, 8, 16, 32, 64)

FPS must be one of these

SHAPE_SENSOR = (32, 24)

(H, W) Output shape of this sensor is always the same. May differ from MLX90640.shape if interpolate
>1

logger: logging.Logger

property fps

property integrate_frames

property interpolate

init_cam()

Set the camera object to use our MLX90640.fps

capture_init()

Spawn a _threaded_capture() thread

_threaded_capture()

Continually capture frames into the _frames ring buffer

Stops when stopping is set.

_grab()

Await the _grab_event and then average over the frames stored in _frames

Returns (ndarray) Averaged and interpolated frame

_timestamp(frame=None)
Just gets Python timestamps for now. . .

Returns Isoformatted timestamp from datetime

Return type str

interpolate_frame(frame)
Interpolate frame according to interpolate using scipy.interpolate.griddata()

Parameters frame (numpy.ndarray) – Frame to interpolate

Returns Interpolated Frame

Return type (numpy.ndarray)

release()

Stops the capture thread, cleans up the camera, and calls the superclass release method.

134 Chapter 13. hardware

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/logging.html#logging.Logger
https://docs.python.org/3/library/stdtypes.html#str

Autopilot Documentation, Release 0.3.0

13.4 usb

Hardware that uses USB

Classes:

Wheel([mouse_idx, fs, thresh, thresh_type, ...]) A continuously measured mouse wheel.
Scale([model, vendor_id, product_id])

class Wheel(mouse_idx=0, fs=10, thresh=100, thresh_type='dist', start=True, digi_out=False, mode='vel_total',
integrate_dur=5)

Bases: autopilot.hardware.Hardware

A continuously measured mouse wheel.

Uses a USB computer mouse.

Warning: ‘vel’ thresh_type not implemented

Parameters
• mouse_idx (int)

• fs (int)

• thresh (int)

• thresh_type (‘dist’)

• start (bool)

• digi_out (Digital_Out, bool)

• mode (‘vel_total’)

• integrate_dur (int)

Attributes:

input

type

trigger

THRESH_TYPES

MODES

MOVE_DTYPE

Methods:

13.4. usb 135

Autopilot Documentation, Release 0.3.0

start()

check_thresh (move) Updates thresh_val and checks whether it's
above/below threshold

calc_move(move[, thresh_type]) Calculate distance move depending on type (x, y, to-
tal dist)

thresh_trig()

assign_cb(trigger_fn) Every hardware device that is a trigger must re-
define this to accept a function (typically Task.
handle_trigger()) that is called when that trigger
is activated.

l_measure(value) Task has signaled that we need to start measuring
movements for a trigger

l_clear(value) Stop measuring!
l_stop(value) Stop measuring and clear system resources :Parame-

ters: value ()
release() Every hardware device needs to redefine release(),

and must

input = True

type = 'Wheel'

trigger = False

THRESH_TYPES = ['dist', 'x', 'y', 'vel']

MODES = ('vel_total', 'steady', 'dist', 'timed')

MOVE_DTYPE = [('vel', 'i4'), ('dir', 'U5'), ('timestamp', 'f8')]

start()

check_thresh(move)
Updates thresh_val and checks whether it’s above/below threshold

Parameters move (np.array) – Structured array with fields (‘vel’, ‘dir’, ‘timestamp’)

Returns:

calc_move(move, thresh_type=None)
Calculate distance move depending on type (x, y, total dist)

Parameters
• move ()
• thresh_type ()

Returns:

thresh_trig()

assign_cb(trigger_fn)
Every hardware device that is a trigger must redefine this to accept a function (typically Task.
handle_trigger()) that is called when that trigger is activated.

When not redefined, a warning is given.

136 Chapter 13. hardware

Autopilot Documentation, Release 0.3.0

l_measure(value)
Task has signaled that we need to start measuring movements for a trigger

Parameters value ()
l_clear(value)

Stop measuring!

Parameters value ()
Returns:

l_stop(value)
Stop measuring and clear system resources :Parameters: value ()
Returns:

release()

Every hardware device needs to redefine release(), and must

• Safely unload any system resources used by the object, and

• Return the object to a neutral state - eg. LEDs turn off.

When not redefined, a warning is given.

logger: logging.Logger

class Scale(model='stamps.com', vendor_id=None, product_id=None)
Bases: autopilot.hardware.Hardware

Note: Not implemented, working on using a digital scale to make weighing faster.

Parameters
• model
• vendor_id
• product_id

Attributes:

MODEL

MODEL = {'stamps.com': {'product_id': 27251, 'vendor_id': 5190}}

logger: logging.Logger

13.4. usb 137

https://docs.python.org/3/library/logging.html#logging.Logger
https://docs.python.org/3/library/logging.html#logging.Logger

Autopilot Documentation, Release 0.3.0

138 Chapter 13. hardware

CHAPTER

FOURTEEN

NETWORKING

Classes for network communication.

There are two general types of network objects -

• autopilot.networking.Station and its children are independent processes that should only be instantiated once
per piece of hardware. They are used to distribute messages between Net_Node s, forward messages up
the networking tree, and responding to messages that don’t need any input from the Pilot or Terminal.

• Net_Node is a pop-in networking class that can be given to any other object that wants to send or receive
messages.

The Message object is used to serialize and pass messages. When sent, messages are JSON serialized (with some
special magic to compress/encode numpy arrays) and sent as zmq multipart messages.

Each serialized message, when sent, can have n frames of the format:

[hop_0, hop_1, ... hop_n, final_recipient, serialized_message]

Or, messages can have multiple “hops” (a typical message will have one ‘hop’ specified by the to field), the second to
last frame is always the final intended recipient, and the final frame is the serialized message. Note that the to field
of a Message object will always be the final recipient even if a list is passed for to when sending. This lets Station
objects efficiently forward messages without deserializing them at every hop.

Functions:

serialize_array(array) Pack an array with blosc.pack_array() and serialize
with base64.b64encode()

serialize_array(array)
Pack an array with blosc.pack_array() and serialize with base64.b64encode()

Parameters array (numpy.ndarray) – Array to serialize

Returns {‘NUMPY_ARRAY’: base-64 encoded, blosc-compressed array.}

Return type dict

139

https://docs.python.org/3/library/base64.html#base64.b64encode
https://docs.python.org/3/library/base64.html#base64.b64encode
https://docs.python.org/3/library/stdtypes.html#dict

Autopilot Documentation, Release 0.3.0

14.1 station

autopilot.networking.station.Pilot_Station

autopilot.networking.station.Station

autopilot.networking.station.Terminal_Station

multiprocessing.context.Processmultiprocessing.process.BaseProcess

Classes:

Station([id, push_ip, push_port, push_id, ...]) Independent networking class used for messaging be-
tween computers.

Terminal_Station(pilots) Station object used by Terminal objects.
Pilot_Station() Station object used by Pilot objects.

class Station(id: Optional[str] = None, push_ip: Optional[str] = None, push_port: Optional[int] = None,
push_id: Optional[str] = None, pusher: bool = False, listen_port: Optional[int] = None, listens:
Optional[Dict[str, Callable]] = None)

Bases: multiprocessing.context.Process

Independent networking class used for messaging between computers.

These objects send and handle networking.Message s by using a dictionary of listens, or methods that are
called to respond to different types of messages.

Each sent message is given an ID, and a thread is spawned to periodically resend it (up until some time-to-live,
typically 5 times) until confirmation is received.

By default, the only listen these objects have is l_confirm(), which responds to message confirmations. Ac-
cordingly, listens should be added by using dict.update() rather than reassigning the attribute.

Station objects can be made with or without a pusher, a zmq.DEALER socket that connects to the zmq.ROUTER
socket of an upstream Station object.

This class can be instantiated on its own if all of the required arguments are supplied, but the intended pattern of
use is to subclass it with any custom listen methods for handling message types and other logic that would be
specific for an agent type that uses it.

Note: This object will likely be deprecated in v0.5.0, as the gains of a separate messaging process are not as
great as the complications caused by having two different kinds of networking object in the system. In the future
we will move to having a single type of networking object that can either be spawned as a separate process or as
a thread.

Args are similar to the documented Attributes, and so only those that differ from attributes are documented here

Parameters pusher (bool) – If True, create a zmq.DEALER socket connected to push_ip,
push_port, and push_id. (Default: False).

Variables
• context (zmq.Context) – zeromq context

• loop (tornado.ioloop.IOLoop) – a tornado ioloop

• pusher (zmq.Socket) – pusher socket - a dealer socket that connects to other routers

140 Chapter 14. networking

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/stdtypes.html#dict.update
https://pyzmq.readthedocs.io/en/latest/api/zmq.html#zmq.Context
https://www.tornadoweb.org/en/stable/ioloop.html#tornado.ioloop.IOLoop
https://pyzmq.readthedocs.io/en/latest/api/zmq.html#zmq.Socket

Autopilot Documentation, Release 0.3.0

• push_ip (str) – If we have a dealer, IP to push messages to

• push_port (str) – If we have a dealer, port to push messages to

• push_id (str) – identity of the Router we push to

• listener (zmq.Socket) – The main router socket to send/recv messages

• listen_port (str) – Port our router listens on

• logger (logging.Logger) – Used to log messages and network events.

• id (str) – What are we known as? What do we set our identity as?

• ip (str) – Device IP

• listens (dict) – Dictionary of functions to call for different types of messages. keys match
the Message.key.

• senders (dict) – Identities of other sockets (keys, ie. directly connected) and their state
(values) if they keep one

• push_outbox (dict) – Messages that have been sent but have not been confirmed to our
Station.pusher

• send_outbox (dict) – Messages that have been sent but have not been confirmed to our
Station.listener

• timers (dict) – dict of threading.Timer s that will check in on outbox messages

• msg_counter (itertools.count) – counter to index our sent messages

• file_block (threading.Event) – Event to signal when a file is being received.

Attributes:

repeat_interval

Methods:

run() A zmq.Context and tornado.IOLoop are
spawned, the listener and optionally the pusher are
instantiated and connected to handle_listen()
using on_recv() .

prepare_message(to, key, value[, repeat, flags]) If a message originates with us, a Message class is
instantiated, given an ID and the rest of its attributes.

send([to, key, value, msg, repeat, flags]) Send a message via our listener , ROUTER socket.
push ([to, key, value, msg, repeat, flags]) Send a message via our pusher , DEALER socket.
repeat() Periodically (according to repeat_interval) re-

send messages that haven't been confirmed
l_confirm(msg) Confirm that a message was received.
l_stream(msg) Reconstitute the original stream of messages and call

their handling methods
handle_listen(msg) Upon receiving a message, call the appropriate listen

method in a new thread.
get_ip() Find our IP address
release()

_check_stop() periodic callback called by the IOLoop to check if the
closing flag has been set, and closing process if so

14.1. station 141

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://pyzmq.readthedocs.io/en/latest/api/zmq.html#zmq.Socket
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/logging.html#logging.Logger
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/threading.html#threading.Timer
https://docs.python.org/3/library/threading.html#threading.Event
https://pyzmq.readthedocs.io/en/latest/api/zmq.html#zmq.Context
https://pyzmq.readthedocs.io/en/latest/api/zmq.eventloop.zmqstream.html#zmq.eventloop.zmqstream.ZMQStream.on_recv

Autopilot Documentation, Release 0.3.0

repeat_interval = 5.0

pusher: Union[bool, zmq.sugar.socket.Socket]

run()

A zmq.Context and tornado.IOLoop are spawned, the listener and optionally the pusher are instantiated
and connected to handle_listen() using on_recv() .

The process is kept open by the tornado.IOLoop .

prepare_message(to, key, value, repeat=True, flags=None)
If a message originates with us, a Message class is instantiated, given an ID and the rest of its attributes.

Parameters
• flags
• repeat
• to (str) – The identity of the socket this message is to

• key (str) – The type of message - used to select which method the receiver uses to process
this message.

• value – Any information this message should contain. Can be any type, but must be JSON
serializable.

send(to=None, key=None, value=None, msg=None, repeat=True, flags=None)
Send a message via our listener , ROUTER socket.

Either an already created Message should be passed as msg, or at least to and key must be provided for a
new message created by prepare_message() .

A threading.Timer is created to resend the message using repeat() unless repeat is False.

Parameters
• flags
• to (str) – The identity of the socket this message is to

• key (str) – The type of message - used to select which method the receiver uses to process
this message.

• value – Any information this message should contain. Can be any type, but must be JSON
serializable.

• msg (.Message) – An already created message.

• repeat (bool) – Should this message be resent if confirmation is not received?

push(to=None, key=None, value=None, msg=None, repeat=True, flags=None)
Send a message via our pusher , DEALER socket.

Unlike send() , to is not required. Every message is always sent to push_id . to can be included to send
a message further up the network tree to a networking object we’re not directly connected to.

Either an already created Message should be passed as msg, or at least key must be provided for a new
message created by prepare_message() .

A threading.Timer is created to resend the message using repeat() unless repeat is False.

Parameters
• flags

142 Chapter 14. networking

https://docs.python.org/3/library/functions.html#bool
https://pyzmq.readthedocs.io/en/latest/api/zmq.html#zmq.Socket
https://pyzmq.readthedocs.io/en/latest/api/zmq.html#zmq.Context
https://pyzmq.readthedocs.io/en/latest/api/zmq.eventloop.zmqstream.html#zmq.eventloop.zmqstream.ZMQStream.on_recv
https://docs.python.org/3/library/threading.html#threading.Timer
https://docs.python.org/3/library/threading.html#threading.Timer

Autopilot Documentation, Release 0.3.0

• to (str) – The identity of the socket this message is to. If not included, sent to push_id()
.

• key (str) – The type of message - used to select which method the receiver uses to process
this message.

• value – Any information this message should contain. Can be any type, but must be JSON
serializable.

• msg (.Message) – An already created message.

• repeat (bool) – Should this message be resent if confirmation is not received?

repeat()

Periodically (according to repeat_interval) resend messages that haven’t been confirmed

TTL is decremented, and messages are resent until their TTL is 0.

l_confirm(msg)
Confirm that a message was received.

Parameters msg (Message) – A confirmation message - note that this message has its own
unique ID, so the value of this message contains the ID of the message that is being con-
firmed

l_stream(msg)
Reconstitute the original stream of messages and call their handling methods

The msg should contain an inner_key that indicates the key, and thus the handling method.

Parameters msg (dict) – Compressed stream sent by Net_Node._stream()

handle_listen(msg: List[bytes])
Upon receiving a message, call the appropriate listen method in a new thread.

If the message is to us, send confirmation.

If the message is not to us, attempt to forward it.

Parameters msg (str) – JSON Message.serialize() d message.

get_ip()

Find our IP address

returns (str): our IPv4 address.

release()

_check_stop()

periodic callback called by the IOLoop to check if the closing flag has been set, and closing process if so

class Terminal_Station(pilots)
Bases: autopilot.networking.station.Station

Station object used by Terminal objects.

Spawned without a pusher.

Listens

14.1. station 143

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#bytes

Autopilot Documentation, Release 0.3.0

Key Method Description
‘PING’ l_ping() We are asked to confirm that we are alive
‘INIT’ l_init() Ask all pilots to confirm that they are alive
‘CHANGE’ l_change() Change a parameter on the Pi
‘STOPALL’ l_stopall() Stop all pilots and plots
‘KILL’ l_kill() Terminal wants us to die :(
‘DATA’ l_data() Stash incoming data from a Pilot
‘STATE’ l_state() A Pilot has changed state
‘HANDSHAKE’ l_handshake() A Pi is telling us it’s alive and its IP
‘FILE’ l_file() The pi needs some file from us

Parameters pilots (dict) – The Terminal.pilots dictionary.

Attributes:

plot_timer

sent_plot

Methods:

start_plot_timer() Start a timer that controls how often streamed video
frames are sent to gui.Video plots.

l_ping(msg) We are asked to confirm that we are alive
l_init(msg) Ask all pilots to confirm that they are alive
l_change(msg) Change a parameter on the Pi
l_stopall(msg) Stop all pilots and plots
l_kill(msg) Terminal wants us to die :(
l_data(msg) Stash incoming data from a Pilot
l_continuous(msg) Handle the storage of continuous data
l_state(msg) A Pilot has changed state.
l_handshake(msg) A Pi is telling us it's alive and its IP.
l_file(msg) A Pilot needs some file from us.

plot_timer = None

sent_plot = {}

pusher: Union[bool, zmq.sugar.socket.Socket]

start_plot_timer()

Start a timer that controls how often streamed video frames are sent to gui.Video plots.

l_ping(msg: autopilot.networking.message.Message)
We are asked to confirm that we are alive

Respond with a blank ‘STATE’ message.

Parameters msg (Message)

144 Chapter 14. networking

https://docs.python.org/3/library/functions.html#bool
https://pyzmq.readthedocs.io/en/latest/api/zmq.html#zmq.Socket

Autopilot Documentation, Release 0.3.0

l_init(msg: autopilot.networking.message.Message)
Ask all pilots to confirm that they are alive

Sends a “PING” to everyone in the pilots dictionary.

Parameters msg (Message)

l_change(msg: autopilot.networking.message.Message)
Change a parameter on the Pi

Warning: Not Implemented

Parameters msg (Message)

l_stopall(msg: autopilot.networking.message.Message)
Stop all pilots and plots

Parameters msg (Message)

l_kill(msg: autopilot.networking.message.Message)
Terminal wants us to die :(

Stop the Station.loop

Parameters msg (Message)

l_data(msg: autopilot.networking.message.Message)
Stash incoming data from a Pilot

Just forward this along to the internal terminal object (‘_T’) and a copy to the relevant plot.

Parameters msg (Message)

l_continuous(msg: autopilot.networking.message.Message)
Handle the storage of continuous data

Forwards all data on to the Terminal’s internal Net_Node, send to Plot according to update rate in prefs.
get('DRAWFPS')

Parameters msg (Message) – A continuous data message

l_state(msg: autopilot.networking.message.Message)
A Pilot has changed state.

Stash in ‘state’ field of pilot dict and send along to _T

Parameters msg (Message)

l_handshake(msg: autopilot.networking.message.Message)
A Pi is telling us it’s alive and its IP.

Send along to _T

Parameters msg (Message)

l_file(msg: autopilot.networking.message.Message)
A Pilot needs some file from us.

Send it back after base64.b64encode() ing it.

14.1. station 145

Autopilot Documentation, Release 0.3.0

Todo: Split large files into multiple messages. . .

Parameters msg (Message) – The value field of the message should contain some relative path
to a file contained within prefs.get(‘SOUNDDIR’) . eg. ‘/songs/sadone.wav’ would return
‘os.path.join(prefs.get(‘SOUNDDIR’)/songs.sadone.wav’

class Pilot_Station

Bases: autopilot.networking.station.Station

Station object used by Pilot objects.

Spawned with a pusher connected back to the Terminal .

Listens

Key Method Description
‘STATE’ ‘CO-
HERE’ ‘PING’
‘START’
‘STOP’
‘PARAM’
‘FILE’

l_state()
l_cohere()
l_ping()
l_start()
l_stop()
l_change()
l_file()

Pilot has changed state Make sure our data and the Terminal’s
match. The Terminal wants to know if we’re listening We are
being sent a task to start We are being told to stop the current task
The Terminal is changing some task parameter We are receiving
a file

Attributes:

Methods:

_pinger() Periodically ping the terminal with our status
l_noop(msg)

l_state(msg) Pilot has changed state
l_cohere(msg) Send our local version of the data table so the termi-

nal can double check
l_ping([msg]) The Terminal wants to know our status
l_start(msg) We are being sent a task to start
l_stop(msg) Tell the pi to stop the task
l_change(msg) The terminal is changing a parameter
l_file(msg) We are receiving a file.
l_continuous(msg) Forwards continuous data sent by children back to ter-

minal.
l_child(msg) Tell one or more children to start running a task.
l_forward(msg) Just forward the message to the pi.

pusher: Union[bool, zmq.sugar.socket.Socket]

_pinger()

Periodically ping the terminal with our status

Calls its own timer to replace it

Returns:

146 Chapter 14. networking

https://docs.python.org/3/library/functions.html#bool
https://pyzmq.readthedocs.io/en/latest/api/zmq.html#zmq.Socket

Autopilot Documentation, Release 0.3.0

l_noop(msg)

l_state(msg: autopilot.networking.message.Message)
Pilot has changed state

Stash it and alert the Terminal

Parameters msg (Message)

l_cohere(msg: autopilot.networking.message.Message)
Send our local version of the data table so the terminal can double check

Warning: Not Implemented

Parameters msg (Message)

l_ping(msg: Optional[autopilot.networking.message.Message] = None)
The Terminal wants to know our status

Push back our current state.

Parameters msg (Message)

l_start(msg: autopilot.networking.message.Message)
We are being sent a task to start

If we need any files, request them.

Then send along to the pilot.

Parameters msg (Message) – value will contain a dictionary containing a task description.

l_stop(msg: autopilot.networking.message.Message)
Tell the pi to stop the task

Parameters msg (Message)

l_change(msg: autopilot.networking.message.Message)
The terminal is changing a parameter

Warning: Not implemented

Parameters msg (Message)

l_file(msg: autopilot.networking.message.Message)
We are receiving a file.

Decode from b64 and save. Set the file_block.

Parameters msg (Message) – value will have ‘path’ and ‘file’, where the path determines where
in prefs.get(‘SOUNDDIR’) the b64 encoded ‘file’ will be saved.

l_continuous(msg: autopilot.networking.message.Message)
Forwards continuous data sent by children back to terminal.

Continuous data sources from this pilot should be streamed directly to the terminal.

Parameters msg (Message) – Continuous data message

14.1. station 147

https://docs.python.org/3/library/typing.html#typing.Optional

Autopilot Documentation, Release 0.3.0

l_child(msg: autopilot.networking.message.Message)
Tell one or more children to start running a task.

By default, the key argument passed to self.send is ‘START’. However, this can be overriden by providing
the desired string as msg.value[‘KEY’].

This checks the pref CHILDID to get the names of one or more children. If that pref is a string, sends the
message to just that child. If that pref is a list, sends the message to each child in the list.

Parameters msg () – A message to send to the child or children.

Returns nothing

l_forward(msg: autopilot.networking.message.Message)
Just forward the message to the pi.

14.2 node

Classes:

Net_Node(id, upstream, port, listens[, ...]) Drop in networking object to be given to any sub-object
behind some external-facing Station object.

class Net_Node(id: str, upstream: str, port: int, listens: Dict[str, Callable], instance: bool = True, upstream_ip:
str = 'localhost', router_port: Optional[int] = None, daemon: bool = True, expand_on_receive:
bool = True)

Bases: object

Drop in networking object to be given to any sub-object behind some external-facing Station object.

To minimize the complexity of the network topology, the typical way to use ``Net_Node``s is through a
Station ROUTER, rather than

addressing each other directly. Practically, this means that all messages are sent first to the parent networking.
Station object, which then handles them, forwards them, etc. This proved to be horribly misguided and will
be changed in v0.5.0 to support simplified messaging to a agent_id.netnode_id address. Until then the
networking modules will be in a bit of flux.

To receive messages directly at this Net_Node, pass the router_port which will bind a zmq.ROUTER socket,
and messages will be handled as regular ‘listens’ Note that Net_Nodes assume that they are the final recipients
of messages, and so don’t handle forwarding messages (unless a listen method explicitly does so), and will
automatically deserialize them on receipt.

Note: Listen methods currently receive only the value of a message, this will change in v0.5.0, where they will
receive the full message like networking.Station objects.

Parameters
• id (str) – What are we known as? What do we set our identity as?

• upstream (str) – The identity of the ROUTER socket used by our upstream Station object.

• port (int) – The port that our upstream ROUTER socket is bound to

• listens (dict) – Dictionary of functions to call for different types of messages. keys match
the Message.key.

148 Chapter 14. networking

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#object

Autopilot Documentation, Release 0.3.0

• instance (bool) – Should the node try and use the existing zmq context and tornado loop?

• upstream_ip (str) – If this Net_Node is being used on its own (ie. not behind a Station),
it can directly connect to another node at this IP. Otherwise use ‘localhost’ to connect to a
station.

• router_port (int) – Typically, Net_Nodes only have a single Dealer socket and receive mes-
sages from their encapsulating Station, but if you want to take this node offroad and use it
independently, an int here binds a Router to the port.

• daemon (bool) – Run the IOLoop thread as a daemon (default: True)

Variables
• context (zmq.Context) – zeromq context

• loop (tornado.ioloop.IOLoop) – a tornado ioloop

• sock (zmq.Socket) – Our DEALER socket.

• id (str) – What are we known as? What do we set our identity as?

• upstream (str) – The identity of the ROUTER socket used by our upstream Station
object.

• port (int) – The port that our upstream ROUTER socket is bound to

• listens (dict) – Dictionary of functions to call for different types of messages. keys match
the Message.key.

• outbox (dict) – Messages that have been sent but have not been confirmed

• timers (dict) – dict of threading.Timer s that will check in on outbox messages

• logger (logging.Logger) – Used to log messages and network events.

• msg_counter (itertools.count) – counter to index our sent messages

• loop_thread (threading.Thread) – Thread that holds our loop. initialized with dae-
mon=True

Attributes:

repeat_interval

ip Find our IP address

Methods:

14.2. node 149

https://pyzmq.readthedocs.io/en/latest/api/zmq.html#zmq.Context
https://www.tornadoweb.org/en/stable/ioloop.html#tornado.ioloop.IOLoop
https://pyzmq.readthedocs.io/en/latest/api/zmq.html#zmq.Socket
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/threading.html#threading.Timer
https://docs.python.org/3/library/logging.html#logging.Logger
https://docs.python.org/3/library/threading.html#threading.Thread

Autopilot Documentation, Release 0.3.0

init_networking() Creates socket, connects to specified port on local-
host, and starts the threaded_loop() as a daemon
thread.

threaded_loop() Run in a thread, either starts the IOLoop, or if it is
already started (ie.

handle_listen(msg) Upon receiving a message, call the appropriate listen
method in a new thread and send confirmation it was
received.

send([to, key, value, msg, repeat, flags, ...]) Send a message via our sock , DEALER socket.
repeat() Periodically (according to repeat_interval) re-

send messages that haven't been confirmed
l_confirm(value) Confirm that a message was received.
l_stream(msg) Reconstitute the original stream of messages and call

their handling methods
prepare_message(to, key, value, repeat[, flags]) Instantiate a Message class, give it an ID and the rest

of its attributes.
get_stream(id, key[, min_size, upstream, ...]) Make a queue that another object can dump data into

that sends on its own socket.
release()

repeat_interval = 5

context: zmq.sugar.context.Context

loop: tornado.ioloop.IOLoop

closing: threading.Event

listens: Dict[str, Callable]

id: str

upstream: str

port: int

router: Optional[zmq.sugar.socket.Socket]

loop_thread: Optional[threading.Thread]

senders: Dict[bytes, str]

init_networking()

Creates socket, connects to specified port on localhost, and starts the threaded_loop() as a daemon
thread.

threaded_loop()

Run in a thread, either starts the IOLoop, or if it is already started (ie. running in another thread), breaks.

handle_listen(msg: List[bytes])
Upon receiving a message, call the appropriate listen method in a new thread and send confirmation it was
received.

150 Chapter 14. networking

https://pyzmq.readthedocs.io/en/latest/api/zmq.html#zmq.Context
https://www.tornadoweb.org/en/stable/ioloop.html#tornado.ioloop.IOLoop
https://docs.python.org/3/library/threading.html#threading.Event
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://pyzmq.readthedocs.io/en/latest/api/zmq.html#zmq.Socket
https://docs.python.org/3/library/threading.html#threading.Thread
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#bytes

Autopilot Documentation, Release 0.3.0

Note: Unlike Station.handle_listen() , only the Message.value is given to listen methods. This
was initially intended to simplify these methods, but this might change in the future to unify the messaging
system.

Parameters msg (list) – JSON Message.serialize() d message.

send(to: Optional[Union[str, list]] = None, key: Optional[str] = None, value: Optional[Any] = None, msg:
Optional[autopilot.networking.message.Message] = None, repeat: bool = False, flags=None, force_to:
bool = False)

Send a message via our sock , DEALER socket.

to is not required.

• If the node doesn’t have a router, (or the recipient is not in the Net_Node.senders dict) every message
is always sent to upstream . to can be included to send a message further up the network tree to a
networking object we’re not directly connected to.

• If the node has a router, since messages can only be sent on router sockets after the recipient has first
sent us a message, if the to is in the senders dict, it will be directly sent via Net_Node.router

• If the force_to arg is True, send to the to recipient directly via the dealer Net_Node.sock

• If to is a list, or is intended to be sent as a multihop message with an explicit path, then networking
objects will attempt to forward it along that path (disregarding implicit topology).

Either an already created Message should be passed as msg, or at least key must be provided for a new
message created by prepare_message() .

A threading.Timer is created to resend the message using repeat() unless repeat is False.

Parameters
• to (str, list) – The identity of the socket this message is to. If not included, sent to
upstream() .

• key (str) – The type of message - used to select which method the receiver uses to process
this message.

• value – Any information this message should contain. Can be any type, but must be JSON
serializable.

• msg (.Message) – An already created message.

• repeat (bool) – Should this message be resent if confirmation is not received?

• flags (dict)

• force_to (bool) – If we really really want to use the ‘to’ field to address messages (eg. node
being used for direct communication), overrides default behavior of sending to upstream.

repeat()

Periodically (according to repeat_interval) resend messages that haven’t been confirmed

TTL is decremented, and messages are resent until their TTL is 0.

l_confirm(value)
Confirm that a message was received.

Parameters value (str) – The ID of the message we are confirming.

14.2. node 151

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/threading.html#threading.Timer

Autopilot Documentation, Release 0.3.0

l_stream(msg)
Reconstitute the original stream of messages and call their handling methods

The msg should contain an inner_key that indicates the key, and thus the handling method.

Parameters msg (dict) – Compressed stream sent by Net_Node._stream()

prepare_message(to, key, value, repeat, flags=None)
Instantiate a Message class, give it an ID and the rest of its attributes.

Parameters
• flags
• repeat
• to (str) – The identity of the socket this message is to

• key (str) – The type of message - used to select which method the receiver uses to process
this message.

• value – Any information this message should contain. Can be any type, but must be JSON
serializable.

get_stream(id, key, min_size=5, upstream=None, port=None, ip=None, subject=None, q_size:
Optional[int] = None)

Make a queue that another object can dump data into that sends on its own socket. Smarter handling of
continuous data than just hitting ‘send’ a shitload of times. :returns: Place to dump ur data :rtype: Queue

property ip: str

Find our IP address

Todo: this is a copy of the Station.get_ip() method – unify this in v0.5.0

returns (str): our IPv4 address.

release()

14.3 Message

Classes:

Message([msg, expand_arrays]) A formatted message that takes value, sends it to id,
who should call the listen method indicated by the key.

class Message(msg=None, expand_arrays=False, **kwargs)
Bases: object

A formatted message that takes value, sends it to id, who should call the listen method indicated by the key.

Additional message behavior can be indicated by passing flags

Numpy arrays given in the value field are automatically serialized and deserialized when sending and receiving
using bas64 encoding and blosc compression.

id, to, sender, and key are required attributes, but any other key-value pair passed on init is added to the message’s
attributes and included in the message.

152 Chapter 14. networking

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object

Autopilot Documentation, Release 0.3.0

Can be indexed and set like a dictionary (message[‘key’], etc.)

Variables
• id (str) – ID that uniquely identifies a message. format {sender.id}_{number}

• to (str) – ID of socket this message is addressed to

• sender (str) – ID of socket where this message originates

• key (str) – Type of message, used to select a listen method to process it

• value – Body of message, can be any type but must be JSON serializable.

• timestamp (str) – Timestamp of message creation

• ttl (int) – Time-To-Live, each message is sent this many times at max, each send decre-
ments ttl.

• flags (dict) – Flags determine additional message behavior. If a flag has no value asso-
ciated with it, add it as a key with None as the value (eg. self.flags[‘MINPRINT’] = None),
the value doesn’t matter.

– MINPRINT - don’t print the value in logs (eg. when a large array is being sent)

– NOREPEAT - sender will not seek, and recipients will not attempt to send message receipt
confirmations

– NOLOG - don’t log this message! for streaming, or other instances where the constant print-
ing of the logger is performance prohibitive

Parameters
• *args
• **kwargs

Methods:

__getitem__(key)
Parameters key

__setitem__(key, value)
Parameters

• key

_serialize_numpy(array) Serialize a numpy array for sending over the wire
expand() Don't decompress numpy arrays by default for faster

IO, explicitly expand them when needed
__delitem__(key)

Parameters key

__contains__(key)
Parameters key

get_timestamp() Get a Python timestamp
validate() Checks if id, to, sender, and key are all defined.
serialize() Serializes all attributes in __dict__ using json.

14.3. Message 153

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict

Autopilot Documentation, Release 0.3.0

__getitem__(key)

Parameters key
__setitem__(key, value)

Parameters
• key
• value

_serialize_numpy(array)
Serialize a numpy array for sending over the wire

Parameters array
Returns:

expand()

Don’t decompress numpy arrays by default for faster IO, explicitly expand them when needed

Returns
__delitem__(key)

Parameters key
__contains__(key)

Parameters key
get_timestamp()

Get a Python timestamp

Returns Isoformatted timestamp from datetime

Return type str

validate()

Checks if id, to, sender, and key are all defined.

Returns Does message have all required attributes set?

Return type bool (True)

serialize()

Serializes all attributes in __dict__ using json.

Returns JSON serialized message.

Return type str

154 Chapter 14. networking

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

CHAPTER

FIFTEEN

STIM

15.1 managers

This is a scrappy first draft of a stimulus manager that will be built out to incorporate arbitrary stimulus logic. For now
you can subclass Stim_Manager and redefine next_stim

Todo: Make this more general, for more than just sounds.

Functions:

init_manager(stim)

Classes:

Stim_Manager([stim]) Yield sounds according to some set of rules.
Proportional(stim) Present groups of stimuli with a particular frequency.
Bias_Correction([mode, thresh, window]) Basic Bias correction module.

init_manager(stim)

class Stim_Manager(stim=None)
Bases: object

Yield sounds according to some set of rules.

Currently implemented:

• correction trials - If a subject continually answers to one side incorrectly, keep the correct answer on
the other side until they answer in that direction

• bias correction - above some bias threshold, skew the correct answers to the less-responded side

Variables
• stimuli (dict) – Dictionary of instantiated stimuli like:

{'L': [Tone1, Tone2, ...], 'R': [Tone3, Tone4, ...]}

• target ('L', 'R') – What is the correct port?

• distractor ('L', 'R') – What is the incorrect port?

155

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#dict

Autopilot Documentation, Release 0.3.0

• response ('L', 'R') – What was the last response?

• correct (0, 1) – Was the last response correct?

• last_stim – What was the last stim? (one of self.stimuli)

• correction (bool) – Are we doing correction trials?

• correction_trial (bool) – Is this a correction trial?

• last_was_correction (bool) – Was the last trial a correction trial?

• correction_pct (float) – proportion of trials that are correction trials

• bias – False, or a bias correction mode.

Parameters stim (dict) –

Dictionary describing sound stimuli, in a format like:

{
'L': [{'type':'tone',...},{...}],
'R': [{'type':'tone',...},{...}]
}

Methods:

156 Chapter 15. stim

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float

Autopilot Documentation, Release 0.3.0

do_correction([correction_pct]) Called to set correction trials to True and correction
percent.

do_bias(**kwargs) Instantiate a Bias_Correction module
init_sounds(sound_dict) Instantiate sound objects, using the 'type' value to

choose an object from autopilot.get('sound')
.

set_triggers(trig_fn) Give a callback function to all of our stimuli for when
the stimulus ends.

make_punishment(type, duration)

Warning:
Not
Im-
ple-
mented

play_punishment()

Warning:
Not
Im-
ple-
mented

next_stim() Compute and return the next stimulus
compute_correction() If self.correction is true, compute correction trial

logic during next_stim.
update(response, correct) At the end of a trial, update the status of our internal

variables with the outcome of the trial.
end() End all of our stim.

do_correction(correction_pct=0.5)
Called to set correction trials to True and correction percent.

Parameters correction_pct (float) – Proportion of trials that should randomly be set to be cor-
rection trials.

do_bias(**kwargs)
Instantiate a Bias_Correction module

Parameters kwargs – parameters to initialize Bias_Correction with.

init_sounds(sound_dict)
Instantiate sound objects, using the ‘type’ value to choose an object from autopilot.get('sound') .

Parameters sound_dict (dict) –

a dictionary like:: { ‘L’: [{‘type’:’tone’,. . . },{. . . }], ‘R’: [{‘type’:’tone’,. . . },{. . . }] }

set_triggers(trig_fn)
Give a callback function to all of our stimuli for when the stimulus ends.

15.1. managers 157

Autopilot Documentation, Release 0.3.0

Note: Stimuli need a set_trigger method.

Parameters trig_fn (callable) – A function to be given to stimuli via set_trigger

make_punishment(type, duration)

Warning: Not Implemented

Parameters
• type
• duration

play_punishment()

Warning: Not Implemented

next_stim()

Compute and return the next stimulus

If we are doing correction trials, compute that.

Same thing with bias correction.

Otherwise, randomly select a stimulus to present.

Returns (‘L’/’R’ Target, ‘L’/’R’ distractor, Stimulus to present)

compute_correction()

If self.correction is true, compute correction trial logic during next_stim.

• If the last trial was a correction trial and the response to it wasn’t correct, return True

• If the last trial was a correction trial and the response was correct, return False

• If the last trial as not a correction trial, but a randomly generated float is less than correction_pct,
return True.

Returns whether this trial should be a correction trial.

Return type bool

update(response, correct)
At the end of a trial, update the status of our internal variables with the outcome of the trial.

Parameters
• response (‘L’, ‘R’) – How the subject responded

• correct (0, 1) – Whether the response was correct.

end()

End all of our stim. Stim should have an .end() method of their own

158 Chapter 15. stim

https://docs.python.org/3/library/functions.html#bool

Autopilot Documentation, Release 0.3.0

class Proportional(stim)

Bases: autopilot.stim.managers.Stim_Manager

Present groups of stimuli with a particular frequency.

Frequencies do not need to add up to 1, groups will be selected with the frequency (fre-
quency)/(sum(frequencies)).

Parameters stim (dict) – Dictionary with the structure:

{'manager': 'proportional',
'type': 'sounds',
'groups': (

{'name':'group_name',
'frequency': 0.2,
'sounds':{

'L': [{Tone1_params}, {Tone2_params}...],
'R': [{Tone3_params}, {Tone4_params}...]

}
},
{'name':'second_group',
'frequency': 0.8,
'sounds':{

'L': [{Tone1_params}, {Tone2_params}...],
'R': [{Tone3_params}, {Tone4_params}...]

}
})

}

Variables
• stimuli (dict) – A dictionary of stimuli organized into groups

• groups (dict) – A dictionary mapping group names to frequencies

Parameters stim (dict) –

Dictionary describing sound stimuli, in a format like:

{
'L': [{'type':'tone',...},{...}],
'R': [{'type':'tone',...},{...}]
}

Methods:

init_sounds_grouped(sound_stim) Instantiate sound objects similarly to
Stim_Manager, just organizes them into groups.

init_sounds_individual(sound_stim) Initialize sounds with individually set presentation
frequencies.

store_groups(stim) store groups and frequencies
set_triggers(trig_fn) Give a callback function to all of our stimuli for when

the stimulus ends.
next_stim() Compute and return the next stimulus

init_sounds_grouped(sound_stim)

Instantiate sound objects similarly to Stim_Manager, just organizes them into groups.

15.1. managers 159

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

Autopilot Documentation, Release 0.3.0

Parameters sound_stim (tuple, list) – an iterator like:

(
{'name':'group_name',
'frequency': 0.2,
'sounds': {

'L': [{Tone1_params}, {Tone2_params}...],
'R': [{Tone3_params}, {Tone4_params}...]

}
},
{'name':'second_group',
'frequency': 0.8,
'sounds':{

'L': [{Tone1_params}, {Tone2_params}...],
'R': [{Tone3_params}, {Tone4_params}...]

}
})

init_sounds_individual(sound_stim)

Initialize sounds with individually set presentation frequencies.

Todo: This method reflects the need for managers to have a unified schema, which will be built in a future
release of Autopilot.

Parameters sound_stim (dict) – Dictionary of {‘side’:[sound_params]} to generate sound stim-
uli

Returns:

store_groups(stim)

store groups and frequencies

set_triggers(trig_fn)
Give a callback function to all of our stimuli for when the stimulus ends.

Note: Stimuli need a set_trigger method.

Parameters trig_fn (callable) – A function to be given to stimuli via set_trigger

next_stim()

Compute and return the next stimulus

If we are doing correction trials, compute that.

Same thing with bias correction.

Otherwise, randomly select a stimulus to present, weighted by its group frequency.

Returns (‘L’/’R’ Target, ‘L’/’R’ distractor, Stimulus to present)

class Bias_Correction(mode='thresholded_linear', thresh=0.2, window=100)
Bases: object

160 Chapter 15. stim

https://docs.python.org/3/library/functions.html#object

Autopilot Documentation, Release 0.3.0

Basic Bias correction module. Modifies the threshold of random stimulus choice based on history of biased
responses.

Variables
• responses (collections.deque) – History of prior responses

• targets (collections.deque) – History of prior targets.

Parameters
• mode – One of the following:

– ‘thresholded linear’ [above some threshold, do linear bias correction] eg. if response rate
65% left, make correct be right 65% of the time

• thresh (float) – threshold above chance, ie. 0.2 means has to be 70% biased in window

• window (int) – number of trials to calculate bias over

Methods:

next_bias() Compute the next bias depending on self.mode
thresholded_linear() If we are above the threshold, linearly correct the rate

of presentation to favor the rarely responded side.
update(response, target) Store some new response and target values

next_bias()

Compute the next bias depending on self.mode

Returns Some threshold Stim_Manager uses to decide left vs right.

Return type float

thresholded_linear()

If we are above the threshold, linearly correct the rate of presentation to favor the rarely responded side.

eg. if response rate 65% left, make correct be right 65% of the time

Returns 0.5-bias, where bias is the difference between the mean response and mean target.

Return type float

update(response, target)
Store some new response and target values

Parameters
• response (‘R’, ‘L’) – Which side the subject responded to

• target (‘R’, ‘L’) – The correct side.

15.1. managers 161

https://docs.python.org/3/library/collections.html#collections.deque
https://docs.python.org/3/library/collections.html#collections.deque
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

Autopilot Documentation, Release 0.3.0

15.2 sound

Module for generating and playing sounds.

This module contains the following files:

sounds.py : Defines classes for generating sounds jackclient.py : Define the interface to the jack client
pyoserver.py : Defines the interface to the pyo server

The use of pyoserver is discouraged in favor of jackclient. This is controlled by the pref AUDIOSERVER.

15.2.1 jackclient

Client that dumps samples directly to the jack client with the jack package.

Note: The latest version of raspiOS (bullseye) causes a lot of problems with the Jack audio that we have not figured
out a workaround for. If you intend to use sound, we recommend sticking with Buster for now (available from their
legacy downloads section).

Data:

SERVER After initializing, JackClient will register itself with this
variable.

FS Sampling rate of the active server
BLOCKSIZE Blocksize, or the amount of samples processed by jack

per each JackClient.process() call.
QUEUE Queue to be loaded with frames of BLOCKSIZE audio.
Q_LOCK Lock that enforces a single writer to the QUEUE at a

time.
CONTINUOUS Event that (when set) signals the sound server should

play some sound continuously rather than remain silent
by default (eg.

CONTINUOUS_QUEUE Queue that
CONTINUOUS_LOOP Event flag that is set when frames dropped into the CON-

TINUOUS_QUEUE should be looped (eg.

Classes:

JackClient([name, outchannels, debug_timing]) Client that dumps frames of audio directly into a running
jackd client.

SERVER = None

After initializing, JackClient will register itself with this variable.

Type JackClient
FS = 192000

Sampling rate of the active server

Type int

162 Chapter 15. stim

https://jackclient-python.readthedocs.io/en/0.4.5/index.html#module-jack
https://www.raspberrypi.com/software/operating-systems/#raspberry-pi-os-legacy
https://docs.python.org/3/library/functions.html#int

Autopilot Documentation, Release 0.3.0

BLOCKSIZE = 1024

Blocksize, or the amount of samples processed by jack per each JackClient.process() call.

Type int

QUEUE = None

Queue to be loaded with frames of BLOCKSIZE audio.

Type multiprocessing.Queue

PLAY = <multiprocessing.synchronize.Event object at 0x7f444c900a60>

Event used to trigger loading samples from QUEUE, ie. playing.

Type multiprocessing.Event

STOP = <multiprocessing.synchronize.Event object at 0x7f441c841d60>

Event that is triggered on the end of buffered audio.

Note: NOT an event used to stop audio.

Type multiprocessing.Event

Q_LOCK = None

Lock that enforces a single writer to the QUEUE at a time.

Type multiprocessing.Lock

CONTINUOUS = None

Event that (when set) signals the sound server should play some sound continuously rather than remain silent by
default (eg. play a background sound).

Type multiprocessing.Event

CONTINUOUS_QUEUE = None

Queue that

Type multiprocessing.Queue

CONTINUOUS_LOOP = None

Event flag that is set when frames dropped into the CONTINUOUS_QUEUE should be looped (eg. in the case
of stationary background noise), otherwise they are played and then discarded (ie. the sound is continuously
generating and submitting samples)

Type multiprocessing.Event

class JackClient(name='jack_client', outchannels: Optional[list] = None, debug_timing: bool = False)
Bases: multiprocessing.context.Process

Client that dumps frames of audio directly into a running jackd client.

See the process() method to see how the client works in detail, but as a narrative overview:

• The client interacts with a running jackd daemon, typically launched with external.start_jackd() The
jackd process is configured with the JACKDSTRING pref, which by default is built from other parameters
like the FS sampling rate et al.

• multiprocessing.Event objects are used to synchronize state within the client, eg. the play event signals
that the client should begin to pull frames from the sound queue

15.2. sound 163

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/multiprocessing.html#multiprocessing.Queue
https://docs.python.org/3/library/multiprocessing.html#multiprocessing.Event
https://docs.python.org/3/library/multiprocessing.html#multiprocessing.Event
https://docs.python.org/3/library/multiprocessing.html#multiprocessing.Lock
https://docs.python.org/3/library/multiprocessing.html#multiprocessing.Event
https://docs.python.org/3/library/multiprocessing.html#multiprocessing.Queue
https://docs.python.org/3/library/multiprocessing.html#multiprocessing.Event
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/multiprocessing.html#multiprocessing.Event

Autopilot Documentation, Release 0.3.0

• multiprocessing.Queue objects are used to send samples to the client, specifically chunks samples with
length BLOCKSIZE

• The general pattern of using both together is to load a queue with chunks of samples and then set the play
event.

• Jackd will call the process method repeatedly, within which this class will check the state of the event
flags and pull from the appropriate queues to load the samples into jackd’s audio buffer

When first initialized, sets module level variables above, which are the public hooks to use the client. Within
autopilot, the module-level variables are used, but if using the jackclient or sound system outside of a typical
autopilot context, you can instantiate a JackClient and then pass it to sounds as jack_client.

Parameters
• name (str) – name of client, default “jack_client”

• outchannels (list) – Optionally manually pass outchannels rather than getting from prefs.
A list of integers corresponding to output channels to initialize. if None (default), get
'OUTCHANNELS' from prefs

Variables
• q (Queue) – Queue that stores buffered frames of audio

• q_lock (Lock) – Lock that manages access to the Queue

• play_evt (multiprocessing.Event) – Event used to trigger loading samples from
QUEUE, ie. playing.

• stop_evt (multiprocessing.Event) – Event that is triggered on the end of buffered au-
dio.

• quit_evt (multiprocessing.Event) – Event that causes the process to be terminated.

• client (jack.Client) – Client to interface with jackd

• blocksize (int) – The blocksize - ie. samples processed per JackClient.process()
call.

• fs (int) – Sampling rate of client

• zero_arr (numpy.ndarray) – cached array of zeroes used to fill jackd pipe when not pro-
cessing audio.

• continuous_cycle (itertools.cycle) – cycle of frames used for continuous sounds

• mono_output (bool) – True or False depending on if the number of output channels is 1
or >1, respectively. detected and set in JackClient.boot_server() , initialized to True
(which is hopefully harmless)

Parameters name
Attributes:

play_started set after the first frame of a sound is buffered, used
to keep track internally when sounds are started and
stopped.

Methods:

164 Chapter 15. stim

https://docs.python.org/3/library/multiprocessing.html#multiprocessing.Queue
https://docs.python.org/3/library/multiprocessing.html#multiprocessing.Queue
https://docs.python.org/3/library/multiprocessing.html#multiprocessing.Lock
https://docs.python.org/3/library/multiprocessing.html#multiprocessing.Event
https://docs.python.org/3/library/multiprocessing.html#multiprocessing.Event
https://docs.python.org/3/library/multiprocessing.html#multiprocessing.Event
https://jackclient-python.readthedocs.io/en/0.4.5/index.html#jack.Client
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

Autopilot Documentation, Release 0.3.0

boot_server() Called by JackClient.run() to boot the server
upon starting the process.

run() Start the process, boot the server, start processing
frames and wait for the end.

quit() Set the JackClient.quit_evt
process(frames) Process a frame of audio.
write_to_outports(data) Write the sound in data to the outport(s).
_pad_continuous(data) When playing a sound in process(), if we're given a

sound that is less than the blocksize, pad it with either
silence or the continuous sound

_wait_for_end() Thread that waits for a time (returned by jack.
Client.frame_time) passed as end_time and then
sets JackClient.stop_evt

play_started

set after the first frame of a sound is buffered, used to keep track internally when sounds are started and
stopped.

boot_server()

Called by JackClient.run() to boot the server upon starting the process.

Activates the client and connects it to the physical speaker outputs as determined by
prefs.get(‘OUTCHANNELS’).

This is the interpretation of OUTCHANNELS: * empty string

‘mono’ audio: the same sound is always played to all channels. Connect a single virtual outport
to every physical channel. If multi-channel sound is provided, raise an error.

• a single int (example: J) This is equivalent to [J]. The first virtual outport will be connected to phys-
ical channel J. Note this is NOT the same as ‘mono’, because only one speaker plays, instead of
all speakers.

• a list (example: [I, J]) The first virtual outport will be connected to physical channel I. The second
virtual outport will be connected to physical channel J. And so on. If 1-dimensional sound is
provided, play the same to all speakers (like mono mode). If multi-channel sound is provided and
the number of channels is different form the length of this list, raise an error.

jack.Client s can’t be kept alive, so this must be called just before processing sample starts.

run()

Start the process, boot the server, start processing frames and wait for the end.

quit()

Set the JackClient.quit_evt

process(frames)
Process a frame of audio.

If the JackClient.play_evt is not set, fill port buffers with zeroes.

Otherwise, pull frames of audio from the JackClient.q until it’s empty.

When it’s empty, set the JackClient.stop_evt and clear the JackClient.play_evt .

Parameters frames – number of frames (samples) to be processed. unused. passed by jack client

15.2. sound 165

https://jackclient-python.readthedocs.io/en/0.4.5/index.html#jack.Client.frame_time
https://jackclient-python.readthedocs.io/en/0.4.5/index.html#jack.Client.frame_time
https://jackclient-python.readthedocs.io/en/0.4.5/index.html#jack.Client

Autopilot Documentation, Release 0.3.0

write_to_outports(data)
Write the sound in data to the outport(s).

If self.mono_output:
If data is 1-dimensional: Write that data to the single outport, which goes to all speakers.

Otherwise, raise an error.

If not self.mono_output:
If data is 1-dimensional: Write that data to every outport

If data is 2-dimensional: Write one column to each outport, raising an error if there is a different
number of columns than outports.

_pad_continuous(data: numpy.ndarray)→ numpy.ndarray
When playing a sound in process(), if we’re given a sound that is less than the blocksize, pad it with
either silence or the continuous sound

Returns:

_wait_for_end()

Thread that waits for a time (returned by jack.Client.frame_time) passed as end_time and then sets
JackClient.stop_evt

Parameters end_time (int) – the frame_time at which to set the event

15.2.2 pyoserver

Functions:

pyo_server([debug]) Returns a booted and started pyo audio server

pyo_server(debug=False)
Returns a booted and started pyo audio server

Warning: Use of pyo is generally discouraged due to dropout issues and the general opacity of the module.

Parameters debug (bool) – If true, setVerbosity of pyo server to 8.

15.2.3 base - sound

Base classes for sound objects, depending on the selected audio backend. Use the 'AUDIOSERVER' pref to select, or
else use the default_sound_class() function.

Classes:

Sound([fs, duration]) Dummy metaclass for sound base-classes.
Pyo_Sound() Metaclass for pyo sound objects.
Jack_Sound([jack_client]) Base class for sounds that use the JackClient audio

server.

Functions:

166 Chapter 15. stim

https://jackclient-python.readthedocs.io/en/0.4.5/index.html#jack.Client.frame_time

Autopilot Documentation, Release 0.3.0

get_sound_class([server_type]) Get the default sound class as defined by
'AUDIOSERVER'

class Sound(fs: int = None, duration: float = None, **kwargs)
Bases: autopilot.stim.stim.Stim

Dummy metaclass for sound base-classes. Allows Sounds to be used without a backend to, eg. synthesize
waveforms and the like.

Placeholder pending a full refactoring of class structure

Attributes:

PARAMS

type

server_type

Methods:

get_nsamples() given our fs and duration, how many samples do we
need?

PARAMS = []

type = None

server_type = 'dummy'

table: Optional[numpy.ndarray]

get_nsamples()

given our fs and duration, how many samples do we need?

literally:

np.ceil((self.duration/1000.)*self.fs).astype(int)

class Pyo_Sound

Bases: autopilot.stim.stim.Stim

Metaclass for pyo sound objects.

Note: Use of pyo is generally discouraged due to dropout issues and the general opacity of the module. As such
this object is intentionally left undocumented.

Methods:

15.2. sound 167

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

Autopilot Documentation, Release 0.3.0

play()

table_wrap(audio[, duration]) Records a PyoAudio generator into a sound table, re-
turns a tableread object which can play the audio with
.out()

set_trigger(trig_fn)
Parameters trig_fn

play()

table_wrap(audio, duration=None)
Records a PyoAudio generator into a sound table, returns a tableread object which can play the audio with
.out()

Parameters
• audio
• duration

set_trigger(trig_fn)

Parameters trig_fn
class Jack_Sound(jack_client: Optional[autopilot.stim.sound.jackclient.JackClient] = None, **kwargs)

Bases: autopilot.stim.stim.Stim

Base class for sounds that use the JackClient audio server.

Variables
• PARAMS (list) – List of strings of parameters that need to be defined for this sound

• type (str) – Human readable name of sound type

• duration (float) – Duration of sound in ms

• amplitude (float) – Amplitude of sound as proportion of 1 (eg 0.5 is half amplitude)

• table (numpy.ndarray) – A Numpy array of samples

• chunks (list) – table split up into chunks of BLOCKSIZE

• trigger (callable) – A function that is called when the sound completes

• nsamples (int) – Number of samples in the sound

• padded (bool) – Whether the sound had to be padded with zeros when split into chunks (ie.
sound duration was not a multiple of BLOCKSIZE).

• fs (int) – sampling rate of client from jackclient.FS

• blocksize (int) – blocksize of client from jackclient.BLOCKSIZE

• server (Jack_Client) – Current Jack Client

• q (multiprocessing.Queue) – Audio Buffer queue from jackclient.QUEUE

• q_lock (multiprocessing.Lock) – Audio Buffer lock from jackclient.Q_LOCK

• play_evt (multiprocessing.Event) – play event from jackclient.PLAY

• stop_evt (multiprocessing.Event) – stop event from jackclient.STOP

168 Chapter 15. stim

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/multiprocessing.html#multiprocessing.Queue
https://docs.python.org/3/library/multiprocessing.html#multiprocessing.Lock
https://docs.python.org/3/library/multiprocessing.html#multiprocessing.Event
https://docs.python.org/3/library/multiprocessing.html#multiprocessing.Event

Autopilot Documentation, Release 0.3.0

• buffered (bool) – has this sound been dumped into the q ?

• buffered_continuous (bool) – Has the sound been dumped into the continuous_q?

Initialize a new Jack_Sound

This sets sound-specific parameters to None, set jack-specific parameters to their equivalents in jackclient, ini-
tializes some other flags and a logger.

Attributes:

PARAMS list of strings of parameters to be defined
type string human readable name of sound
server_type type of server, always 'jack' for Jack_Sound s.

Methods:

init_sound() Abstract method to initialize sound.
chunk([pad]) Split our table up into a list of Jack_Sound.

blocksize chunks.
set_trigger(trig_fn) Set a trigger function to be called when the stop_evt

is set.
wait_trigger() Wait for the stop_evt trigger to be set for at least a

second after the sound should have ended.
get_nsamples() given our fs and duration, how many samples do we

need?
quantize_duration([ceiling]) Extend or shorten a sound so that it is a multiple of

jackclient.BLOCKSIZE
buffer() Dump chunks into the sound queue.
_init_continuous() Create a duration quantized table for playing contin-

uously
buffer_continuous() Dump chunks into the continuous sound queue for

looping.
play() Play ourselves.
play_continuous([loop]) Play the sound continuously.
iter_continuous() Continuously yield frames of audio.
stop_continuous() Stop playing a continuous sound
end() Release any resources held by this sound

PARAMS = []

list of strings of parameters to be defined

Type list

type = None

string human readable name of sound

Type str

server_type = 'jack'

type of server, always ‘jack’ for Jack_Sound s.

Type str

15.2. sound 169

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Autopilot Documentation, Release 0.3.0

abstract init_sound()

Abstract method to initialize sound. Should set the table attribute

Todo: ideally should standardize by returning an array, but pyo objects don’t return arrays necessarily. . .

chunk(pad=True)
Split our table up into a list of Jack_Sound.blocksize chunks.

Parameters
• pad (bool) – If the sound is not evenly divisible into chunks,

• pad with zeros (True, default)

• with its continuous sound
set_trigger(trig_fn)

Set a trigger function to be called when the stop_evt is set.

Parameters trig_fn (callable) – Some callable

wait_trigger()

Wait for the stop_evt trigger to be set for at least a second after the sound should have ended.

Call the trigger when the event is set.

get_nsamples()

given our fs and duration, how many samples do we need?

literally:

np.ceil((self.duration/1000.)*self.fs).astype(int)

quantize_duration(ceiling=True)
Extend or shorten a sound so that it is a multiple of jackclient.BLOCKSIZE

Parameters ceiling (bool) – If true, extend duration, otherwise decrease duration.

buffer()

Dump chunks into the sound queue.

After the last chunk, a None is put into the queue. This tells the jack server that the sound is over and that
it should clear the play flag.

_init_continuous()

Create a duration quantized table for playing continuously

buffer_continuous()

Dump chunks into the continuous sound queue for looping.

Continuous shoulds should always have full frames - ie. the number of samples in a sound should be a
multiple of jackclient.BLOCKSIZE.

This method will call quantize_duration() to force duration such that the sound has full frames.

An exception will be raised if the sound has been padded.

170 Chapter 15. stim

Autopilot Documentation, Release 0.3.0

play()

Play ourselves.

If we’re not buffered, be buffered.

Otherwise, set the play event and clear the stop event.

If we have a trigger, set a Thread to wait on it.

play_continuous(loop=True)
Play the sound continuously.

Sound will be paused if another sound has its ‘play’ method called.

Currently - only looping is implemented: the full sound is loaded by the jack client and repeated indefinitely.

In the future, sound generation methods will be refactored as python generators so sounds can be continu-
ously generated and played.

Parameters loop (bool) – whether the sound will be stored by the jack client and looped (True),
or whether the sound will be continuously streamed (False, not implemented)

Returns:

todo:

merge into single play method that changes behavior if continuous or not

iter_continuous()→ Generator
Continuously yield frames of audio. If this method is not overridden, just wraps table in a itertools.
cycle object and returns from it.

Returns A single frame of audio

Return type np.ndarray

stop_continuous()

Stop playing a continuous sound

Should be merged into a general stop method

end()

Release any resources held by this sound

get_sound_class(server_type: Optional[str] = None)→ Union[Type[autopilot.stim.sound.base.Sound],
Type[autopilot.stim.sound.base.Jack_Sound], Type[autopilot.stim.sound.base.Pyo_Sound]]

Get the default sound class as defined by 'AUDIOSERVER'

This function is also a convenience class for testing whether a particular audio backend is available

Returns:

15.2. sound 171

https://docs.python.org/3/library/typing.html#typing.Generator
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/typing.html#typing.Type

Autopilot Documentation, Release 0.3.0

15.2.4 sounds

This module defines classes to generate different sounds.

These classes are currently implemented: * Tone : a sinuosoidal pure tone * Noise : a burst of white noise * File : read
from a file * Speech * Gap

The behavior of this module depends on prefs.get(‘AUDIOSERVER’). * If this is ‘jack’, or True:

Then import jack, define Jack_Sound, and all sounds inherit from that.

• If this is ‘pyo’: Then import pyo, define PyoSound, and all sounds inherit from that.

• If this is ‘docs’: Then import both jack and pyo, define both Jack_Sound and PyoSound, and all sounds inherit
from object.

• Otherwise: Then do not import jack or pyo, or define either Jack_Sound or PyoSound, and all sounds inherit
from object.

Todo: Implement sound level and filter calibration

Classes:

Tone(frequency, duration[, amplitude]) The Humble Sine Wave
Noise(duration[, amplitude, channel]) Generates a white noise burst with specified parameters
File(path[, amplitude]) A .wav file.
Gap(duration, **kwargs) A silent sound that does not pad its final chunk -- used

for creating precise silent gaps in a continuous noise.
Gammatone(frequency, duration[, amplitude, ...]) Gammatone filtered noise, using timeseries.

Gammatone -- see that class for the filter documentation.

Data:

STRING_PARAMS These parameters should be given string columns rather
than float columns.

Functions:

int_to_float(audio) Convert 16 or 32 bit integer audio to 32 bit float.

class Tone(frequency, duration, amplitude=0.01, **kwargs)
Bases: autopilot.stim.sound.base.Jack_Sound

The Humble Sine Wave

Parameters
• frequency (float) – frequency of sin in Hz

• duration (float) – duration of the sin in ms

• amplitude (float) – amplitude of the sound as a proportion of 1.

• **kwargs – extraneous parameters that might come along with instantiating us

172 Chapter 15. stim

Autopilot Documentation, Release 0.3.0

Attributes:

PARAMS list of strings of parameters to be defined
type string human readable name of sound

Methods:

init_sound() Create a sine wave table using pyo or numpy, depend-
ing on the server type.

PARAMS = ['frequency', 'duration', 'amplitude']

list of strings of parameters to be defined

Type list

type = 'Tone'

string human readable name of sound

Type str

init_sound()

Create a sine wave table using pyo or numpy, depending on the server type.

class Noise(duration, amplitude=0.01, channel=None, **kwargs)
Bases: autopilot.stim.sound.base.Jack_Sound

Generates a white noise burst with specified parameters

The type attribute is always “Noise”.

Initialize a new white noise burst with specified parameters.

The sound itself is stored as the attribute self.table. This can be 1-dimensional or 2-dimensional, depending on
channel. If it is 2-dimensional, then each channel is a column.

Parameters
• duration (float) – duration of the noise

• amplitude (float) – amplitude of the sound as a proportion of 1.

• channel (int or None) – which channel should be used If 0, play noise from the first channel
If 1, play noise from the second channel If None, send the same information to all channels
(“mono”)

• **kwargs – extraneous parameters that might come along with instantiating us

Attributes:

PARAMS list of strings of parameters to be defined
type string human readable name of sound

Methods:

init_sound() Defines self.table, the waveform that is played.
iter_continuous() Continuously yield frames of audio.

15.2. sound 173

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

Autopilot Documentation, Release 0.3.0

PARAMS = ['duration', 'amplitude', 'channel']

list of strings of parameters to be defined

Type list

type = 'Noise'

string human readable name of sound

Type str

init_sound()

Defines self.table, the waveform that is played.

The way this is generated depends on self.server_type, because parameters like the sampling rate cannot be
known otherwise.

The sound is generated and then it is “chunked” (zero-padded and divided into chunks). Finally
self.initialized is set True.

iter_continuous()→ Generator
Continuously yield frames of audio. If this method is not overridden, just wraps table in a itertools.
cycle object and returns from it.

Returns A single frame of audio

Return type np.ndarray

class File(path, amplitude=0.01, **kwargs)
Bases: autopilot.stim.sound.base.Jack_Sound

A .wav file.

Todo: Generalize this to other audio types if needed.

Parameters
• path (str) – Path to a .wav file relative to the prefs.get(‘SOUNDDIR’)

• amplitude (float) – amplitude of the sound as a proportion of 1.

• **kwargs – extraneous parameters that might come along with instantiating us

Attributes:

PARAMS list of strings of parameters to be defined
type string human readable name of sound

Methods:

init_sound() Load the wavfile with scipy.io.wavfile , convert-
ing int to float as needed.

PARAMS = ['path', 'amplitude']

list of strings of parameters to be defined

Type list

174 Chapter 15. stim

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Generator
https://docs.scipy.org/doc/scipy/reference/io.html#module-scipy.io.wavfile
https://docs.python.org/3/library/stdtypes.html#list

Autopilot Documentation, Release 0.3.0

type = 'File'

string human readable name of sound

Type str

init_sound()

Load the wavfile with scipy.io.wavfile , converting int to float as needed.

Create a sound table, resampling sound if needed.

class Gap(duration, **kwargs)
Bases: autopilot.stim.sound.base.Jack_Sound

A silent sound that does not pad its final chunk – used for creating precise silent gaps in a continuous noise.

Parameters duration (float) – duration of gap in ms

Variables gap_zero (bool) – True if duration is zero, effectively do nothing on play.

Attributes:

type string human readable name of sound
PARAMS list of strings of parameters to be defined

Methods:

init_sound() Create and chunk an array of zeros according to Gap.
duration

chunk([pad]) If gap is not duration == 0, call parent chunk.
buffer() Dump chunks into the sound queue.
play() Play ourselves.

type = 'Gap'

string human readable name of sound

Type str

PARAMS = ['duration']

list of strings of parameters to be defined

Type list

init_sound()

Create and chunk an array of zeros according to Gap.duration

chunk(pad=False)
If gap is not duration == 0, call parent chunk. :Parameters: pad (bool) – unused, passed to parent chunk

buffer()

Dump chunks into the sound queue.

After the last chunk, a None is put into the queue. This tells the jack server that the sound is over and that
it should clear the play flag.

play()

Play ourselves.

If we’re not buffered, be buffered.

Otherwise, set the play event and clear the stop event.

15.2. sound 175

https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/scipy/reference/io.html#module-scipy.io.wavfile
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list

Autopilot Documentation, Release 0.3.0

If we have a trigger, set a Thread to wait on it.

class Gammatone(frequency: float, duration: float, amplitude: float = 0.01, channel: Optional[int] = None,
filter_kwargs: Optional[dict] = None, **kwargs)

Bases: autopilot.stim.sound.sounds.Noise

Gammatone filtered noise, using timeseries.Gammatone – see that class for the filter documentation.

Parameters
• frequency (float) – Center frequency of filter, in Hz

• duration (float) – Duration of sound, in ms

• amplitude (float) – Amplitude scaling of sound (absolute value 0-1, default is .01)

• filter_kwargs (dict) – passed on to timeseries.Gammatone

Attributes:

type string human readable name of sound
PARAMS list of strings of parameters to be defined

type = 'Gammatone'

string human readable name of sound

Type str

PARAMS = ['frequency', 'duration', 'amplitude', 'channel']

list of strings of parameters to be defined

Type list

STRING_PARAMS = ['path', 'type', 'speaker', 'vowel', 'token', 'consonant']

These parameters should be given string columns rather than float columns.

Bother Jonny to do this better bc it’s really bad.

int_to_float(audio)
Convert 16 or 32 bit integer audio to 32 bit float.

Parameters audio (numpy.ndarray) – a numpy array of audio

Returns Audio that has been rescaled and converted to a 32 bit float.

Return type numpy.ndarray

176 Chapter 15. stim

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list

CHAPTER

SIXTEEN

TASKS

16.1 task

Classes:

Task(*args, **kwargs) Generic Task metaclass

class Task(*args, **kwargs)
Bases: object

Generic Task metaclass

Variables
• PARAMS (collections.OrderedDict) – Params to define task, like:

PARAMS = odict()
PARAMS['reward'] = {'tag':'Reward Duration (ms)',

'type':'int'}
PARAMS['req_reward'] = {'tag':'Request Rewards',

'type':'bool'}

• HARDWARE (dict) – dict for necessary hardware, like:

HARDWARE = {
'POKES':{

'L': hardware.Beambreak, ...
},
'PORTS':{

'L': hardware.Solenoid, ...
}

}

• PLOT (dict) – Dict of plotting parameters, like:

PLOT = {
'data': {

'target' : 'point',
'response' : 'segment',
'correct' : 'rollmean'

},
'chance_bar' : True, # Draw a red bar at 50%

(continues on next page)

177

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/collections.html#collections.OrderedDict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

Autopilot Documentation, Release 0.3.0

(continued from previous page)

'roll_window' : 50 # number of trials to roll window over
}

• Trial_Data (tables.IsDescription) – Data table description, like:

class TrialData(tables.IsDescription):
trial_num = tables.Int32Col()
target = tables.StringCol(1)
response = tables.StringCol(1)
correct = tables.Int32Col()
correction = tables.Int32Col()
RQ_timestamp = tables.StringCol(26)
DC_timestamp = tables.StringCol(26)
bailed = tables.Int32Col()

• STAGE_NAMES (list) – List of stage method names

• stage_block (threading.Event) – Signal when task stages complete.

• punish_stim (bool) – Do a punishment stimulus

• stages (iterator) – Some generator or iterator that continuously returns the next stage
method of a trial

• triggers (dict) – Some mapping of some pin to callback methods

• pins (dict) – Dict to store references to hardware

• pin_id (dict) – Reverse dictionary, pin numbers back to pin letters.

• punish_block (threading.Event) – Event to mark when punishment is occuring

• logger (logging.Logger) – gets the ‘main’ logger for now.

Parameters
• subject (str) – Name of subject running the task

• current_trial (int) – Current trial number, default 0

• *args ()
• **kwargs ()

Attributes:

PARAMS

HARDWARE

STAGE_NAMES

PLOT

Classes:

TrialData()

178 Chapter 16. tasks

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/threading.html#threading.Event
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/threading.html#threading.Event
https://docs.python.org/3/library/logging.html#logging.Logger

Autopilot Documentation, Release 0.3.0

Methods:

init_hardware() Use the HARDWARE dict that specifies what we
need to run the task alongside the HARDWARE sub-
dict in prefs to tell us how they're plugged in to the
pi

set_reward([vol, duration, port]) Set the reward value for each of the 'PORTS'.
handle_trigger(pin[, level, tick]) All GPIO triggers call this function with the pin num-

ber, level (high, low), and ticks since booting pigpio.
set_leds([color_dict]) Set the color of all LEDs at once.
flash_leds() flash lights for punish_dir
end() Release all hardware objects

PARAMS = OrderedDict()

HARDWARE = {}

STAGE_NAMES = []

PLOT = {}

class TrialData

Bases: tables.description.IsDescription

Attributes:

columns

columns = { 'session': Int32Col(shape=(), dflt=0, pos=None), 'trial_num':
Int32Col(shape=(), dflt=0, pos=None)}

init_hardware()

Use the HARDWARE dict that specifies what we need to run the task alongside the HARDWARE subdict
in prefs to tell us how they’re plugged in to the pi

Instantiate the hardware, assign it Task.handle_trigger() as a callback if it is a trigger.

set_reward(vol=None, duration=None, port=None)
Set the reward value for each of the ‘PORTS’.

Parameters
• vol (float, int) – Volume of reward in uL

• duration (float) – Duration to open port in ms

• port (None, Port_ID) – If None, set everything in ‘PORTS’, otherwise only set port

handle_trigger(pin, level=None, tick=None)
All GPIO triggers call this function with the pin number, level (high, low), and ticks since booting pigpio.

Calls any trigger assigned to the pin in self.triggers , unless during punishment (returns).

Parameters
• pin (int) – BCM Pin number

• level (bool) – True, False high/low

16.1. task 179

Autopilot Documentation, Release 0.3.0

• tick (int) – ticks since booting pigpio

set_leds(color_dict=None)
Set the color of all LEDs at once.

Parameters color_dict (dict) – If None, turn LEDs off, otherwise like:

{‘pin’: [R,G,B], ‘pin2: [R,G,B]}

flash_leds()

flash lights for punish_dir

end()

Release all hardware objects

16.2 children

Sub-tasks that serve as children to other tasks.

Note: The Child agent will be formalized in an upcoming release, until then these classes remain relatively undocu-
mented as their design will likely change.

Classes:

Child() Just a placeholder class for now to work with
autopilot.get()

Wheel_Child([stage_block, fs, thresh])

Video_Child([cams, stage_block, start_now])
Parameters cams (dict, list) --

Transformer(transform[, operation, node_id, ...])
Parameters

• transform

class Child

Bases: object

Just a placeholder class for now to work with autopilot.get()

class Wheel_Child(stage_block=None, fs=10, thresh=100, **kwargs)
Bases: autopilot.tasks.children.Child

Attributes:

STAGE_NAMES

PARAMS

HARDWARE

180 Chapter 16. tasks

https://docs.python.org/3/library/functions.html#object

Autopilot Documentation, Release 0.3.0

Methods:

noop()

end()

STAGE_NAMES = ['collect']

PARAMS = OrderedDict([('fs', {'tag': 'Velocity Reporting Rate (Hz)', 'type':
'int'}), ('thresh', {'tag': 'Distance Threshold', 'type': 'int'})])

HARDWARE = { 'OUTPUT': <class 'autopilot.hardware.gpio.Digital_Out'>, 'WHEEL':
<class 'autopilot.hardware.usb.Wheel'>}

noop()

end()

class Video_Child(cams=None, stage_block=None, start_now=True, **kwargs)
Bases: autopilot.tasks.children.Child

Parameters cams (dict, list) –

Should be a dictionary of camera parameters or a list of dicts. Dicts should have, at least:

{
'type': 'string_of_camera_class',
'name': 'name_of_camera_in_task',
'param1': 'first_param'

}

Attributes:

PARAMS

Methods:

start()

stop()

noop()

PARAMS = OrderedDict([('cams', { 'tag': 'Dictionary of camera params, or list of
dicts', 'type': ('dict', 'list')})])

start()

stop()

noop()

16.2. children 181

Autopilot Documentation, Release 0.3.0

class Transformer(transform, operation: str = 'trigger', node_id=None, return_id='T', return_ip=None,
return_port=None, return_key=None, router_port=None, stage_block=None,
value_subset=None, forward_id=None, forward_ip=None, forward_port=None,
forward_key=None, forward_what='both', **kwargs)

Bases: autopilot.tasks.children.Child

Parameters
• transform
• operation (str) – either

– “trigger”, where the last transform is a Condition

and a trigger is returned to sender only when the return value of the transformation changes,
or * “stream”, where each result of the transformation is returned to sender

• return_id
• return_ip
• return_port
• return_key
• router_port (None, int) – If not None (default), spawn the node with a route port to receieve

• stage_block
• value_subset (str) – Optional - subset a value from from a dict/list sent to l_process()

• forward_what (str) – one of ‘input’, ‘output’, or ‘both’ (default) that determines what is
forwarded

• **kwargs
Methods:

noop()

l_process(value)

forward([input, output])

noop()

l_process(value)

forward(input=None, output=None)

182 Chapter 16. tasks

https://docs.python.org/3/library/stdtypes.html#str

Autopilot Documentation, Release 0.3.0

16.3 free_water

Classes:

Free_Water([stage_block, current_trial, ...]) Randomly light up one of the ports, then dispense water
when the subject pokes there

class Free_Water(stage_block=None, current_trial=0, reward=50, allow_repeat=False, **kwargs)
Bases: autopilot.tasks.task.Task

Randomly light up one of the ports, then dispense water when the subject pokes there

Two stages:

• waiting for response, and

• reporting the response afterwards

Variables
• target ('L', 'C', 'R') – The correct port

• trial_counter (itertools.count) – Counts trials starting from current_trial specified
as argument

• triggers (dict) – Dictionary mapping triggered pins to callable methods.

• num_stages (int) – number of stages in task (2)

• stages (itertools.cycle) – iterator to cycle indefinitely through task stages.

Parameters
• stage_block (threading.Event) – used to signal to the carrying Pilot that the current trial

stage is over

• current_trial (int) – If not zero, initial number of trial_counter

• reward (int) – ms to open solenoids

• allow_repeat (bool) – Whether the correct port is allowed to repeat between trials

• **kwargs

Attributes:

STAGE_NAMES

PARAMS

DATA

HARDWARE

PLOT

Classes:

16.3. free_water 183

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/threading.html#threading.Event

Autopilot Documentation, Release 0.3.0

TrialData()

Methods:

water(*args, **kwargs) First stage of task - open a port if it's poked.
response() Just have to alert the Terminal that the current trial

has ended and turn off any lights.
end() When shutting down, release all hardware objects

and turn LEDs off.

STAGE_NAMES = ['water', 'response']

PARAMS = OrderedDict([('reward', {'tag': 'Reward Duration (ms)', 'type': 'int'}),
('allow_repeat', {'tag': 'Allow Repeated Ports?', 'type': 'bool'})])

DATA = { 'target': {'plot': 'target', 'type': 'S1'}, 'timestamp': {'type':
'S26'}, 'trial_num': {'type': 'i32'}}

class TrialData

Bases: tables.description.IsDescription

Attributes:

columns

columns = { 'target': StringCol(itemsize=1, shape=(), dflt=b'', pos=None),
'timestamp': StringCol(itemsize=26, shape=(), dflt=b'', pos=None), 'trial_num':
Int32Col(shape=(), dflt=0, pos=None)}

HARDWARE = { 'LEDS': { 'C': <class 'autopilot.hardware.gpio.LED_RGB'>, 'L': <class
'autopilot.hardware.gpio.LED_RGB'>, 'R': <class 'autopilot.hardware.gpio.LED_RGB'>},
'POKES': { 'C': <class 'autopilot.hardware.gpio.Digital_In'>, 'L': <class
'autopilot.hardware.gpio.Digital_In'>, 'R': <class
'autopilot.hardware.gpio.Digital_In'>}, 'PORTS': { 'C': <class
'autopilot.hardware.gpio.Solenoid'>, 'L': <class
'autopilot.hardware.gpio.Solenoid'>, 'R': <class
'autopilot.hardware.gpio.Solenoid'>}}

PLOT = {'data': {'target': 'point'}}

water(*args, **kwargs)
First stage of task - open a port if it’s poked.

Returns
Data dictionary containing:

'target': ('L', 'C', 'R') - correct response
'timestamp': isoformatted timestamp
'trial_num': number of current trial

Return type dict

184 Chapter 16. tasks

https://docs.python.org/3/library/stdtypes.html#dict

Autopilot Documentation, Release 0.3.0

response()

Just have to alert the Terminal that the current trial has ended and turn off any lights.

end()

When shutting down, release all hardware objects and turn LEDs off.

16.4 graduation

Object that implement Graduation criteria to move between different tasks in a protocol.

Classes:

Graduation([id]) Base Graduation object.
Accuracy([threshold, window]) Graduate stage based on percent accuracy over some

window of trials.
NTrials(n_trials[, current_trial]) Graduate after doing n trials

class Graduation(id: Optional[str] = None)
Bases: autopilot.root.Autopilot_Object

Base Graduation object.

All Graduation objects need to populate PARAMS, COLS, and define an update method.

Attributes:

PARAMS list of parameters to be defined
COLS list of any data columns that this object should be

given.

Methods:

update(row)
Parameters

:class:`~tables.tableextension.Row`
-- Trial row

PARAMS = []

list of parameters to be defined

Type list

COLS = []

list of any data columns that this object should be given.

Type list

abstract update(row: Row)

Parameters :class:`~tables.tableextension.Row` – Trial row

16.4. graduation 185

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list

Autopilot Documentation, Release 0.3.0

class Accuracy(threshold=0.75, window=500, **kwargs)
Bases: autopilot.tasks.graduation.Graduation

Graduate stage based on percent accuracy over some window of trials.

Parameters
• threshold (float) – Accuracy above this threshold triggers graduation

• window (int) – number of trials to consider in the past.

• **kwargs – should have ‘correct’ corresponding to the corrects/incorrects of the past.

Attributes:

PARAMS list of parameters to be defined
COLS list of any data columns that this object should be

given.

Methods:

update(row) Get 'correct' from the row object.

PARAMS = ['threshold', 'window']

list of parameters to be defined

Type list

COLS = ['correct']

list of any data columns that this object should be given.

Type list

update(row)
Get ‘correct’ from the row object. If this trial puts us over the threshold, return True, else False.

Parameters row (Row) – Trial row

Returns Did we _graduate this time or not?

Return type bool

class NTrials(n_trials, current_trial=0, **kwargs)
Bases: autopilot.tasks.graduation.Graduation

Graduate after doing n trials

Variables counter (itertools.count) – Counts the trials.

Parameters
• n_trials (int) – Number of trials to _graduate after

• current_trial (int) – If not starting from zero, start from here

• **kwargs
Attributes:

PARAMS list of parameters to be defined

Methods:

186 Chapter 16. tasks

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool

Autopilot Documentation, Release 0.3.0

update(row) If we're past n_trials in this trial, return True, else
False.

PARAMS = ['n_trials', 'current_trial']

list of parameters to be defined

Type list

update(row)
If we’re past n_trials in this trial, return True, else False.

Parameters row – ignored

Returns Did we _graduate or not?

Return type bool

16.5 nafc

Classes:

Nafc([stage_block, stim, reward, ...]) A Two-alternative forced choice task.

class Nafc(stage_block=None, stim=None, reward=50, req_reward=False, punish_stim=False, punish_dur=100,
correction=False, correction_pct=50.0, bias_mode=False, bias_threshold=20, stim_light=True,
**kwargs)

Bases: autopilot.tasks.task.Task

A Two-alternative forced choice task.

(can’t have number as first character of class.)

Stages
• request - compute stimulus, set request trigger in center port.

• discrim - respond to input, set reward/punishment triggers on target/distractor ports

• reinforcement - deliver reward/punishment, end trial.

Variables
• target ("L", "R") – Correct response

• distractor ("L", "R") – Incorrect response

• stim – Current stimulus

• response ("L", "R") – Response to discriminand

• correct (0, 1) – Current trial was correct/incorrect

• correction_trial (bool) – If using correction trials, last trial was a correction trial

• trial_counter (itertools.count) – Which trial are we on?

• discrim_playing (bool) – Is the stimulus playing?

• bailed (0, 1) – Subject answered before stimulus was finished playing.

16.5. nafc 187

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Autopilot Documentation, Release 0.3.0

• current_stage (int) – As each stage is reached, update for asynchronous event reference

Parameters
• stage_block (threading.Event) – Signal when task stages complete.

• stim (dict) –

Stimuli like:

"sounds": {
"L": [{"type": "Tone", ...}],
"R": [{"type": "Tone", ...}]

}

• reward (float) – duration of solenoid open in ms

• req_reward (bool) – Whether to give a water reward in the center port for requesting trials

• punish_stim (bool) – Do a white noise punishment stimulus

• punish_dur (float) – Duration of white noise in ms

• correction (bool) – Should we do correction trials?

• correction_pct (float) – (0-1), What proportion of trials should randomly be correction tri-
als?

• bias_mode (False, “thresholded_linear”) – False, or some bias correction type (see
managers.Bias_Correction)

• bias_threshold (float) – If using a bias correction mode, what threshold should bias be cor-
rected for?

• current_trial (int) – If starting at nonzero trial number, which?

• stim_light (bool) – Should the LED be turned blue while the stimulus is playing?

• **kwargs

Attributes:

STAGE_NAMES

PARAMS

PLOT

HARDWARE

Classes:

TrialData()

Methods:

188 Chapter 16. tasks

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/threading.html#threading.Event

Autopilot Documentation, Release 0.3.0

request(*args, **kwargs) Stage 0: compute stimulus, set request trigger in cen-
ter port.

discrim(*args, **kwargs) Stage 1: respond to input, set reward/punishment
triggers on target/distractor ports

reinforcement(*args, **kwargs) Stage 2 - deliver reward/punishment, end trial.
punish () Flash lights, play punishment sound if set
respond(pin) Set self.response
stim_start() mark discrim_playing = true
stim_end() called by stimulus callback
flash_leds() flash lights for punish_dir

STAGE_NAMES = ['request', 'discrim', 'reinforcement']

PARAMS = OrderedDict([('reward', {'tag': 'Reward Duration (ms)', 'type': 'int'}),
('req_reward', {'tag': 'Request Rewards', 'type': 'bool'}), ('punish_stim',
{'tag': 'White Noise Punishment', 'type': 'bool'}), ('punish_dur', {'tag':
'Punishment Duration (ms)', 'type': 'int'}), ('correction', {'tag': 'Correction
Trials', 'type': 'bool'}), ('correction_pct', { 'depends': {'correction': True},
'tag': '% Correction Trials', 'type': 'int'}), ('bias_mode', { 'tag': 'Bias
Correction Mode', 'type': 'list', 'values': { 'None': 0, 'Proportional': 1,
'Thresholded Proportional': 2}}), ('bias_threshold', { 'depends': {'bias_mode':
2}, 'tag': 'Bias Correction Threshold (%)', 'type': 'int'}), ('stim', {'tag':
'Sounds', 'type': 'sounds'})])

PLOT = { 'chance_bar': True, 'data': {'correct': 'rollmean', 'response':
'segment', 'target': 'point'}, 'roll_window': 50}

class TrialData

Bases: tables.description.IsDescription

Attributes:

columns

columns = { 'DC_timestamp': StringCol(itemsize=26, shape=(), dflt=b'',
pos=None), 'RQ_timestamp': StringCol(itemsize=26, shape=(), dflt=b'',
pos=None), 'bailed': Int32Col(shape=(), dflt=0, pos=None), 'correct':
Int32Col(shape=(), dflt=0, pos=None), 'correction': Int32Col(shape=(), dflt=0,
pos=None), 'response': StringCol(itemsize=1, shape=(), dflt=b'', pos=None),
'target': StringCol(itemsize=1, shape=(), dflt=b'', pos=None), 'trial_num':
Int32Col(shape=(), dflt=0, pos=None)}

HARDWARE = { 'LEDS': {'C': 'LED_RGB', 'L': 'LED_RGB', 'R': 'LED_RGB'}, 'POKES':
{'C': 'Digital_In', 'L': 'Digital_In', 'R': 'Digital_In'}, 'PORTS': {'C':
'Solenoid', 'L': 'Solenoid', 'R': 'Solenoid'}}

request(*args, **kwargs)
Stage 0: compute stimulus, set request trigger in center port.

Returns
With fields:

16.5. nafc 189

Autopilot Documentation, Release 0.3.0

{
'target': self.target,
'trial_num' : self.current_trial,
'correction': self.correction_trial,
'type': stimulus type,
**stim.PARAMS
}

Return type data (dict)

discrim(*args, **kwargs)
Stage 1: respond to input, set reward/punishment triggers on target/distractor ports

Returns
With fields:: { ‘RQ_timestamp’: datetime.datetime.now().isoformat(), ‘trial_num’:

self.current_trial, }

Return type data (dict)

reinforcement(*args, **kwargs)
Stage 2 - deliver reward/punishment, end trial.

Returns
With fields:

{
'DC_timestamp': datetime.datetime.now().isoformat(),
'response': self.response,
'correct': self.correct,
'bailed': self.bailed,
'trial_num': self.current_trial,
'TRIAL_END': True
}

Return type data (dict)

punish()

Flash lights, play punishment sound if set

respond(pin)
Set self.response

Parameters pin – Pin to set response to

stim_start()

mark discrim_playing = true

stim_end()

called by stimulus callback

set outside lights blue

flash_leds()

flash lights for punish_dir

190 Chapter 16. tasks

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

CHAPTER

SEVENTEEN

TRANSFORMATIONS

Data transformations.

Composable transformations from one representation of data to another. Used as the lubricant and glue between hard-
ware objects. Some hardware objects disagree about the way information should be represented – eg. cameras are very
partial to letting position information remain latent in a frame of a video, but some other object might want the actual
[x,y] coordinates. Transformations help negotiate (but don’t resolve their irreparably different worldviews :()

Transformations are organized by modality, but this API is quite immature.

Transformations have a process method that accepts and returns a single object. They must also define the format of
their inputs and outputs (format_in and format_out). That API is also a sketch.

The __add__() method allows transforms to be combined, eg.:

from autopilot import transform as t
transform_me = t.Image.DLC('model_directory')
transform_me += t.selection.DLCSlice('point')
transform_me.process(frame)
... etcetera

Todo: This is a first draft of this module and it purely synchronous at the moment. It will be expanded to . . . * support
multiple asynchronous processing rhythms * support automatic value coercion * make recursion checks – make sure
a child hasn’t already been added to a processing chain. * idk participate at home! list your own shortcomings of this
module, don’t be shy it likes it.

Functions:

make_transform(transforms) Make a transform from a list of iterator specifications.

make_transform(transforms: Union[List[dict], Tuple[dict]])→ autopilot.transform.transforms.Transform
Make a transform from a list of iterator specifications.

Parameters transforms (list) –

A list of Transform s and parameterizations in the form:

[
{'transform': Transform,
'args': (arg1, arg2,), # optional
'kwargs': {'key1':'val1', ...}, # optional
{'transform': ...}

]

191

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict

Autopilot Documentation, Release 0.3.0

Returns Transform

Data transformations.

Experimental module.

Reusable transformations from one representation of data to another. eg. converting frames of a video to locations of
objects, or locations of objects to area labels

Todo: This is a preliminary module and it purely synchronous at the moment. It will be expanded to . . . * support
multiple asynchronous processing rhythms * support automatic value coercion

The following design features need to be added * recursion checks – make sure a child hasn’t already been added to a
processing chain.

Classes:

TransformRhythm(value)
ivar FIFO First-in-first-out, process in-

puts as they are received, poten-
tially slowing down the transforma-
tion pipeline

Transform(rhythm, *args, **kwargs) Metaclass for data transformations

class TransformRhythm(value)
Bases: enum.Enum

Variables
• FIFO – First-in-first-out, process inputs as they are received, potentially slowing down the

transformation pipeline

• FILO – First-in-last-out, process the most recent input, ignoring previous (lossy transforma-
tion)

Attributes:

FIFO

FILO

FIFO = 1

FILO = 2

class Transform(rhythm: autopilot.transform.transforms.TransformRhythm = <TransformRhythm.FILO: 2>,
*args, **kwargs)

Bases: object

Metaclass for data transformations

Each subclass should define the following

• process() - a method that takes the input of the transoformation as its single argument and returns the
transformed output

192 Chapter 17. Transformations

https://docs.python.org/3/library/enum.html#enum.Enum
https://docs.python.org/3/library/functions.html#object

Autopilot Documentation, Release 0.3.0

• format_in - a dict that specifies the input format

• format_out - a dict that specifies the output format

Parameters rhythm (TransformRhythm) – A rhythm by which the transformation object processes
its inputs

Variables (class (child) – Transform): Another Transform object chained after this one

Attributes:

rhythm

format_in

format_out

parent If this Transform is in a chain of transforms, the trans-
form that precedes it

Methods:

process(input)

reset() If a transformation is stateful, reset state.
check_compatible(child) Check that this Transformation's format_out is

compatible with another's format_in
__add__(other) Add another Transformation in the chain to make a

processing pipeline

property rhythm: autopilot.transform.transforms.TransformRhythm

property format_in: dict

property format_out: dict

property parent: Optional[autopilot.transform.transforms.Transform]

If this Transform is in a chain of transforms, the transform that precedes it

Returns Transform , None if no parent.

process(input)

reset()

If a transformation is stateful, reset state.

check_compatible(child: autopilot.transform.transforms.Transform)

Check that this Transformation’s format_out is compatible with another’s format_in

Todo: Check for types that can be automatically coerced into one another and set _coercion to appro-
priate function

Parameters child (Transform) – Transformation to check compatibility

Returns bool

193

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

Autopilot Documentation, Release 0.3.0

__add__(other)
Add another Transformation in the chain to make a processing pipeline

Parameters other (Transformation) – The transformation to be chained

17.1 Coercion

placeholder. . . objects to make type and shape coercion seamless. . . .

17.2 Geometry

Classes:

Distance([pairwise, n_dim, metric, squareform]) Given an n_samples x n_dimensions array, compute
pairwise or mean distances

Angle([abs, degrees]) Get angle between line formed by two points and hori-
zontal axis

IMU_Orientation([use_kalman, invert_gyro]) Compute absolute orientation (roll, pitch) from ac-
celerometer and gyroscope measurements (eg from
hardware.i2c.I2C_9DOF)

Rotate([dims, rotation_type, degrees, ...]) Rotate in 3 dimensions using scipy.spatial.
transform.Rotation

Spheroid([target, source, fit]) Fit and transform 3d coordinates according to some
spheroid.

Order_Points([closeness_threshold]) Order x-y coordinates into a line, such that each point
(row) in an array is ordered next to its nearest points

Linefit_Prasad([return_metrics]) Given an ordered series of x/y coordinates (see
Order_Points), use D.Prasad et al.'s parameter-free
line fitting algorithm to make a simplified, fitted line.

Functions:

_ellipsoid_func(fit, a, b, c, x, y, z) Ellipsoid equation for use with Ellipsoid.fit()

class Distance(pairwise: bool = False, n_dim: int = 2, metric: str = 'euclidean', squareform: bool = True,
*args, **kwargs)

Bases: autopilot.transform.transforms.Transform

Given an n_samples x n_dimensions array, compute pairwise or mean distances

Parameters
• pairwise (bool) – If False (default), return mean distance. if True, return all distances

• n_dim (int) – number of dimensions (input array will be filtered like input[:,0:n_dim]

• metric (str) – any metric acceptable to :func:`scipy.spatial.distance.pdist

• squareform (bool) – if pairwise is True, if True return square distance matrix, otherwise
return compressed distance matrix (dist(X[i], X[j] = y[i*j])

• *args

194 Chapter 17. Transformations

https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.transform.Rotation.html#scipy.spatial.transform.Rotation
https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.transform.Rotation.html#scipy.spatial.transform.Rotation
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

Autopilot Documentation, Release 0.3.0

• **kwargs
Attributes:

format_in

format_out

Methods:

process(input)

format_in = {'type': <class 'numpy.ndarray'>}

format_out = {'type': <class 'numpy.ndarray'>}

process(input: numpy.ndarray)

class Angle(abs=True, degrees=True, *args, **kwargs)
Bases: autopilot.transform.transforms.Transform

Get angle between line formed by two points and horizontal axis

Attributes:

format_in

format_out

Methods:

process(input)

format_in = {'type': <class 'numpy.ndarray'>}

format_out = {'type': <class 'float'>}

process(input)

class IMU_Orientation(use_kalman: bool = True, invert_gyro: bool = False, *args, **kwargs)
Bases: autopilot.transform.transforms.Transform

Compute absolute orientation (roll, pitch) from accelerometer and gyroscope measurements (eg from hardware.
i2c.I2C_9DOF)

Uses a timeseries.Kalman filter, and implements [PPT+18] to fuse the sensors

Can be used with accelerometer data only, or with combined accelerometer/gyroscope data for greater accuracy

Parameters
• invert_gyro (bool) – if the gyroscope’s orientation is inverted from accelerometer measure-

ment, multiply gyro readings by -1 before using

17.2. Geometry 195

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Autopilot Documentation, Release 0.3.0

• use_kalman (bool) – Whether to use kalman filtering (True, default), or return raw trigono-
metric transformation of accelerometer readings (if provided, gyroscope readings will be
ignored)

Variables kalman (transform.timeseries.Kalman) – If use_kalman == True , the Kalman
Filter.

References

[PPT+18] [ABCO15]

Methods:

process(accelgyro)
Parameters accelgyro (tuple, numpy.

ndarray) -- tuple of (accelerome-
ter[x,y,z], gyro[x,y,z]) readings as ar-
rays, or

process(accelgyro: Union[Tuple[numpy.ndarray, numpy.ndarray], numpy.ndarray])→ numpy.ndarray

Parameters accelgyro (tuple, numpy.ndarray) – tuple of (accelerometer[x,y,z], gyro[x,y,z])
readings as arrays, or an array of just accelerometer[x,y,z]

Returns filtered [roll, pitch] calculations in degrees

Return type numpy.ndarray

class Rotate(dims='xyz', rotation_type='euler', degrees=True, inverse='', rotation=None, *args, **kwargs)
Bases: autopilot.transform.transforms.Transform

Rotate in 3 dimensions using scipy.spatial.transform.Rotation

Parameters
• dims (“xyz”) – string specifying which axes the rotation will be around, eg "xy" , "xyz"`

• rotation_type (str) – Format of rotation input, must be one available to the Rotation class
(but currently only euler angles are supported)

• degrees (bool) – whether to output rotation in degrees (True, default) or radians

• inverse (“xyz”) – dimensions in the “rotation” input to Rotate.process() to inverse before
applying rotation

• rotation (tuple, list, numpy.ndarray, None) – If supplied, use the same rotation for all
processed data. If None, Rotate.process() will expect a tuple of (data, rotation).

Methods:

process(input)
Parameters input (tuple, numpy.

ndarray) -- a tuple of (input[x,y,z],
rotation[x,y,z]) where input is to be
rotated

196 Chapter 17. Transformations

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.transform.Rotation.html#scipy.spatial.transform.Rotation
https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.transform.Rotation.html#scipy.spatial.transform.Rotation

Autopilot Documentation, Release 0.3.0

process(input)

Parameters input (tuple, numpy.ndarray) – a tuple of (input[x,y,z], rotation[x,y,z]) where in-
put is to be rotated according to the axes in rotation (indicated in Rotate.dims). If only
an input array is provided, a static rotation array must have been provided in the constructor
(otherwise the most recent rotation will be used)

Returns numpy.ndarray - rotated input array

class Spheroid(target=(1, 1, 1, 0, 0, 0), source: tuple = (None, None, None, None, None, None), fit:
Optional[numpy.ndarray] = None, *args, **kwargs)

Bases: autopilot.transform.transforms.Transform

Fit and transform 3d coordinates according to some spheroid.

Eg. for calibrating accelerometer readings by transforming them from their uncalibrated spheroid to the expected
sphere with radius == 9.8m/s/s centered at (0,0,0).

Does not estimate/correct for rotation of the spheroid.

Examples

Calibrate an accelerometer by transforming
readings to a 9.8-radius sphere centered at 0
>>> sphere = Spheroid(target=(9.8,9.8,9.8,0,0,0))

take some readings...
imagine we're taking them from some sensor idk
say our sensor slightly exaggerates gravity
in the z-axis...
>>> readings = np.array((0.,0.,10.5))

fit our object (need >>1 sample)
>>> sphere.fit(readings)

transform to proper gravity
>>> sphere.process(readings)
[0., 0., 9.8]

Parameters
• target (tuple) – parameterization of spheroid to transform to, if none is passed, transform to

unit circle centered at (0,0,0). parameterized as:

(a, # radius of x dimension

b, # radius of y dimension c, # radius of z dimension x, # x-offset y, # y-offset z) # z-offset

• source (tuple) – parameterization of spheroid to transform from in the same 6-tuple form as
target, if None is passed, assume we will use Spheroid.fit()

• fit (None, numpy.ndarray) – Initialize with values to fit, if None assume fit will be called
later.

17.2. Geometry 197

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Optional

Autopilot Documentation, Release 0.3.0

References

• https://jekel.me/2020/Least-Squares-Ellipsoid-Fit/

• http://www.juddzone.com/ALGORITHMS/least_squares_3D_ellipsoid.html

Methods:

fit(points, **kwargs) Fit a spheroid from a set of noisy measurements
process(input) Transform input (x,y,z) points such that points in

source are mapped to those in target
generate(n[, which, noise]) Generate random points from the ellipsoid

fit(points, **kwargs)
Fit a spheroid from a set of noisy measurements

updates the _scale and _offset private arrays used to manipulate input data

Note: It’s usually important to pass bounds to scipy.optimize.curve_fit() !!! passed as a 2-tuple
of ((min_a, min_b, ...), (max_a, max_b...)) In particular such that a, b, and c are positive. If
no bounds are passed, assume at least that much.

Parameters
• points (numpy.ndarray) – (M, 3) array of points to fit

• **kwargs () – passed on to scipy.optimize.curve_fit()

Returns parameters of fit ellipsoid (a,b,c,x,y,z)

Return type tuple

process(input: numpy.ndarray)
Transform input (x,y,z) points such that points in source are mapped to those in target

Parameters input (numpy.ndarray) – x, y, and z coordinates

Returns coordinates transformed according to the spheroid requested

Return type numpy.ndarray

generate(n: int, which: str = 'source', noise: float = 0)
Generate random points from the ellipsoid

Parameters
• n (int) – number of points to generate

• which (‘str’) – which spheroid to generate from? (‘source’ - default, or ‘target’)

• noise (float) – noise to add to points

Returns (n, 3) array of generated points

Return type numpy.ndarray

198 Chapter 17. Transformations

https://jekel.me/2020/Least-Squares-Ellipsoid-Fit/
http://www.juddzone.com/ALGORITHMS/least_squares_3D_ellipsoid.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.curve_fit.html#scipy.optimize.curve_fit
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.curve_fit.html#scipy.optimize.curve_fit
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float

Autopilot Documentation, Release 0.3.0

_ellipsoid_func(fit, a, b, c, x, y, z)
Ellipsoid equation for use with Ellipsoid.fit()

Parameters
• fit (numpy.ndarray) – (M, 3) array of x,y,z points to fit

• a (float) – X-scale parameter to fit

• b (float) – Y-scale parameter to fit

• c (float) – Z-scale parameter to fit

• x (float) – X-offset parameter to fit

• y (float) – Y-offset parameter to fit

• z (float) – Z-offset parameter to fit

Returns result of ellipsoid function, minimize parameters to == 1

Return type float

class Order_Points(closeness_threshold: float = 1, **kwargs)
Bases: autopilot.transform.transforms.Transform

Order x-y coordinates into a line, such that each point (row) in an array is ordered next to its nearest points

Useful for when points are extracted from an image, but need to be treated as a line rather than disordered points!

Starting with a point, find the nearest point and add that to a deque. Once all points are found on the ‘forward
pass’, start the initial point again goind the ‘other direction.’

The threshold parameter tunes the (percentile) distance consecutive points may be from one another. The default
threshold of 1 will connect all the points but won’t necessarily find a very compact line. Lower thresholds make
more sensible lines, but may miss points depending on how line-like the initial points are.

Note that the first point chosen (first in the input array) affects the line that is formed with the points do not form
an unambiguous line. I am not surehow to arbitrarily specify a point to start from, but would love to hear what
people want!

Examples

Parameters closeness_threshold (float) – The percentile of distances beneath which to consider
connecting points, from 0 to 1. Eg. 0.5 would allow points that are closer than 50% of all
distances between all points to be connected. Default is 1, which allows all points to be connected.

Methods:

process(input)
Parameters input (numpy.ndarray) --

an n x 2 array of x/y points

process(input: numpy.ndarray)→ numpy.ndarray

Parameters input (numpy.ndarray) – an n x 2 array of x/y points

Returns numpy.ndarray Array of points, reordered into a line

17.2. Geometry 199

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

Autopilot Documentation, Release 0.3.0

0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0
threshold = 1

0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0
threshold = 0.25

200 Chapter 17. Transformations

Autopilot Documentation, Release 0.3.0

class Linefit_Prasad(return_metrics: bool = False, **kwargs)
Bases: autopilot.transform.transforms.Transform

Given an ordered series of x/y coordinates (see Order_Points), use D.Prasad et al.’s parameter-free line fitting
algorithm to make a simplified, fitted line.

Optimized from the original MATLAB code, including precomputing some of the transformation matrices. The
attribute names are from the original, and due to the nature of code transcription doesn’t follow some of Autopi-
lot’s usual structural style.

Parameters return_metrics (bool)

Examples

0 25 50 75 100 125 150 175 200

50

25

0

25

50

ordered points

0 25 50 75 100 125 150 175 200

50

25

0

25

50

prasad fit line

17.2. Geometry 201

https://docs.python.org/3/library/functions.html#bool

Autopilot Documentation, Release 0.3.0

References

[PQLC11] Original MATLAB Implementation: https://docs.google.com/open?id=
0B10RxHxW3I92dG9SU0pNMV84alk

Methods:

process(input) Given an n x 2 array of ordered x/y points, return

process(input: numpy.ndarray)→ numpy.ndarray
Given an n x 2 array of ordered x/y points, return

Parameters input (numpy.ndarray) – n x 2 array of ordered x/y points

Returns numpy.ndarray an m x 2 simplified array of line segments

17.3 Image

Classes:

Image([shape]) Metaclass for transformations of images
DLC([model_dir, model_zoo]) Do pose estimation with DeepLabCut-Live!!!!!

class Image(shape=None, *args, **kwargs)
Bases: autopilot.transform.transforms.Transform

Metaclass for transformations of images

Attributes:

format_in

format_out

shape

property format_in: dict

property format_out: dict

property shape: Tuple[int, int]

class DLC(model_dir: Optional[str] = None, model_zoo: Optional[str] = None, *args, **kwargs)
Bases: autopilot.transform.image.Image

Do pose estimation with DeepLabCut-Live!!!!!

Specify a model_dir (relative to <BASEDIR>/dlc or absolute) or a model name from the DLC model zoo.

All other args and kwargs are passed on to dlclive.DLCLive, see its documentation for details: https://github.
com/DeepLabCut/DeepLabCut-live

Variables

202 Chapter 17. Transformations

https://docs.google.com/open?id=0B10RxHxW3I92dG9SU0pNMV84alk
https://docs.google.com/open?id=0B10RxHxW3I92dG9SU0pNMV84alk
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://github.com/DeepLabCut/DeepLabCut-live
https://github.com/DeepLabCut/DeepLabCut-live

Autopilot Documentation, Release 0.3.0

• model_type (str, 'local' or 'zoo') – whether a directory (local) or a modelzoo name
(zoo) was passed

• live (dlclive.DLCLive) – the DLCLive object

Must give either model_dir or model_zoo

Parameters
• model_dir (str) – directory of model, either absolute or relative to <BASEDIR>/dlc. if
None, use model_zoo

• model_zoo (str) – name of modelzoo model. if None, use model_dir

• *args – passed to DLCLive and superclass

• **kwargs – passed to DLCLive and superclass

Methods:

process(input)

list_modelzoo() List available modelzoo model names in local
deeplabcut version

import_dlc()

create_modelzoo(model)

load_model()

export_model()

Attributes:

model

model_dir

dlc_paths paths used by dlc in manipulating/using models
dlc_dir {prefs.get('BASE_DIR')}/dlc :returns: str
format_in

format_out

process(input: numpy.ndarray)→ numpy.ndarray

property model: str

property model_dir: str

property dlc_paths: dict

paths used by dlc in manipulating/using models

• config: <model_dir>/config.yaml

• train_pose_cfg: <model_dir>/dlc-models/iteration-<n>/<name>/train/pose_cfg.yaml,

17.3. Image 203

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

Autopilot Documentation, Release 0.3.0

• export_pose_cfg: <model_dir>/exported-models/<name>/pose_cfg.yaml

• export_dir: <model_dir>/exported-models/<name>

Returns dict

property dlc_dir: str

{prefs.get('BASE_DIR')}/dlc :returns: str

classmethod list_modelzoo()

List available modelzoo model names in local deeplabcut version

Returns names of available modelzoo models

Return type list

import_dlc()

create_modelzoo(model)

load_model()

export_model()

property format_in: dict

property format_out: dict

17.4 Logical

Classes:

Condition([minimum, maximum, elementwise]) Compare the input against some condition
Compare(compare_fn, *args, **kwargs) Compare processed values using some function that re-

turns a boolean

class Condition(minimum=None, maximum=None, elementwise=False, *args, **kwargs)
Bases: autopilot.transform.transforms.Transform

Compare the input against some condition

Parameters
• minimum
• maximum
• elementwise (bool) – if False, return True only if all values are within range. otherwise

return bool for each tested value

• *args
• **kwargs

Methods:

process(input)

204 Chapter 17. Transformations

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

Autopilot Documentation, Release 0.3.0

Attributes:

minimum

maximum

format_in

format_out

process(input)

property minimum: [<class 'numpy.ndarray'>, <class 'float'>]

property maximum: [<class 'numpy.ndarray'>, <class 'float'>]

property format_in: dict

property format_out: dict

class Compare(compare_fn: callable, *args, **kwargs)
Bases: autopilot.transform.transforms.Transform

Compare processed values using some function that returns a boolean

ie. process will return compare_fn(*args) from process.

it is expected that input will be an iterable with len > 1

Parameters
• compare_fn (callable) – Function used to compare the values given to Compare.
process()

• *args ()
• **kwargs ()

Methods:

process(input)

process(input)

17.5 Selection

Classes:

Slice(select, *args, **kwargs) Generic selection processor
DLCSlice(select[, min_probability]) Select x,y coordinates of DLC output based on the name

of the tracked parts

17.5. Selection 205

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

Autopilot Documentation, Release 0.3.0

class Slice(select, *args, **kwargs)
Bases: autopilot.transform.transforms.Transform

Generic selection processor

Parameters
• select (slice, tuple[slice], int, tuple[int]) – a slice, tuple of slices, int, or tuple of ints! any-

thing you can use inside of a pair of [square brackets].

• *args
• **kwargs

Attributes:

format_in

format_out

Methods:

process(input)

format_in = {'type': 'any'}

format_out = {'type': 'any'}

process(input)

class DLCSlice(select: Union[str, tuple, list], min_probability: float = 0, *args, **kwargs)
Bases: autopilot.transform.selection.Slice

Select x,y coordinates of DLC output based on the name of the tracked parts

note that min_probability is undefined when a list or tuple of part names are defined: the form of the returned
array is ambiguous (how to tell which part is which when some might be excluded?)

Parameters
• select (slice, tuple[slice], int, tuple[int]) – a slice, tuple of slices, int, or tuple of ints! any-

thing you can use inside of a pair of [square brackets].

• *args
• **kwargs

Attributes:

format_in

format_out

Methods:

206 Chapter 17. Transformations

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float

Autopilot Documentation, Release 0.3.0

check_slice(select)

process(input)

format_in = { 'parent': <class 'autopilot.transform.image.DLC'>, 'type': <class
'numpy.ndarray'>}

format_out = {'type': <class 'numpy.ndarray'>}

check_slice(select)

process(input: numpy.ndarray)

17.6 Timeseries

Timeseries transformations, filters, etc.

Classes:

Filter_IIR([ftype, buffer_size, coef_type, axis]) Simple wrapper around scipy.signal.iirfilter()
Gammatone(freq, fs[, ftype, filtfilt, ...]) Single gammatone filter based on [Sla97]
Kalman(dim_state[, dim_measurement, dim_control]) Kalman filter!!!!!
Integrate([decay, dt_scale])

class Filter_IIR(ftype='butter', buffer_size=256, coef_type='sos', axis=0, *args, **kwargs)
Bases: autopilot.transform.transforms.Transform

Simple wrapper around scipy.signal.iirfilter()

Creates a streaming filter – takes in single values, stores them, and uses them to filter future values.

Parameters
• ftype (str) – filter type, see ftype of scipy.signal.iirfilter() for available filters

• buffer_size (int) – number of samples to store when filtering

• coef_type ({‘ba’, ‘sos’}) – type of filter coefficients to use (see scipy.signal.sosfilt()
and scipy.signal.lfilt())

• axis (int) – which axis to filter over? (default: 0 because when passing arrays to filter, want
to filter samples over time)

• **kwargs – passed on to scipy.signal.iirfilter() , eg.

– N - filter order

– Wn - array or scalar giving critical frequencies

– btype - type of band: ['bandpass', 'lowpass', 'highpass', 'bandstop']

Variables
• coefs (np.ndarray) – filter coefficients, depending on coef_type

• buffer (collections.deque) – buffer of stored values to filter

17.6. Timeseries 207

https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.iirfilter.html#scipy.signal.iirfilter
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.iirfilter.html#scipy.signal.iirfilter
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.iirfilter.html#scipy.signal.iirfilter
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.sosfilt.html#scipy.signal.sosfilt
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.iirfilter.html#scipy.signal.iirfilter
https://docs.python.org/3/library/collections.html#collections.deque

Autopilot Documentation, Release 0.3.0

• coef_type (str) – type of filter coefficients to use (see scipy.signal.sosfilt() and
scipy.signal.lfilt())

• axis (int) – which axis to filter over? (default: 0 because when passing arrays to filter,
want to filter samples over time)

• ftype (str) – filter type, see ftype of scipy.signal.iirfilter() for available filters

Methods:

process(input) Filter the new value based on the values stored in
Filter.buffer

process(input: float)
Filter the new value based on the values stored in Filter.buffer

Parameters input (float) – new value to filter!

Returns the filtered value!

Return type float

class Gammatone(freq: float, fs: int, ftype: str = 'iir', filtfilt: bool = True, order: Optional[int] = None, numtaps:
Optional[int] = None, axis: int = - 1, **kwargs)

Bases: autopilot.transform.transforms.Transform

Single gammatone filter based on [Sla97]

Thin wrapper around scipy.signal.gammatone !! (started rewriting this and realized they had made a legible
version <3 ty scipy team, additional implementations in the references)

Examples

References

• [Sla97]

• Brian2hears implementation

• detly/gammatone

Parameters
• freq (float) – Center frequency of the filter in Hz

• fs (int) – Sampling rate of the signal to process

• ftype (str) – Type of filter to return from scipy.signal.gammatone()

• filtfilt (bool) – If True (default), use scipy.signal.filtfilt(), else use scipy.
signal.lfilt()

• order (int) – From scipy docs: The order of the filter. Only used when ftype='fir'.
Default is 4 to model the human auditory system. Must be between 0 and 24.

• numtaps (int) – From scipy docs: Length of the filter. Only used when ftype='fir'.
Default is fs*0.015 if fs is greater than 1000, 15 if fs is less than or equal to 1000.

• axis (int) – Axis of input signal to apply filter over (default -1)

• **kwargs – passed to scipy.signal.filtfilt() or scipy.signal.lfilt()

208 Chapter 17. Transformations

https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.sosfilt.html#scipy.signal.sosfilt
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.iirfilter.html#scipy.signal.iirfilter
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://github.com/brian-team/brian2hears/blob/131fd6d86c3ec460c45b42ea9c2f3b62c62d0631/brian2hears/filtering/filterbanklibrary.py#L26
https://github.com/detly/gammatone
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.gammatone.html#scipy.signal.gammatone
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.filtfilt.html#scipy.signal.filtfilt
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.filtfilt.html#scipy.signal.filtfilt

Autopilot Documentation, Release 0.3.0

0.25 0.50 0.75
0

2500

5000

7500

10000

12500

15000

17500

20000

White Noise

0.25 0.50 0.75

1kHz Gammatone Filter

0.25 0.50 0.75

15kHz Gammatone Filter

17.6. Timeseries 209

Autopilot Documentation, Release 0.3.0

Methods:

process(input)

process(input: Union[numpy.ndarray, list])→ numpy.ndarray

class Kalman(dim_state: int, dim_measurement: Optional[int] = None, dim_control: int = 0, *args, **kwargs)
Bases: autopilot.transform.transforms.Transform

Kalman filter!!!!!

Adapted from https://github.com/rlabbe/filterpy/blob/master/filterpy/kalman/kalman_filter.py simplified and
optimized lovingly <3

Each of the arrays is named with its canonical letter and a short description, (eg. the x_state vector x_state is
self.x_state

Parameters
• dim_state (int) – Dimensions of the state vector

• dim_measurement (int) – Dimensions of the measurement vector

• dim_control (int) – Dimensions of the control vector

Variables
• x_state (numpy.ndarray) – Current state vector

• P_cov (numpy.ndarray) – Uncertainty Covariance

• Q_proc_var (numpy.ndarray) – Process Uncertainty

• B_control (numpy.ndarray) – Control transition matrix

• F_state_trans (numpy.ndarray) – State transition matrix

• H_measure (numpy.ndarray) – Measurement function

• R_measure_var (numpy.ndarray) – Measurement uncertainty

• M_proc_measure_xcor (numpy.ndarray) – process-measurement cross correlation

• z_measure (numpy.ndarray) –

• K (numpy.ndarray) – Kalman gain

• y (numpy.ndarray) –

• S (numpy.ndarray) – System uncertainty

• SI (numpy.ndarray) – Inverse system uncertainty

• x_prior (numpy.ndarray) – State prior

• P_prior (numpy.ndarray) – Uncertainty prior

• x_post (numpy.ndarray) – State posterior probability

• P_post (numpy.ndarray) – Uncertainty posterior probability

210 Chapter 17. Transformations

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://github.com/rlabbe/filterpy/blob/master/filterpy/kalman/kalman_filter.py

Autopilot Documentation, Release 0.3.0

References

Roger Labbe. “Kalman and Bayesian Filters in Python” - https://github.com/rlabbe/
Kalman-and-Bayesian-Filters-in-Python Roger Labbe. “FilterPy” - https://github.com/rlabbe/filterpy

Methods:

_init_arrays([state]) Initialize the arrays!
predict([u, B, F, Q]) Predict next x_state (prior) using the Kalman filter

x_state propagation equations.
update(z[, R, H]) Add a new measurement (z_measure) to the Kalman

filter.
_reshape_z(z, dim_z, ndim) ensure z is a (dim_z, 1) shaped vector
process(z, **kwargs) Call predict and update, passing the relevant kwargs
residual_of (z) Returns the residual for the given measurement

(z_measure).
measurement_of_state(x) Helper function that converts a x_state into a mea-

surement.

Attributes:

alpha Fading memory setting.

_init_arrays(state=None)
Initialize the arrays!

predict(u=None, B=None, F=None, Q=None)
Predict next x_state (prior) using the Kalman filter x_state propagation equations.

Update our state and uncertainty priors, x_prior and P_prior

u [np.array, default 0] Optional control vector.

B [np.array(dim_state, dim_u), or None] Optional control transition matrix; a value of None will cause the
filter to use self.B_control.

F [np.array(dim_state, dim_state), or None] Optional x_state transition matrix; a value of None will cause
the filter to use self.F_state_trans.

Q [np.array(dim_state, dim_state), scalar, or None] Optional process noise matrix; a value of None will
cause the filter to use self.Q_proc_var.

update(z: numpy.ndarray, R=None, H=None)→ numpy.ndarray
Add a new measurement (z_measure) to the Kalman filter.

If z_measure is None, nothing is computed. However, x_post and P_post are updated with the prior (x_prior,
P_prior), and self.z_measure is set to None.

Parameters
• z (numpy.ndarray) – measurement for this update. z_measure can be a scalar if

dim_measurement is 1, otherwise it must be convertible to a column vector.

If you pass in a value of H_measure, z_measure must be a column vector the of the correct
size.

• R (numpy.ndarray, int, None) – Optionally provide R_measure_var to override the mea-
surement noise for this one call, otherwise self.R_measure_var will be used.

17.6. Timeseries 211

https://github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python
https://github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python
https://github.com/rlabbe/filterpy

Autopilot Documentation, Release 0.3.0

• H (numpy.ndarray, None) – Optionally provide H_measure to override the measurement
function for this one call, otherwise self.H_measure will be used.

_reshape_z(z, dim_z, ndim)

ensure z is a (dim_z, 1) shaped vector

process(z, **kwargs)
Call predict and update, passing the relevant kwargs

Parameters
• z ()
• **kwargs ()

Returns self.x_state

Return type np.ndarray

residual_of(z)
Returns the residual for the given measurement (z_measure). Does not alter the x_state of the filter.

measurement_of_state(x)
Helper function that converts a x_state into a measurement.

x [np.array] kalman x_state vector

z_measure [(dim_measurement, 1): array_like] measurement for this update. z_measure can be a scalar
if dim_measurement is 1, otherwise it must be convertible to a column vector.

property alpha

Fading memory setting. 1.0 gives the normal Kalman filter, and values slightly larger than 1.0 (such as
1.02) give a fading memory effect - previous measurements have less influence on the filter’s estimates.
This formulation of the Fading memory filter (there are many) is due to Dan Simon [1]_.

class Integrate(decay=1, dt_scale=False, *args, **kwargs)
Bases: autopilot.transform.transforms.Transform

Methods:

process(input)

process(input)

17.7 Units

For converting between things that are the same thing but have different numbers and shapes

Classes:

Rescale([in_range, out_range, clip]) Rescale values from one range to another
Colorspaces(value) An enumeration.
Color(convert_from, convert_to[, output_scale]) Convert colors using the colorsys module!!

212 Chapter 17. Transformations

Autopilot Documentation, Release 0.3.0

class Rescale(in_range: Tuple[float, float] = (0, 1), out_range: Tuple[float, float] = (0, 1), clip=False, *args,
**kwargs)

Bases: autopilot.transform.transforms.Transform

Rescale values from one range to another

Attributes:

format_in

format_out

Methods:

process(input) Subtract input minimum, multiple by output/input
size ratio, add output minimum

format_in = { 'type': (<class 'numpy.ndarray'>, <class 'float'>, <class 'int'>,
<class 'tuple'>, <class 'list'>)}

format_out = {'type': <class 'numpy.ndarray'>}

process(input)
Subtract input minimum, multiple by output/input size ratio, add output minimum

class Colorspaces(value)
Bases: enum.Enum

An enumeration.

Attributes:

HSV

RGB

YIQ

HLS

HSV = 1

RGB = 2

YIQ = 3

HLS = 4

class Color(convert_from: autopilot.transform.units.Colorspaces = <Colorspaces.HSV: 1>, convert_to:
autopilot.transform.units.Colorspaces = <Colorspaces.RGB: 2>, output_scale=255, *args,
**kwargs)

Bases: autopilot.transform.transforms.Transform

Convert colors using the colorsys module!!

17.7. Units 213

https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/enum.html#enum.Enum

Autopilot Documentation, Release 0.3.0

Note: All inputs must be scaled (0,1) and all outputs will be (0,1)

Attributes:

format_in

format_out

CONVERSIONS

Methods:

process(input, *args)

format_in = {'type': <class 'tuple'>}

format_out = {'type': <class 'tuple'>}

CONVERSIONS = { <Colorspaces.RGB: 2>: { <Colorspaces.YIQ: 3>: <function rgb_to_yiq
at 0x7f4448765e50>, <Colorspaces.HLS: 4>: <function rgb_to_hls at 0x7f444862e040>,
<Colorspaces.HSV: 1>: <function rgb_to_hsv at 0x7f444862e1f0>}, <Colorspaces.YIQ:
3>: { <Colorspaces.RGB: 2>: <function yiq_to_rgb at 0x7f4448765f70>},
<Colorspaces.HLS: 4>: { <Colorspaces.RGB: 2>: <function hls_to_rgb at
0x7f444862e0d0>}, <Colorspaces.HSV: 1>: { <Colorspaces.RGB: 2>: <function
hsv_to_rgb at 0x7f444862e280>}}

process(input, *args)

214 Chapter 17. Transformations

CHAPTER

EIGHTEEN

VIZ

18.1 trial_viewer

Tools to visulize data after collection.

Warning: this module is unfinished, so it is undocumented.

Functions:

load_subject_data(data_dir, subject_name[, ...])

load_subject_dir(data_dir[, steps, grad, which])
Parameters

• data_dir (str) -- A path to a di-
rectory with Subject style hdf5
files

step_viewer(grad_data)

trial_viewer(step_data[, roll_type, ...])
Parameters

• bar

load_subject_data(data_dir, subject_name, steps=True, grad=True)

load_subject_dir(data_dir, steps=True, grad=True, which=None)

Parameters
• data_dir (str) – A path to a directory with Subject style hdf5 files

• steps (bool) – Whether to return full trial-level data for each step

• grad (bool) – Whether to return summarized step graduation data.

• which (list) – A list of subjects to subset the loaded subjects to

step_viewer(grad_data)

215

Autopilot Documentation, Release 0.3.0

trial_viewer(step_data, roll_type='ewm', roll_span=100, bar=False)

Parameters
• bar
• roll_span
• roll_type
• step_data

18.2 psychometric

Functions:

calc_psychometric(data, var_x[, var_y]) Calculate a psychometric curve (logistic regression of
var_y on var_x)

plot_psychometric(subject_protocols) Plot psychometric curves for selected subjects, steps,
and variables

calc_psychometric(data, var_x, var_y='response')
Calculate a psychometric curve (logistic regression of var_y on var_x)

Parameters
• data (pandas.DataFrame) – Subject data

• var_x (str) – name of column to use as the discriminand

• var_y (str) – name of the column for the response, usually ‘response’

Returns parameters for logistic function

Return type params (tup)

plot_psychometric(subject_protocols)
Plot psychometric curves for selected subjects, steps, and variables

Typically called by Terminal.plot_psychometric().

Parameters subject_protocols (list) – A list of tuples, each with

• subject_id (str)

• step_name (str)

• variable (str)

Returns altair.Chart

216 Chapter 18. viz

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame

CHAPTER

NINETEEN

UTILS

Utility functions!

19.1 Common Utils

Generic utility functions that are used in multiple places in the library that for now don’t have a clear other place to be

Functions:

list_classes(module) List all classes within a module/package without import-
ing by parsing the syntax tree directly with ast .

find_class(cls_str) Given a full package.module.ClassName string, return
the relevant class

recurse_subclasses(cls[, leaves_only]) Given some class, find its subclasses recursively
list_subjects([pilot_db]) Given a dictionary of a pilot_db, return the subjects that

are in it.
load_pilotdb([file_name, reverse]) Try to load the file_db
coerce_discrete(df, col[, mapping]) Coerce a discrete/string column of a pandas dataframe

into numeric values
find_key_recursive(key, dictionary) Find all instances of a key in a dictionary, recursively.
find_key_value(dicts, key, value[, single]) Find an entry in a list of dictionaries where dict[key] ==

value.
walk_dicts(adict[, keys]) Recursively yield key/value pairs, returning keys as tu-

ples corresponding to the recursive keys in the dict

Classes:

ReturnThread([group, target, name, args, ...]) Thread whose .join() method returns the value from the
function thx to https://stackoverflow.com/a/6894023

NumpyEncoder(*[, skipkeys, ensure_ascii, ...]) Allow json serialization of objects containing numpy ar-
rays.

NumpyDecoder(*args, **kwargs) Allow json deserialization of objects containing numpy
arrays.

list_classes(module)→ List[Tuple[str, str]]
List all classes within a module/package without importing by parsing the syntax tree directly with ast .

Parameters module (module, str) – either the imported module to be queried, or its name as a string.
if passed a string, attempt to import with importlib.import_module()

217

https://docs.python.org/3/library/ast.html#module-ast
https://stackoverflow.com/a/6894023
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/ast.html#module-ast
https://docs.python.org/3/library/importlib.html#importlib.import_module

Autopilot Documentation, Release 0.3.0

Returns list of tuples [(‘ClassName’, ‘module1.module2.ClassName’)] a la inspect.
getmembers()

find_class(cls_str: str)
Given a full package.module.ClassName string, return the relevant class

Parameters cls_str (str) – a full package.module.ClassName string, like 'autopilot.hardware.
Hardware'

Returns the class indicated by cls_str

recurse_subclasses(cls, leaves_only=False)→ list
Given some class, find its subclasses recursively

See: https://stackoverflow.com/a/17246726/13113166

Parameters leaves_only (bool) – If True, only include classes that have no further subclasses, if
False (default), return all subclasses.

Returns list of subclasses

class ReturnThread(group=None, target=None, name=None, args=(), kwargs={}, Verbose=None)
Bases: threading.Thread

Thread whose .join() method returns the value from the function thx to https://stackoverflow.com/a/6894023

This constructor should always be called with keyword arguments. Arguments are:

group should be None; reserved for future extension when a ThreadGroup class is implemented.

target is the callable object to be invoked by the run() method. Defaults to None, meaning nothing is called.

name is the thread name. By default, a unique name is constructed of the form “Thread-N” where N is a small
decimal number.

args is the argument tuple for the target invocation. Defaults to ().

kwargs is a dictionary of keyword arguments for the target invocation. Defaults to {}.

If a subclass overrides the constructor, it must make sure to invoke the base class constructor (Thread.__init__())
before doing anything else to the thread.

Methods:

run() Method representing the thread's activity.
join([timeout]) Wait until the thread terminates.

run()

Method representing the thread’s activity.

You may override this method in a subclass. The standard run() method invokes the callable object passed
to the object’s constructor as the target argument, if any, with sequential and keyword arguments taken from
the args and kwargs arguments, respectively.

join(timeout=None)
Wait until the thread terminates.

This blocks the calling thread until the thread whose join() method is called terminates – either normally
or through an unhandled exception or until the optional timeout occurs.

When the timeout argument is present and not None, it should be a floating point number specifying a
timeout for the operation in seconds (or fractions thereof). As join() always returns None, you must call

218 Chapter 19. Utils

https://docs.python.org/3/library/inspect.html#inspect.getmembers
https://docs.python.org/3/library/inspect.html#inspect.getmembers
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://stackoverflow.com/a/17246726/13113166
https://docs.python.org/3/library/threading.html#threading.Thread
https://stackoverflow.com/a/6894023

Autopilot Documentation, Release 0.3.0

is_alive() after join() to decide whether a timeout happened – if the thread is still alive, the join() call timed
out.

When the timeout argument is not present or None, the operation will block until the thread terminates.

A thread can be join()ed many times.

join() raises a RuntimeError if an attempt is made to join the current thread as that would cause a deadlock.
It is also an error to join() a thread before it has been started and attempts to do so raises the same exception.

list_subjects(pilot_db=None)
Given a dictionary of a pilot_db, return the subjects that are in it.

Parameters pilot_db (dict) – a pilot_db. if None tried to load pilot_db with
:method:`.load_pilotdb`

Returns a list of currently active subjects

Return type subjects (list)

load_pilotdb(file_name=None, reverse=False)
Try to load the file_db

Parameters
• reverse
• file_name

Returns:

coerce_discrete(df, col, mapping={'L': 0, 'R': 1})
Coerce a discrete/string column of a pandas dataframe into numeric values

Default is to map ‘L’ to 0 and ‘R’ to 1 as in the case of Left/Right 2AFC tasks

Parameters
• df (pandas.DataFrame) – dataframe with the column to transform

• col (str) – name of column

• mapping (dict) – mapping of strings to numbers

Returns transformed dataframe

Return type df (pandas.DataFrame)

find_key_recursive(key, dictionary)
Find all instances of a key in a dictionary, recursively.

Parameters
• key
• dictionary

Returns list

find_key_value(dicts: List[dict], key: str, value: str, single=True)
Find an entry in a list of dictionaries where dict[key] == value.

Parameters
• dicts ()
• key ()

19.1. Common Utils 219

https://docs.python.org/3/library/stdtypes.html#list
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Autopilot Documentation, Release 0.3.0

• value ()
• single (bool) – if True (default), raise an exception if multiple results are matched

walk_dicts(adict, keys: Optional[List] = None)→ tuple
Recursively yield key/value pairs, returning keys as tuples corresponding to the recursive keys in the dict

Parameters adict (dict) – dict to walk over

Yields tuple of key value pairs

class NumpyEncoder(*, skipkeys=False, ensure_ascii=True, check_circular=True, allow_nan=True,
sort_keys=False, indent=None, separators=None, default=None)

Bases: json.encoder.JSONEncoder

Allow json serialization of objects containing numpy arrays.

Use like json.dump(obj, fp, cls=NumpyEncoder)

Deserialize with NumpyDecoder

References

• https://stackoverflow.com/a/49677241/13113166

• https://github.com/mpld3/mpld3/issues/434#issuecomment-340255689

• https://gist.github.com/massgh/297a73f2dba017ffd28dbc34b9a40e90

Constructor for JSONEncoder, with sensible defaults.

If skipkeys is false, then it is a TypeError to attempt encoding of keys that are not str, int, float or None. If skipkeys
is True, such items are simply skipped.

If ensure_ascii is true, the output is guaranteed to be str objects with all incoming non-ASCII characters escaped.
If ensure_ascii is false, the output can contain non-ASCII characters.

If check_circular is true, then lists, dicts, and custom encoded objects will be checked for circular references
during encoding to prevent an infinite recursion (which would cause an OverflowError). Otherwise, no such
check takes place.

If allow_nan is true, then NaN, Infinity, and -Infinity will be encoded as such. This behavior is not JSON spec-
ification compliant, but is consistent with most JavaScript based encoders and decoders. Otherwise, it will be a
ValueError to encode such floats.

If sort_keys is true, then the output of dictionaries will be sorted by key; this is useful for regression tests to
ensure that JSON serializations can be compared on a day-to-day basis.

If indent is a non-negative integer, then JSON array elements and object members will be pretty-printed with
that indent level. An indent level of 0 will only insert newlines. None is the most compact representation.

If specified, separators should be an (item_separator, key_separator) tuple. The default is (’, ‘, ‘: ‘) if indent
is None and (‘,’, ‘: ‘) otherwise. To get the most compact JSON representation, you should specify (‘,’, ‘:’) to
eliminate whitespace.

If specified, default is a function that gets called for objects that can’t otherwise be serialized. It should return a
JSON encodable version of the object or raise a TypeError.

Methods:

220 Chapter 19. Utils

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#tuple
https://stackoverflow.com/a/49677241/13113166
https://github.com/mpld3/mpld3/issues/434#issuecomment-340255689
https://gist.github.com/massgh/297a73f2dba017ffd28dbc34b9a40e90

Autopilot Documentation, Release 0.3.0

default(obj) Implement this method in a subclass such that it re-
turns a serializable object for o, or calls the base im-
plementation (to raise a TypeError).

default(obj)
Implement this method in a subclass such that it returns a serializable object for o, or calls the base imple-
mentation (to raise a TypeError).

For example, to support arbitrary iterators, you could implement default like this:

def default(self, o):
try:

iterable = iter(o)
except TypeError:

pass
else:

return list(iterable)
Let the base class default method raise the TypeError
return JSONEncoder.default(self, o)

class NumpyDecoder(*args, **kwargs)
Bases: json.decoder.JSONDecoder

Allow json deserialization of objects containing numpy arrays.

Use like json.load(fp, cls=NumpyDecoder)

Serialize with NumpyEncoder

References

• https://stackoverflow.com/a/49677241/13113166

• https://github.com/mpld3/mpld3/issues/434#issuecomment-340255689

• https://gist.github.com/massgh/297a73f2dba017ffd28dbc34b9a40e90

object_hook, if specified, will be called with the result of every JSON object decoded and its return value
will be used in place of the given dict. This can be used to provide custom deserializations (e.g. to support
JSON-RPC class hinting).

object_pairs_hook, if specified will be called with the result of every JSON object decoded with an ordered
list of pairs. The return value of object_pairs_hook will be used instead of the dict. This feature can be
used to implement custom decoders. If object_hook is also defined, the object_pairs_hook takes priority.

parse_float, if specified, will be called with the string of every JSON float to be decoded. By default this
is equivalent to float(num_str). This can be used to use another datatype or parser for JSON floats (e.g. deci-
mal.Decimal).

parse_int, if specified, will be called with the string of every JSON int to be decoded. By default this is
equivalent to int(num_str). This can be used to use another datatype or parser for JSON integers (e.g. float).

parse_constant, if specified, will be called with one of the following strings: -Infinity, Infinity, NaN. This can
be used to raise an exception if invalid JSON numbers are encountered.

If strict is false (true is the default), then control characters will be allowed inside strings. Control characters
in this context are those with character codes in the 0-31 range, including '\t' (tab), '\n', '\r' and '\0'.

19.1. Common Utils 221

https://stackoverflow.com/a/49677241/13113166
https://github.com/mpld3/mpld3/issues/434#issuecomment-340255689
https://gist.github.com/massgh/297a73f2dba017ffd28dbc34b9a40e90

Autopilot Documentation, Release 0.3.0

Methods:

object_hook(obj)

object_hook(obj)

19.2 Decorators

Decorators for Autopilot classes

Add functionality to autopilot classes without entering into or depending on the inheritance hierarchy.

Classes:

Introspect() Decorator to be used around methods (particularly
__init__) to store arguments given on call.

class Introspect

Bases: object

Decorator to be used around methods (particularly __init__) to store arguments given on call.

Stores args and kwargs in self._introspect[wrapped_function.__name__] = {'kwarg_1': val_1,
'kwarg_2': val_2}

Note that this will unpack positional arguments into keyword arguments. If the topmost class is given positional
arguments, they will be stored in the special field 'args': [arg1,arg2,...]

Works by wrapping the method in such a way that self is preserved, and can patch into the existing MRO.

Note: This class was intended for use on __init__ methods and has not been tested on other methods. Though
they should work in theory, there may be unexpected behavior in introspecting across multiple frames, as the
check is for whether we are within the calling object’s calling hierarchy.

For example, given a Superclass and a Subclass (and a mock Introspect object) like this:

class Introspect:
def __call__(self, func) -> typing.Callable:

@wraps(func)
def wrapped_fn(wrapped_self, *args, **kwargs):

print('2. start of introspection')
ret = func(wrapped_self, *args, **kwargs)
print('4. end of introspection')
return ret

return wrapped_fn

class Superclass:

@Introspect()
def __init__(self, *args, **kwargs):

self.args = args
(continues on next page)

222 Chapter 19. Utils

https://docs.python.org/3/library/functions.html#object

Autopilot Documentation, Release 0.3.0

(continued from previous page)

self.kwargs = kwargs
print(f"3. superclass function call")

class Subclass(Superclass):
def __init__(self, *args, **kwargs):

print('1. inheriting class, pre super call')
super(Subclass, self).__init__(*args, **kwargs)
print('5. inheriting class, post super call')

One would get the following output:

>>> instance = Subclass('a', 'b', 'c')
1. inheriting class, pre super call
2. start of introspection
3. superclass function call
4. end of introspection
5. inheriting class, post super call

To hoist the call back up into the (potentially multiple) subclass frames, we use inspect and iterate through
frames, grabbing their arguments, until we reach a frame that is no longer in our calling hierarchy.

19.3 Hydration

Functions to be able to make sending and recreating autopilot objects by sending compressed representations of their
instantiation.

Examples

>>> import autopilot
>>> from pprint import pprint

>>> Noise = autopilot.get('sound', 'Noise')
>>> a_noise = Noise(duration=1000, amplitude=0.01, fs=44100)

>>> dehydrated_noise = dehydrate(a_noise)
>>> pprint(dehydrated_noise)
{'class': 'autopilot.stim.sound.sounds.Noise',
'kwargs': {'amplitude': 0.01,

'channel': None,
'duration': 1000,
'fs': 44100}}

>>> b_noise = hydrate(dehydrated_noise)

>>> a_noise
<autopilot.stim.sound.sounds.Noise object at 0x12d76f400>
>>> b_noise
<autopilot.stim.sound.sounds.Noise object at 0x12d690310>

19.3. Hydration 223

Autopilot Documentation, Release 0.3.0

>>> a_noise._introspect['__init__']
{'fs': 44100, 'duration': 1000, 'amplitude': 0.01, 'channel': None}
>>> b_noise._introspect['__init__']
{'fs': 44100, 'duration': 1000, 'amplitude': 0.01, 'channel': None}

Functions:

dehydrate(obj) Get a dehydrated version of an object that has its
__init__ method wrapped with

hydrate(obj_dict) Rehydrate an object description from dehydrate()

dehydrate(obj)→ dict

Get a dehydrated version of an object that has its __init__ method wrapped with utils.decorators.
Introspect for sending across the wire/easier reinstantiation and provenance.

Parameters obj – The (instantiated) object to dehydrate

Returns
a dictionary that can be used with hydrate(), of the form:

{
'class': 'autopilot.submodule.Class',
'kwargs': {'kwarg_1': 'value1', ... }

}

Return type dict

hydrate(obj_dict: dict)
Rehydrate an object description from dehydrate()

19.4 GUI Invoker

Functions:

get_invoker()

get_invoker()

19.5 Log Parsers

Utility functions to parse logging files, extracting data, separating by ID, etc.

See also autopilot.core.loggers and the autopilot.core.loggers.Log class

Classes:

Data_Extract(*args, **kwargs)

224 Chapter 19. Utils

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

Autopilot Documentation, Release 0.3.0

Functions:

extract_data(logfile[, include_backups, ...]) Extract data from networking logfiles.

class Data_Extract(*args, **kwargs)
Bases: dict

Attributes:

header

data

header: dict

data: pandas.core.frame.DataFrame

extract_data(logfile: pathlib.Path, include_backups: bool = True, output_dir: Optional[pathlib.Path] = None)→
List[autopilot.utils.log_parsers.Data_Extract]

Extract data from networking logfiles.

Parameters
• logfile (pathlib.Path) – Logfile to parse

• include_backups (bool) – Include log backups (default True), eg. logfile.log.1,
logfile.log.2

• output_dir (Path) – If present, save output to directory as a .json file with header informa-
tion from the 'START' message, and a csv file with the trial data

Returns List of extracted data and headers

Return type List[Data_Extract]

19.6 Plugins

Utility functions for handling plugins, eg. importing, downloading, listing, confirming, etc.

Functions:

import_plugins([plugin_dir]) Import all plugins in the plugin (or supplied) directory.
unload_plugins() Un-import imported plugins (mostly for testing pur-

poses)
list_wiki_plugins() List plugins available on the wiki using utils.wiki.

ask()

import_plugins(plugin_dir: Optional[pathlib.Path] = None)→ dict
Import all plugins in the plugin (or supplied) directory.

There is no specific form for a plugin at the moment, so this function will recursively import all modules and
packages within the directory.

Plugins can then be accessed by the get() registry functions.

19.6. Plugins 225

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://pandas.pydata.org/pandas\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \defaulthyphenchar }{}{} docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#dict

Autopilot Documentation, Release 0.3.0

Parameters plugin_dir (None, pathlib.Path) – Directory to import. if None (default), use
prefs.get('PLUGINDIR').

Returns of imported objects with form {“class_name”: class_object}

Return type dict

unload_plugins()

Un-import imported plugins (mostly for testing purposes)

list_wiki_plugins()

List plugins available on the wiki using utils.wiki.ask()

Returns {‘plugin_name’: {‘plugin_prop’:’prop_value’,. . . }

Return type dict

19.7 Registry

Registry for programmatic access to autopilot classes and plugins

When possible, rather than importing and using an object directly, access it using the get methods in this module. This
makes it possible for plugins to be integrated across the system.

Classes:

REGISTRIES(value) Types of registries that are currently supported, ie.

Functions:

get(base_class[, class_name, plugins, ast, ...]) Get an autopilot object.
get_names(base_class[, class_name, plugins, ...]) get() but return a list of object names instead of the

objects themselves
get_hardware([class_name, plugins, ast]) Get a hardware class by name.
get_task([class_name, plugins, ast]) Get a task class by name.

Data:

_TASK_LIST Compatibility for translating old versions

class REGISTRIES(value)
Bases: str, enum.Enum

Types of registries that are currently supported, ie. the possible values of the first argument of registry.get()

Values are the names of the autopilot classes that are searched for inheriting classes, eg. HARDWARE ==
"autopilot.hardware.Hardware" for autopilot.Hardware

Attributes:

226 Chapter 19. Utils

https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/enum.html#enum.Enum

Autopilot Documentation, Release 0.3.0

HARDWARE

TASK

GRADUATION

TRANSFORM

CHILDREN

SOUND

HARDWARE = 'autopilot.hardware.Hardware'

TASK = 'autopilot.tasks.Task'

GRADUATION = 'autopilot.tasks.graduation.Graduation'

TRANSFORM = 'autopilot.transform.transforms.Transform'

CHILDREN = 'autopilot.tasks.children.Child'

SOUND = 'autopilot.stim.sound.sounds.BASE_CLASS'

get(base_class: Union[autopilot.utils.registry.REGISTRIES, str, type], class_name: Optional[str] = None, plugins:
bool = True, ast: bool = True, include_base: bool = False)→ Union[type, List[type]]
Get an autopilot object.

Parameters
base_class (REGISTRIES , str, type) – Class to search its subclasses for the indicated object. One of the values in the REGISTRIES enum,

or else one of its keys (eg. 'HARDWARE'). If given a full module.ClassName string (eg.
"autopilot.tasks.Task") attempt to get the indicated object. If given an object, use
that.

class_name (str, None): Name of class that inherits from base_class that is to be returned.
if None (default), return all found subclasses of base_class

plugins (bool): If True (default), ensure contents of PLUGINDIR are loaded (with import_plugins())
and are included in results. If False, plugins are not explicitly imported, but if any have
been imported elsewhere, they will be included anyway because we can’t control all the
different ways to subclass in Python.

ast (bool): If True (default), if an imported object isn’t found that matches class_name,
parse the syntax trees of submodules of base_class with utils.common.
list_classes() without importing to try and find it. If a match is found, it is
imported and checked whether or not it is indeed a subclass of the base_class. if False,
do not parse ast trees (will miss any modules that aren’t already imported).

include_base (bool): If False (default), remove the base_class before returning

Returns Either the requested items, or a list of all the relevant items

get_names(base_class: Union[autopilot.utils.registry.REGISTRIES, str, type], class_name: Optional[str] = None,
plugins: bool = True, ast: bool = True, full_name: bool = False)→ List[str]

get() but return a list of object names instead of the objects themselves

19.7. Registry 227

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str

Autopilot Documentation, Release 0.3.0

See get() for documentation of base arguments.

Note: While technically you can call this function with a class_name, by default [class_name] ==
get_names(base_class, class_name), but if full_name == False it could be used to get the fully qual-
ified package.module name in a pretty roundabout way.

Parameters full_name (bool) – if False (default), return just the class name. if True, return the
full package.subpackage.module.Class_Name name.

Returns a list of names

Return type List[str]

get_hardware(class_name: Optional[str] = None, plugins: bool = True, ast: bool = True)→
Union[Type[Hardware], List[Type[Hardware]]]

Get a hardware class by name.

Alias for registry.get()

Parameters
• class_name (str) – Name of hardware class to get

• plugins (bool) – If True (default) ensure plugins are loaded and return from them. see
registry.get() for more details about the behavior of this argument

• ast (bool) – If True (default) parse the syntax tree of all modules within hardware. see
registry.get() for more details about the behavior of this argument

Returns Hardware
_TASK_LIST = { '2AFC': 'Nafc', '2AFC_Gap': 'Nafc_Gap', '2AFC_Gap_Laser':
'Nafc_Gap_Laser', 'Free Water': 'Free_Water', 'GoNoGo': 'GoNoGo', 'Parallax':
'Parallax', 'Test_DLC_Hand': 'DLC_Hand', 'Test_DLC_Latency': 'DLC_Latency'}

Compatibility for translating old versions

get_task(class_name: Optional[str] = None, plugins: bool = True, ast: bool = True)→ Union[Type[Task],
List[Type[Task]]]

Get a task class by name.

Alias for registry.get()

Parameters
• class_name (str) – Name of task class to get

• plugins (bool) – If True (default) ensure plugins are loaded and return from them. see
registry.get() for more details about the behavior of this argument

• ast (bool) – If True (default) parse the syntax tree of all modules within tasks. see
registry.get() for more details about the behavior of this argument

Returns Task

228 Chapter 19. Utils

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Type

Autopilot Documentation, Release 0.3.0

19.8 Requires

Stub module for specifying dependencies for Autopilot objects.

Draft for now, to be integrated in v0.5.0

Classes:

Requirement(name, version) Base class for different kinds of requirements
Git_Spec(url[, branch, commit, tag]) Specify a git repository or its subcomponents: branch,

commit, or tag
Python_Package(name, version, package_name, ...)

ivar package_name If a package is named
differently in package repositories
than it is imported,

System_Library(name, version) System-level package
Requirements(requirements) Dataclass for a collection of requirements for a particular

object.

class Requirement(name: str, version: packaging.specifiers.SpecifierSet = <SpecifierSet('')>)
Bases: abc.ABC

Base class for different kinds of requirements

Attributes:

name

version

met Check if a requirement is met

Methods:

resolve() Try and resolve a requirement by getting packages,
changing system settings, etc.

name: str

version: packaging.specifiers.SpecifierSet = <SpecifierSet('')>

abstract property met: bool

Check if a requirement is met

Returns True if met, False otherwise

Return type bool

abstract resolve()→ bool
Try and resolve a requirement by getting packages, changing system settings, etc.

Returns True if successful!

Return type bool

19.8. Requires 229

https://docs.python.org/3/library/abc.html#abc.ABC
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Autopilot Documentation, Release 0.3.0

class Git_Spec(url: autopilot.utils.types.URL, branch: Optional[str] = None, commit: Optional[str] = None,
tag: Optional[str] = None)

Bases: object

Specify a git repository or its subcomponents: branch, commit, or tag

Attributes:

url

branch

commit

tag

url: autopilot.utils.types.URL

branch: Optional[str] = None

commit: Optional[str] = None

tag: Optional[str] = None

class Python_Package(name: str, version: packaging.specifiers.SpecifierSet = <SpecifierSet('')>,
package_name: typing.Optional[str] = None, repository: autopilot.utils.types.URL =
'https://pypi.org/simple', git: typing.Optional[autopilot.utils.requires.Git_Spec] = None)

Bases: autopilot.utils.requires.Requirement

Variables
• package_name (str) – If a package is named differently in package repositories than it is

imported, specify the package_name (default is package_name == name). The name will
be used to test whether the package can be imported, and package_name used to install from
the specified repository if not

• repository (URL) – The URL of a python package repository to use to install. Defaults to
pypi

• (class (git) – .Git_Spec): Specify a package comes from a particular git repository, com-
mit, or branch instead of from a package repository. If git is present, repository is ig-
nored.

Attributes:

package_name

repository

git

import_spec The importlib.machinery.ModuleSpec for
name , if present, otherwise False

package_version The version of the installed package, if found.
met Return True if python package is found in the

PYTHONPATH that satisfies the SpecifierSet

230 Chapter 19. Utils

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/importlib.html#importlib.machinery.ModuleSpec

Autopilot Documentation, Release 0.3.0

Methods:

resolve() We're not supposed to Returns:

package_name: Optional[str] = None

repository: autopilot.utils.types.URL = 'https://pypi.org/simple'

git: Optional[autopilot.utils.requires.Git_Spec] = None

property import_spec: Union[ModuleSpec, bool]

The importlib.machinery.ModuleSpec for name , if present, otherwise False

Returns importlib.machinery.ModuleSpec or False

property package_version: Union[str, bool]

The version of the installed package, if found. Uses package_name (name when installing, eg.
auto-pi-lot) which can differ from the name (eg. autopilot) of a package (used when importing)

Returns ‘x.x.x’ or False if not found

Return type str

property met: bool

Return True if python package is found in the PYTHONPATH that satisfies the SpecifierSet

resolve()→ bool
We’re not supposed to Returns:

name: str

class System_Library(name: str, version: packaging.specifiers.SpecifierSet = <SpecifierSet('')>)
Bases: autopilot.utils.requires.Requirement

System-level package

Warning: not implemented

Attributes:

name: str

class Requirements(requirements: List[autopilot.utils.requires.Requirement])
Bases: object

Dataclass for a collection of requirements for a particular object. Each object should have at most one
Requirements object, which may have many sub-requirements

Variables requirements (list[Requirement]) – List of requirements. (a singular requirement
should have an identical API to requirements, the met and resolve methods)

Attributes:

requirements

met Checks if the specified requirements are met

19.8. Requires 231

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/importlib.html#importlib.machinery.ModuleSpec
https://docs.python.org/3/library/importlib.html#importlib.machinery.ModuleSpec
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#list

Autopilot Documentation, Release 0.3.0

Methods:

resolve()

__add__(other) Add requirement sets together

requirements: List[autopilot.utils.requires.Requirement]

property met: bool

Checks if the specified requirements are met

Returns True if requirements are met, False if not

Return type bool

resolve()→ bool

__add__(other)
Add requirement sets together

Warning: Not Implemented

Parameters other ()

Returns:

19.9 Types

Basic types for a basic types of bbs

Classes:

URL(content)

class URL(content)
Bases: str

19.10 Wiki

Utility functions for dealing with the wiki (https://wiki.auto-pi-lot.com).

See the docstrings of the ask() function, as well as the guide_wiki_plugins section in the user guide for use.

Functions:

232 Chapter 19. Utils

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://wiki.auto-pi-lot.com

Autopilot Documentation, Release 0.3.0

ask(filters[, properties]) Perform an API call to the wiki using the ask API and
simplify to a list of dictionaries

browse(search[, browse_type, params]) Use the browse api of the wiki to search for specific
pages, properties, and so on.

make_ask_string(filters[, properties, full_url]) Create a query string to request semantic information
from the Autopilot wiki

make_browse_string(search[, browse_type, ...])

ask(filters: Union[List[str], str], properties: Union[None, List[str], str] = None)→ List[dict]
Perform an API call to the wiki using the ask API and simplify to a list of dictionaries

Parameters
• filters (list, str) – A list of strings or a single string of semantic mediawiki formatted property

filters. See make_ask_string() for more information

• properties (None, list, str) – Properties to return from filtered pages, See
make_ask_string() for more information

Returns:

browse(search: str, browse_type: str = 'page', params: Optional[dict] = None)
Use the browse api of the wiki to search for specific pages, properties, and so on.

Parameters
• search (str) – the search string! * can be used as a wildcard.

• browse_type (str) – The kind of browsing we’re doing, one of:

– page

– subject

– property

– pvalue

– category

– concept

• params (dict) – Additional params for the browse given as a dictionary, see the smw docs
for usage.

Returns dict, list of dicts of results

make_ask_string(filters: Union[List[str], str], properties: Union[None, List[str], str] = None, full_url: bool =
True)→ str

Create a query string to request semantic information from the Autopilot wiki

Parameters
• filters (list, str) – A list of strings or a single string of semantic medi-

awiki formatted property filters, eg "[[Category:Hardware]]" or "[[Has
Contributor::sneakers-the-rat]]". Refer to the semantic mediawiki documentation
for more information on syntax

• properties (None, list, str) – Properties to return from filtered pages, see the available proper-
ties on the wiki and the semantic mediawiki documentation for more information on syntax.
If None (default), just return the names of the pages

19.10. Wiki 233

https://www.semantic-mediawiki.org/wiki/Help:API:ask
https://www.semantic-mediawiki.org/wiki/Help:API:smwbrowse
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#dict
https://www.semantic-mediawiki.org/wiki/Help:API:ask
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#dict
https://www.semantic-mediawiki.org/wiki/Help:API:smwbrowse
https://www.semantic-mediawiki.org/wiki/Help:API:smwbrowse
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://www.semantic-mediawiki.org/wiki/Help:Selecting_pages
https://wiki.auto-pi-lot.com/index.php/Special:Properties
https://wiki.auto-pi-lot.com/index.php/Special:Properties
https://www.semantic-mediawiki.org/wiki/Help:Selecting_pages

Autopilot Documentation, Release 0.3.0

• full_url (bool) – If True (default), prepend f'{WIKI_URL}api.php?
action=ask&query=' to the returned string to make it ready for an API call

Returns the formatted query string

Return type str

make_browse_string(search, browse_type='page', params=None, full_url: bool = True)

234 Chapter 19. Utils

https://www.semantic-mediawiki.org/wiki/Help:API:ask
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

CHAPTER

TWENTY

SETUP

After initial setup, configure autopilot: create an autopilot directory and a prefs.json file

Functions:

make_dir(adir[, permissions]) Make a directory if it doesn't exist and set its permissions
to 0777

make_alias(launch_script[, bash_profile]) Make an alias so that calling autopilot calls
autopilot_dir/launch_autopilot.sh

parse_manual_prefs(manual_prefs)

parse_args()

locate_user_dir(args)

run_form(prefs)

make_launch_script(prefs[, prefs_fn, ...])

make_systemd(prefs, launch_file)

results_string(env_results, config_msgs, ...)

make_ectopic_dirnames(basedir)

main()

make_dir(adir: pathlib.Path, permissions: int = 511)
Make a directory if it doesn’t exist and set its permissions to 0777

Parameters
• adir (str) – Path to the directory

• permissions (int) – an octal integer used to set directory permissions (default 0o777)

make_alias(launch_script: pathlib.Path, bash_profile: Optional[str] = None)→ Tuple[bool, str]
Make an alias so that calling autopilot calls autopilot_dir/launch_autopilot.sh

Parameters
• launch_script (str) – the path to the autopilot launch script to be aliased

235

https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Autopilot Documentation, Release 0.3.0

• bash_profile (str, None) – Optional, location of shell profile to edit. if None, use .bashrc
then .bash_profile if they exist

parse_manual_prefs(manual_prefs: List[str])→ dict

parse_args()

locate_user_dir(args)→ pathlib.Path

run_form(prefs: dict)→ Tuple[dict, List[str]]

make_launch_script(prefs: dict, prefs_fn=None, launch_file=None, permissions: int = 509)→ pathlib.Path

make_systemd(prefs: dict, launch_file: pathlib.Path)→ Tuple[bool, str]

results_string(env_results: dict, config_msgs: List[str], error_msgs: List[str], prefs_fn: str, prefs)→ str

make_ectopic_dirnames(basedir: pathlib.Path)→ dict

main()

20.1 scripts

Scripts used in run_script and setup_autopilot to install packages and configure the system environment

Scripts are contained in the scripts.SCRIPTS dictionary, and each script is of the form:

'script_name': {
'type': 'bool', # always bool, signals that gui elements should present it as a␣

→˓checkbox to run or not
'text': 'human readable description of what the script does',
'commands': [

'list of shell commands'
]

}

The commands in each commands list are concatenated with && and run sequentially (see run_script.
call_series()). Certain commands that are expected to fail but don’t impact the outcome of the rest of the script –
eg. making a directory that already exists – can be made optional by using the syntax:

[
'required command',
{'command':'optional command', 'optional': True}

]

This concatenates the command with a ``; `` which doesn’t raise an error if the command fails and allows the rest of
the script to proceed.

Note: The above syntax will be used in the future for additional parameterizations that need to be made to scripts (
though being optional is the only paramaterization avaialable now).

Note: An unadvertised feature of raspi-config is the ability to run commands frmo the cli – find the name
of a command here: https://github.com/RPi-Distro/raspi-config/blob/master/raspi-config and then use it like this:
sudo raspi-config nonint function_name argument , so for example to enable the camera one just calls sudo

236 Chapter 20. setup

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#dict
https://github.com/RPi-Distro/raspi-config/blob/master/raspi-config

Autopilot Documentation, Release 0.3.0

raspi-config nonint do_camera 0 (where turning the camera on, perhaps counterintuitively, is 0 which is true
for all commands)

Todo: Probably should have these use prefs.get('S')copes as well

Data:

SCRIPTS

20.1. scripts 237

Autopilot Documentation, Release 0.3.0

SCRIPTS = OrderedDict([('env_pilot', { 'commands': ['sudo apt-get update', 'sudo
apt-get install -y ' 'build-essential cmake git python3-dev ' 'libatlas-base-dev
libsamplerate0-dev ' 'libsndfile1-dev libreadline-dev ' 'libasound-dev i2c-tools '
'libportmidi-dev liblo-dev libhdf5-dev ' 'libzmq-dev libffi-dev'], 'text': 'install
system packages necessary for ' 'autopilot Pilots? (required if they arent ' 'already)',
'type': 'bool'}), ('env_terminal', { 'commands': ['sudo apt-get update', 'sudo
apt-get install ' '-y ' 'libxcb-icccm4 ' 'libxcb-image0 ' 'libxcb-keysyms1 '
'libxcb-randr0 ' 'libxcb-render-util0 ' 'libxcb-xinerama0 ' 'libxcb-xfixes0'], 'text':
'install system packages necessary for ' 'autopilot Terminals? (required if they arent '
'already)', 'type': 'bool'}), ('performance', { 'commands': ['sudo systemctl disable
raspi-config', "sudo sed -i '/^exit 0/i echo " '"performance" | sudo tee '
"/sys/devices/system/cpu/cpu*/cpufreq/scaling_governor' " '/etc/rc.local', 'sudo sh -c
"echo @audio - memlock ' '256000 >> /etc/security/limits.conf"', 'sudo sh -c "echo @audio
- rtprio 75 ' '>> /etc/security/limits.conf"', 'sudo sh -c "echo vm.swappiness = 10 ' '>>
/etc/sysctl.conf"'], 'text': 'Do performance enhancements? (recommended, ' 'change cpu
governor and give more memory to ' 'audio)', 'type': 'bool'}), ('change_pw', {
'commands': ['passwd'], 'text': "If you haven't, you should change the default "
'raspberry pi password or you _will_ get your ' 'identity stolen. Change it now?',
'type': 'bool'}), ('set_locale', { 'commands': ['sudo dpkg-reconfigure locales',
'sudo dpkg-reconfigure ' 'keyboard-configuration'], 'text': 'Would you like to set your
locale?', 'type': 'bool'}), ('hifiberry', { 'commands': [{ 'command': 'sudo adduser
pi i2c', 'optional': True}, 'sudo sed -i ' "'s/^dtparam=audio=on/#dtparam=audio=on/g' "
'/boot/config.txt', 'sudo sed -i ' "'$s/$/\\ndtoverlay=hifiberry-dacplus\\
ndtoverlay=i2s-mmap\\ndtoverlay=i2c-mmap\\ndtparam=i2c1=on\\ndtparam=i2c_arm=on/' "
'/boot/config.txt', "echo -e 'pcm.!default {\\n type hw " 'card 0\\n}\\nctl.!default {\\n
type ' "hw card 0\\n}' | sudo tee " '/etc/asound.conf'], 'text': 'Setup Hifiberry
DAC/AMP?', 'type': 'bool'}), ('bluetooth', { 'commands': ["sudo sed - i '$s/$/\n"
"dtoverlay=pi3-disable-bt/' " '/boot/config.txt', 'sudo systemctl disable '
'hciuart.service', 'sudo systemctl disable ' 'bluealsa.service', 'sudo systemctl disable
' 'bluetooth.service'], 'text': "Disable Bluetooth? (recommended unless you're " 'using
it <3', 'type': 'bool'}), ('systemd', { 'text': 'Install Autopilot as a systemd
service?\n' 'If you are running this command in a virtual ' 'environment it will be used
to launch ' 'Autopilot', 'type': 'bool'}), ('alias', { 'text': 'Create an alias to
launch with "autopilot" ' '(must be run from setup_autopilot, calls ' 'make_alias)',
'type': 'bool'}), ('jackd_source', { 'commands': ['git clone '
'git://github.com/jackaudio/jack2 ' '--depth 1', 'cd jack2', './waf configure --alsa=yes
' '--libdir=/usr/lib/arm-linux-gnueabihf/', './waf build -j6', 'sudo ./waf install',
'sudo ldconfig', 'sudo sh -c "echo @audio - memlock ' '256000 >>
/etc/security/limits.conf"', 'sudo sh -c "echo @audio - rtprio 75 ' '>>
/etc/security/limits.conf"', 'cd ..', 'rm -rf ./jack2'], 'text': 'Install jack audio
from source, try this if ' 'youre having compatibility or runtime issues ' 'with jack
(required if AUDIOSERVER == jack)', 'type': 'bool'}), ('opencv', { 'commands': ['sudo
apt-get install -y ' 'build-essential cmake ccache unzip ' 'pkg-config libjpeg-dev
libpng-dev ' 'libtiff-dev libavcodec-dev ' 'libavformat-dev libswscale-dev ' 'libv4l-dev
libxvidcore-dev ' 'libx264-dev ffmpeg libgtk-3-dev ' 'libcanberra-gtk* libatlas-base-dev
' 'gfortran python2-dev python-numpy', 'git clone '
'https://github.com/opencv/opencv.git', 'git clone '
'https://github.com/opencv/opencv_contrib', 'cd opencv', 'mkdir build', 'cd build',
'cmake -D ' 'CMAKE_BUILD_TYPE=RELEASE ' '-D ' 'CMAKE_INSTALL_PREFIX=/usr/local ' '-D '
'OPENCV_EXTRA_MODULES_PATH=/home/pi/git/opencv_contrib/modules ' '-D BUILD_TESTS=OFF -D '
'BUILD_PERF_TESTS=OFF ' '-D BUILD_DOCS=OFF -D ' 'WITH_TBB=ON -D '
'CMAKE_CXX_FLAGS="-DTBB_USE_GCC_BUILTINS=1 ' '-D__TBB_64BIT_ATOMICS=0" ' '-D
WITH_OPENMP=ON -D ' 'WITH_IPP=OFF -D ' 'WITH_OPENCL=ON -D ' 'WITH_V4L=ON -D '
'WITH_LIBV4L=ON -D ' 'ENABLE_NEON=ON -D ' 'ENABLE_VFPV3=ON -D '
'PYTHON3_EXECUTABLE=/usr/bin/python3 ' '-D ' 'PYTHON_INCLUDE_DIR=/usr/include/python3.7 '
'-D ' 'PYTHON_INCLUDE_DIR2=/usr/include/arm-linux-gnueabihf/python3.7 ' '-D '
'OPENCV_ENABLE_NONFREE=ON ' '-D ' 'INSTALL_PYTHON_EXAMPLES=OFF ' '-D WITH_CAROTENE=ON '
'-D ' "CMAKE_SHARED_LINKER_FLAGS='-latomic' " '-D BUILD_EXAMPLES=OFF ..', 'sudo sed -i '
"'s/^CONF_SWAPSIZE=100/CONF_SWAPSIZE=2048/g' " '/etc/dphys-swapfile', 'sudo
/etc/init.d/dphys-swapfile stop', 'sudo /etc/init.d/dphys-swapfile start', 'make -j4',
'sudo --preserve-env=PATH make install', 'sudo ldconfig', 'sudo sed -i '
"'s/^CONF_SWAPSIZE=2048/CONF_SWAPSIZE=100/g' " '/etc/dphys-swapfile', 'sudo
/etc/init.d/dphys-swapfile stop', 'sudo /etc/init.d/dphys-swapfile ' 'start'], 'text':
'Install OpenCV from source, including ' 'performance enhancements for ARM processors '
'(takes awhile)', 'type': 'bool'}), ('performance_cameras', { 'commands': ["sudo sh
-c 'echo options uvcvideo " 'nodrop=1 timeout=10000 quirks=0x80 > '
"/etc/modprobe.d/uvcvideo.conf'", 'sudo rmmod uvcvideo', 'sudo modprobe uvcvideo', 'sudo
sed -i "/^exit 0/i sudo sh -c ' "'echo ${usbfs_size} > "
'/sys/module/usbcore/parameters/usbfs_memory_mb\'" ' '/etc/rc.local'], 'text': 'Do
performance enhancements for video - mods ' 'to uvcvideo and increasing usbfs', 'type':
'bool'}), ('picamera', { 'commands': ['sudo raspi-config nonint do_camera 0'], 'text':
'Enable PiCamera (with raspi-config)', 'type': 'bool'}), ('picamera_legacy', {
'commands': ['sudo raspi-config nonint do_legacy 0'], 'text': 'Enable Legacy Picamera
driver (for raspiOS ' 'Bullseye)', 'type': 'bool'}), ('pigpiod', { 'commands': ['wget
' 'https://github.com/sneakers-the-rat/pigpio/archive/master.zip', 'unzip master.zip',
'cd pigpio-master', 'make -j4', 'sudo --preserve-env=PATH make install', 'cd ..', 'sudo
rm -rf ./pigpio-master', 'sudo rm ./master.zip'], 'text': 'Install pigpio daemon
(sneakers fork that ' 'gives full timestamps and has greater ' 'capacity for scripts)',
'type': 'bool'}), ('i2c', { 'commands': ['sudo sed -i '
"'s/^#dtparam=i2c_arm=on/dtparam=i2c_arm=on/g' " '/boot/config.txt', "sudo sed -i
'$s/$/\n" "i2c_arm_baudrate=100000/' " '/boot/config.txt', "sudo sed -i '$s/$/\n"
"i2c-dev/' /etc/modules", 'sudo dtparam i2c_arm=on', 'sudo modprobe i2c-dev'], 'text':
'Enable i2c and set baudrate to 100kHz', 'type': 'bool'})])

238 Chapter 20. setup

Autopilot Documentation, Release 0.3.0

20.2 run_script

Run scripts to setup system dependencies and autopilot plugins

> # to list scripts
> python3 -m autopilot.setup.run_script --list

> # to execute one script (setup hifiberry soundcard)
> python3 -m autopilot.setup.run_script hifiberry

> # to execute multiple scripts
> python3 -m autopilot.setup.run_script hifiberry jackd

Functions:

call_series(commands[, series_name, verbose]) Call a series of commands, giving a single return code
on completion or failure

run_script(script_name) Thin wrapper around call_series() that gets a script
by name from scripts.SCRIPTS and passes the list of
commands

run_scripts(scripts[, return_all, print_status]) Run a series of scripts, printing results
list_scripts() Print a formatted list of names in scripts.SCRIPTS

call_series(commands: List[Union[str, dict]], series_name=None, verbose: bool = True)→ bool
Call a series of commands, giving a single return code on completion or failure

See setup.scripts for syntax of command list.

Parameters
• commands (list) – List of strings or dicts to call, see setup.scripts

• series_name (None, str) – If provided, print name of currently running script

• verbose (bool) – If True (default), print command and status messages.

Returns bool - True if completed successfully

run_script(script_name)
Thin wrapper around call_series() that gets a script by name from scripts.SCRIPTS and passes the list of
commands

Parameters script_name (str) – name of a script in scripts.SCRIPTS

run_scripts(scripts: List[str], return_all: bool = False, print_status: bool = True)→ Union[bool, Dict[str, bool]]
Run a series of scripts, printing results

Parameters
• scripts (list) – list of script names

• return_all (bool) – if True, return dict of {script:success} for each called script. If
False (default), return single bool if all commands were successful

• print_status (bool) – if True (default), print whether each script completed successfully or
not.

20.2. run_script 239

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

Autopilot Documentation, Release 0.3.0

Returns success or failure of scripts - True if all were successful, False otherwise.

Return type bool

list_scripts()

Print a formatted list of names in scripts.SCRIPTS

240 Chapter 20. setup

https://docs.python.org/3/library/functions.html#bool

CHAPTER

TWENTYONE

PREFS

Module to hold module-global variables as preferences.

Upon import, prefs attempts to import a prefs.json file from the default location (see prefs.init()).

Prefs are then accessed with prefs.get() and prefs.set() functions. After initialization, if a pref if set, it is
stored in the prefs.json file – prefs are semi-durable and persist across sessions.

When attempting to get a pref that is not set, prefs.get() will first try to find a default value (set in _PREFS , and if
none is found return None – accordingly no prefs should be intentionally set to None, as it signifies that the pref is not
set.

Prefs are thread- and process-safe, as they are stored and served by a multiprocessing.Manager object.

prefs.json is typically generated by running autopilot.setup.setup_autopilot , though you can freestyle it
if you are so daring.

The ``HARDWARE`` pref is a little special. It specifies how each of the hardware components connected to the
system is configured. It is a dictionary with this general structure:

'HARDWARE': {
'GROUP': {

'ID': {
'hardware_arg': 'val'

}
}

}

where there are user-named 'GROUPS' of hardware objects, like 'LEDS' , etc. Within a group, each object has its
'ID' (passed as the name argument to the hardware initialization method) which allows it to be identified from the
other components in the group. The intention of this structure is to allow multiple categories of hardware objects to
be parameterized and used separately, even though they might be the same object type. Eg. we may have three LEDs
in our nosepokes, but also have an LED that serves at the arena light. If we wanted to write a command that turns off
all LEDs, we would have to explicitly specify their IDs, making it difficult to re-use very common hardware command
patterns within tasks. There are obvious drawbacks to this scheme – clunky, ambiguous, etc. and will be deprecated as
parameterization continues to congeal across the library.

The class that each element is used with is determined by the Task.HARDWARE dictionary. Specifically, the Task.
init_hardware() method does something like:

self.hardware['GROUP']['ID'] = self.HARDWARE['GROUP']['ID'](**prefs.get('HARDWARE')[
→˓'GROUP']['ID'])

241

Autopilot Documentation, Release 0.3.0

Warning: These are not hard coded prefs. _DEFAULTS populates the default values for prefs, but local prefs are
always restored from and saved to prefs.json . If you’re editing this file and things aren’t changing, you’re in the
wrong place!

This iteration of prefs with respect to work done on the People’s Ventilator Project

If a pref has a string for a 'deprecation' field in prefs._DEFAULTS , a FutureWarning will be raised with the
string given as the message

Classes:

Scopes(value) Enum that lists available scopes and groups for prefs
Common_Prefs([_env_file, ...]) Prefs common to all autopilot agents
Directory_Prefs([_env_file, ...]) Directories and paths that define the contents of the user

directory.
Agent_Prefs([_env_file, _env_file_encoding, ...]) Abstract prefs class for prefs that are specific to agents
Terminal_Prefs([_env_file, ...]) Prefs for the Terminal
Pilot_Prefs([_env_file, _env_file_encoding, ...]) Prefs for the Pilot
Audio_Prefs([_env_file, _env_file_encoding, ...]) Prefs to configure the audio server
Hardware_Pref ([_env_file, ...]) Abstract class for hardware objects,

Data:

_DEFAULTS Ordered Dictionary containing default values for prefs.
_WARNED Keep track of which prefs we have warned about getting

defaults for so we don't warn a zillion times

Functions:

get([key]) Get a pref!
set(key, val) Set a pref!
save_prefs([prefs_fn]) Dump prefs into the prefs_fn .json file
init([fn]) Initialize prefs on autopilot start.
add(param, value) Add a pref after init
git_version(repo_dir) Get the git hash of the current commit.
compute_calibration([path, calibration, ...])

Parameters
• path

clear() Mostly for use in testing, clear loaded prefs (without
deleting prefs.json)

class Scopes(value)
Bases: enum.Enum

Enum that lists available scopes and groups for prefs

Scope can be an agent type, common (for everyone), or specify some subgroup of prefs that should be presented
together (like directories)

COMMON = All Agents DIRECTORY = Prefs group for specifying directory structure TERMINAL = prefs
for Terminal Agents Pilot = Prefs for Pilot agents LINEAGE = prefs for networking lineage (until networking
becomes more elegant ;) AUDIO = Prefs for configuring the Jackd audio server

242 Chapter 21. prefs

https://www.peoplesvent.org/en/latest/pvp.common.prefs.html
https://docs.python.org/3/library/enum.html#enum.Enum

Autopilot Documentation, Release 0.3.0

Attributes:

COMMON All agents
TERMINAL Prefs specific to Terminal Agents
PILOT Prefs specific to Pilot Agents
DIRECTORY Directory structure
LINEAGE Prefs for coordinating network between pilots and

children
AUDIO Audio prefs...

COMMON = 1

All agents

TERMINAL = 2

Prefs specific to Terminal Agents

PILOT = 3

Prefs specific to Pilot Agents

DIRECTORY = 4

Directory structure

LINEAGE = 5

Prefs for coordinating network between pilots and children

AUDIO = 6

Audio prefs. . .

_PREF_MANAGER: Optional[multiprocessing.managers.SyncManager] =
<multiprocessing.managers.SyncManager object at 0x7f44434cff10>

The multiprocessing.Manager that stores prefs during system operation and makes them available and con-
sistent across processes.

class Common_Prefs(_env_file: Optional[Union[str, os.PathLike]] = '<object object at 0x7f4448807550>',
_env_file_encoding: Optional[str] = None, _env_nested_delimiter: Optional[str] = None,
_secrets_dir: Optional[Union[str, os.PathLike]] = None)

Bases: autopilot.root.Autopilot_Pref

Prefs common to all autopilot agents

Create a new model by parsing and validating input data from keyword arguments.

Raises ValidationError if the input data cannot be parsed to form a valid model.

class Directory_Prefs(_env_file: Optional[Union[str, os.PathLike]] = '<object object at 0x7f4448807550>',
_env_file_encoding: Optional[str] = None, _env_nested_delimiter: Optional[str] =
None, _secrets_dir: Optional[Union[str, os.PathLike]] = None)

Bases: autopilot.root.Autopilot_Pref

Directories and paths that define the contents of the user directory.

In general, all paths should be beneath the USER_DIR

Create a new model by parsing and validating input data from keyword arguments.

Raises ValidationError if the input data cannot be parsed to form a valid model.

Classes:

243

https://docs.python.org/3/library/multiprocessing.html#multiprocessing.managers.SyncManager
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/os.html#os.PathLike
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/os.html#os.PathLike
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/os.html#os.PathLike
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/os.html#os.PathLike

Autopilot Documentation, Release 0.3.0

Config()

class Config

Bases: object

Attributes:

env_prefix

env_prefix = 'AUTOPILOT_DIRECTORY_'

class Agent_Prefs(_env_file: Optional[Union[str, os.PathLike]] = '<object object at 0x7f4448807550>',
_env_file_encoding: Optional[str] = None, _env_nested_delimiter: Optional[str] = None,
_secrets_dir: Optional[Union[str, os.PathLike]] = None)

Bases: autopilot.root.Autopilot_Pref

Abstract prefs class for prefs that are specific to agents

Create a new model by parsing and validating input data from keyword arguments.

Raises ValidationError if the input data cannot be parsed to form a valid model.

class Terminal_Prefs(_env_file: Optional[Union[str, os.PathLike]] = '<object object at 0x7f4448807550>',
_env_file_encoding: Optional[str] = None, _env_nested_delimiter: Optional[str] =
None, _secrets_dir: Optional[Union[str, os.PathLike]] = None)

Bases: autopilot.prefs.Agent_Prefs

Prefs for the Terminal

Create a new model by parsing and validating input data from keyword arguments.

Raises ValidationError if the input data cannot be parsed to form a valid model.

Classes:

Config()

class Config

Bases: object

Attributes:

env_prefix

env_prefix = 'AUTOPILOT_TERMINAL_'

class Pilot_Prefs(_env_file: Optional[Union[str, os.PathLike]] = '<object object at 0x7f4448807550>',
_env_file_encoding: Optional[str] = None, _env_nested_delimiter: Optional[str] = None,
_secrets_dir: Optional[Union[str, os.PathLike]] = None)

Bases: autopilot.prefs.Agent_Prefs

Prefs for the Pilot

244 Chapter 21. prefs

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/os.html#os.PathLike
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/os.html#os.PathLike
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/os.html#os.PathLike
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/os.html#os.PathLike
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/os.html#os.PathLike
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/os.html#os.PathLike

Autopilot Documentation, Release 0.3.0

Create a new model by parsing and validating input data from keyword arguments.

Raises ValidationError if the input data cannot be parsed to form a valid model.

Classes:

Config()

class Config

Bases: object

Attributes:

env_prefix

env_prefix = 'AUTOPILOT_PILOT_'

class Audio_Prefs(_env_file: Optional[Union[str, os.PathLike]] = '<object object at 0x7f4448807550>',
_env_file_encoding: Optional[str] = None, _env_nested_delimiter: Optional[str] = None,
_secrets_dir: Optional[Union[str, os.PathLike]] = None)

Bases: autopilot.root.Autopilot_Pref

Prefs to configure the audio server

Create a new model by parsing and validating input data from keyword arguments.

Raises ValidationError if the input data cannot be parsed to form a valid model.

class Hardware_Pref(_env_file: Optional[Union[str, os.PathLike]] = '<object object at 0x7f4448807550>',
_env_file_encoding: Optional[str] = None, _env_nested_delimiter: Optional[str] = None,
_secrets_dir: Optional[Union[str, os.PathLike]] = None)

Bases: autopilot.root.Autopilot_Pref

Abstract class for hardware objects,

Create a new model by parsing and validating input data from keyword arguments.

Raises ValidationError if the input data cannot be parsed to form a valid model.

245

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/os.html#os.PathLike
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/os.html#os.PathLike
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/os.html#os.PathLike
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/os.html#os.PathLike

Autopilot Documentation, Release 0.3.0

_DEFAULTS = OrderedDict([('NAME', { 'scope': <Scopes.COMMON: 1>, 'text': 'Agent
Name:', 'type': 'str'}), ('PUSHPORT', { 'default': '5560', 'scope': <Scopes.COMMON:
1>, 'text': 'Push Port - Router port used by the Terminal ' 'or upstream agent:',
'type': 'int'}), ('MSGPORT', { 'default': '5565', 'scope': <Scopes.COMMON: 1>,
'text': 'Message Port - Router port used by this agent ' 'to receive messages:',
'type': 'int'}), ('TERMINALIP', { 'default': '192.168.0.100', 'scope':
<Scopes.COMMON: 1>, 'text': 'Terminal IP:', 'type': 'str'}), ('LOGLEVEL', { 'choices':
('DEBUG', 'INFO', 'WARNING', 'ERROR'), 'default': 'WARNING', 'scope': <Scopes.COMMON:
1>, 'text': 'Log Level:', 'type': 'choice'}), ('LOGSIZE', { 'default': 5242880,
'scope': <Scopes.COMMON: 1>, 'text': 'Size of individual log file (in bytes)', 'type':
'int'}), ('LOGNUM', { 'default': 4, 'scope': <Scopes.COMMON: 1>, 'text': 'Number of
logging backups to keep of LOGSIZE', 'type': 'int'}), ('CONFIG', { 'hidden': True,
'scope': <Scopes.COMMON: 1>, 'text': 'System Configuration', 'type': 'list'}), (
'VENV', { 'default':
'/home/docs/checkouts/readthedocs.org/user_builds/auto-pi-lot/envs/v0.4.5', 'scope':
<Scopes.COMMON: 1>, 'text': 'Location of virtual environment, if used.', 'type':
'str'}), ('AUTOPLUGIN', { 'default': True, 'scope': <Scopes.COMMON: 1>, 'text':
'Attempt to import the contents of the plugin ' 'directory', 'type': 'bool'}), (
'PLUGIN_DB', { 'default': '/home/docs/autopilot/plugin_db.json', 'scope':
<Scopes.COMMON: 1>, 'text': 'filename to use for the .json plugin_db that ' 'keeps track
of installed plugins', 'type': 'str'}), ('BASEDIR', { 'default':
'/home/docs/autopilot', 'scope': <Scopes.DIRECTORY: 4>, 'text': 'Base Directory',
'type': 'str'}), ('DATADIR', { 'default': '/home/docs/autopilot/data', 'scope':
<Scopes.DIRECTORY: 4>, 'text': 'Data Directory', 'type': 'str'}), ('SOUNDDIR', {
'default': '/home/docs/autopilot/sounds', 'scope': <Scopes.DIRECTORY: 4>, 'text':
'Sound file directory', 'type': 'str'}), ('LOGDIR', { 'default':
'/home/docs/autopilot/logs', 'scope': <Scopes.DIRECTORY: 4>, 'text': 'Log Directory',
'type': 'str'}), ('VIZDIR', { 'default': '/home/docs/autopilot/viz', 'scope':
<Scopes.DIRECTORY: 4>, 'text': 'Directory to store Visualization results', 'type':
'str'}), ('PROTOCOLDIR', { 'default': '/home/docs/autopilot/protocols', 'scope':
<Scopes.DIRECTORY: 4>, 'text': 'Protocol Directory', 'type': 'str'}), ('PLUGINDIR', {
'default': '/home/docs/autopilot/plugins', 'scope': <Scopes.DIRECTORY: 4>, 'text':
'Directory to import ', 'type': 'str'}), ('REPODIR', { 'default': PosixPath('/home/
docs/checkouts/readthedocs.org/user_builds/auto-pi-lot/checkouts/v0.4.5'), 'scope':
<Scopes.DIRECTORY: 4>, 'text': 'Location of Autopilot repo/library', 'type': 'str'}), (
'CALIBRATIONDIR', { 'default': '/home/docs/autopilot/calibration', 'scope':
<Scopes.DIRECTORY: 4>, 'text': 'Location of calibration files for solenoids, ' 'etc.',
'type': 'str'}), ('PIGPIOMASK', { 'default': '1111110000111111111111110000', 'scope':
<Scopes.PILOT: 3>, 'text': 'Binary mask controlling which pins pigpio ' 'controls
according to their BCM numbering, ' 'see the -x parameter of pigpiod', 'type': 'str'}),
('PIGPIOARGS', { 'default': '-t 0 -l', 'scope': <Scopes.PILOT: 3>, 'text': 'Arguments
to pass to pigpiod on startup', 'type': 'str'}), ('PULLUPS', { 'scope': <Scopes.PILOT:
3>, 'text': 'Pins to pull up on system startup? (list of ' 'form [1, 2])', 'type':
'list'}), ('PULLDOWNS', { 'scope': <Scopes.PILOT: 3>, 'text': 'Pins to pull down on
system startup? (list of ' 'form [1, 2])', 'type': 'list'}), ('PING_INTERVAL', {
'default': 5, 'scope': <Scopes.PILOT: 3>, 'text': 'How many seconds should pilots wait
in ' 'between pinging the Terminal?', 'type': 'float'}), ('DRAWFPS', { 'default':
'20', 'scope': <Scopes.TERMINAL: 2>, 'text': 'FPS to draw videos displayed during '
'acquisition', 'type': 'int'}), ('PILOT_DB', { 'default':
'/home/docs/autopilot/pilot_db.json', 'scope': <Scopes.TERMINAL: 2>, 'text': 'filename
to use for the .json pilot_db that ' 'maps pilots to subjects (relative to BASEDIR)',
'type': 'str'}), ('TERMINAL_SETTINGS_FN', { 'default':
'/home/docs/autopilot/terminal.conf', 'scope': <Scopes.TERMINAL: 2>, 'text': 'filename
to store QSettings file for Terminal', 'type': 'str'}), ('TERMINAL_WINSIZE_BEHAVIOR', {
'choices': ('remember', 'moderate', 'maximum', 'custom'), 'default': 'remember',
'scope': <Scopes.TERMINAL: 2>, 'text': 'Strategy for resizing terminal window on '
'opening', 'type': 'choice'}), ('TERMINAL_CUSTOM_SIZE', { 'default': [0, 0, 1000,
400], 'depends': ('TERMINAL_WINSIZE_BEHAVIOR', 'custom'), 'scope': <Scopes.TERMINAL:
2>, 'text': 'Custom size for window, specified as [px from ' 'left, px from top, width,
height]', 'type': 'list'}), ('LINEAGE', { 'choices': ('NONE', 'PARENT', 'CHILD'),
'scope': <Scopes.LINEAGE: 5>, 'text': 'Are we a parent or a child?', 'type':
'choice'}), ('CHILDID', { 'default': [], 'depends': ('LINEAGE', 'PARENT'), 'scope':
<Scopes.LINEAGE: 5>, 'text': 'List of Child ID:', 'type': 'list'}), ('PARENTID', {
'depends': ('LINEAGE', 'CHILD'), 'scope': <Scopes.LINEAGE: 5>, 'text': 'Parent ID:',
'type': 'str'}), ('PARENTIP', { 'depends': ('LINEAGE', 'CHILD'), 'scope':
<Scopes.LINEAGE: 5>, 'text': 'Parent IP:', 'type': 'str'}), ('PARENTPORT', {
'depends': ('LINEAGE', 'CHILD'), 'scope': <Scopes.LINEAGE: 5>, 'text': 'Parent Port:',
'type': 'str'}), ('AUDIOSERVER', { 'scope': <Scopes.AUDIO: 6>, 'text': 'Enable jack
audio server?', 'type': 'bool'}), ('NCHANNELS', { 'default': 1, 'depends':
'AUDIOSERVER', 'deprecation': 'Deprecated and will be removed, use ' 'OUTCHANNELS
instead', 'scope': <Scopes.AUDIO: 6>, 'text': 'Number of Audio channels (deprecated;
used ' 'OUTCHANNELS)', 'type': 'int'}), ('OUTCHANNELS', { 'default': '', 'depends':
'AUDIOSERVER', 'scope': <Scopes.AUDIO: 6>, 'text': 'List of Audio channel indexes to
connect to', 'type': 'list'}), ('FS', { 'default': 192000, 'depends': 'AUDIOSERVER',
'scope': <Scopes.AUDIO: 6>, 'text': 'Audio Sampling Rate', 'type': 'int'}), (
'ALSA_NPERIODS', { 'default': 3, 'depends': 'AUDIOSERVER', 'scope': <Scopes.AUDIO: 6>,
'text': 'number of buffer periods to use with ALSA ' 'sound driver', 'type': 'int'}), (
'JACKDSTRING', { 'default': 'jackd -P75 -p16 -t2000 -dalsa ' '-dhw:sndrpihifiberry -P
-rfs -nper -s &', 'depends': 'AUDIOSERVER', 'scope': <Scopes.AUDIO: 6>, 'text':
'Arguments to pass to jackd, see the jackd ' 'manpage', 'type': 'str'})])

246 Chapter 21. prefs

Autopilot Documentation, Release 0.3.0

Ordered Dictionary containing default values for prefs.

An Ordered Dictionary lets the prefs be displayed in gui elements in a predictable order, but prefs are stored in
prefs.json in alphabetical order and the ‘live’ prefs used during runtime are stored in _PREFS

Each entry should be a dict with the following structure:

"PREF_NAME": {
"type": (str, int, bool, choice, list) # specify the appropriate GUI input, str␣

→˓or int are validators,
choices are a

dropdown box, and lists allow users to specify lists of values like "[0,␣
→˓1]"

"default": If possible, assign default value, otherwise None
"text": human-readable text that described the pref
"scope": to whom does this pref apply? see :class:`.Scopes`
"depends": name of another pref that needs to be supplied/enabled for this one␣

→˓to be enabled (eg. don't set sampling rate of audio server if audio server␣
→˓disabled)

can also be specified as a tuple like ("LINEAGE", "CHILD") that enables the␣
→˓option when prefs[depends[0]] == depends[1]

"choices": If type=="choice", a tuple of available choices.
}

_WARNED = []

Keep track of which prefs we have warned about getting defaults for so we don’t warn a zillion times

get(key: Optional[str] = None)
Get a pref!

If a value for the given key can’t be found, prefs will attempt to

Parameters key (str, None) – get pref of specific key, if None, return all prefs

Returns value of pref (type variable!), or None if no pref of passed key

set(key: str, val)
Set a pref!

Note: Whenever a pref is set, the prefs file is automatically updated – prefs are system-durable!!

(specifically, whenever the module-level _INITIALIZED value is set to True, prefs are saved to file to avoid
overwriting before loading)

Parameters
• key (str) – Name of pref to set

• val – Value of pref to set (prefs are not type validated against default types)

save_prefs(prefs_fn: Optional[str] = None)
Dump prefs into the prefs_fn .json file

Parameters
• prefs_fn (str, None) – if provided, pathname to prefs.json otherwise resolve prefs.json

according the

247

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str

Autopilot Documentation, Release 0.3.0

• to the normal methods. . . .
init(fn=None)

Initialize prefs on autopilot start.

If passed dict of prefs or location of prefs.json, load and use that

Otherwise

• Look for the autopilot wayfinder ~/.autopilot file that tells us where the user directory is

• look in default location ~/autopilot/prefs.json

Todo: This function may be deprecated in the future – in its current form it serves to allow the sorta janky launch
methods in the headers/footers of autopilot/core/pilot.py and autopilot/core/terminal.py that will eventually be
transformed into a unified agent framework to make launching easier. Ideally one would be able to just import
prefs without having to explicitly initialize it, but we need to formalize the full launch process before we make
the full lurch to that model.

Parameters fn (str, dict) – a path to prefs.json or a dictionary of preferences

add(param, value)
Add a pref after init

Parameters
• param (str) – Allcaps parameter name

• value – Value of the pref

git_version(repo_dir)
Get the git hash of the current commit.

Stolen from numpy’s setup

and linked by ryanjdillon on SO

Parameters repo_dir (str) – directory of the git repository.

Returns git commit hash.

Return type unicode

compute_calibration(path=None, calibration=None, do_return=False)

Parameters
• path
• calibration
• do_return

Returns:

clear()

Mostly for use in testing, clear loaded prefs (without deleting prefs.json)

(though you will probably overwrite prefs.json if you clear and then set another pref so don’t use this except in
testing probably)

248 Chapter 21. prefs

https://github.com/numpy/numpy/blob/master/setup.py#L70-L92
https://stackoverflow.com/a/40170206

CHAPTER

TWENTYTWO

EXTERNAL

Autopilot uses two lightly modified versions of existing libraries that are included in the repository as submodules.

• mlx90640-library - driver for the hardware.i2c.MLX90640 that correctly sets the baudrate for 64fps capture

• pigpio - pigpio that is capable of returning full timestamps rather than system ticks in gpio callbacks.

249

https://github.com/sneakers-the-rat/mlx90640-library/
https://github.com/sneakers-the-rat/pigpio

Autopilot Documentation, Release 0.3.0

250 Chapter 22. external

CHAPTER

TWENTYTHREE

CHANGELOG

For full details, see commit logs and issues at http://github.com/wehr-lab/autpilot

23.1 Version 0.4

23.1.1 v0.4.4 - Timing and Sound (February 2nd, 2022)

Several parts to this update!

• See PR#146 for details about improvements to jackd sound timing! In short:

• Changed the way that continuous sounds work. Rather than cycling through an array, which was easy to drop,
now pass a sound object that can generate its own samples on the fly using the hydration module.

• More accurate timing of sound ending callbacks. Before, the event would be called immediately on buffering the
sounds into the jack ports, but that was systematically too early. Instead, use jack timing methods to account for
delay from blocksize and n_periods to wait_until a certain delay to set() the event. See _wait_for_end

Other stuff:

New

• hydration module for creating and storing autopilot objects between processes and computers!

• @Introspect made and added to sound classes. Will be moved to root class. Allows storing the parameters
given on instantiation.

• requires module for more explicit declarations of by-object dependencies to resolve lots of the little fragile
checks throughout the package, as well as make it easier for plugins :)

• types module that will, well, have types for v0.5.0’s reworked type system!

• minor - added exceptions module, just stubs for now

• Made dummy sound class to just use sounds without needing a running sound server

• New transformations! The Prasad line fitting algorithm as Linefit_Prasad and ordering points in a line from,
eg. edge detection in ``Order_Points` `

251

http://github.com/wehr-lab/autpilot
https://github.com/wehr-lab/autopilot/pull/146

Autopilot Documentation, Release 0.3.0

Improvements

• Only warn once for returning a default pref value, and make its own warning class so that it can be filtered.

• Cleaning up the base sound classes and moved them to their own module because sounds was very cumbersome
and hard to reason about. Now use get_sound_class instead of declaring within the module.

• Made optional install packages as extras_require so now can install with pip install auto-pi-lot -E
pilot rather than autodetecting based on architecture. Further improvements (moving to poetry) will be in
v0.5.0

Bugfixes

• Correctly identify filenames in logging, before the last module name was treated as a suffix on the path and
removed, and so only the most recent logger created would actually log to disk. Logging now works across
threads and processes.

• Fall back to a non-multiprocessing-based prefs if for some reason we can’t use a mp.Manager in the given context
(eg. ipython) - Still need to figure out a way to not print the exception because it is thrown asynchronously.

• as much as i love it, the splash screen being absent for whatever reason shouldn’t crash the program.

• Raise an exception when instantiating a picamera without having picamera installed, re: https://github.com/
wehr-lab/autopilot/issues/142

• Raise ImportError when ffmpeg is not present and trying to use a videowriter class

• Use a deque rather than an infinitely growing list to store GPIO events.

Docs

• Documenting the scripts module a bit better.

• Lots more docs on jack_server

23.1.2 v0.4.3 (October 20th, 2021)

New Features

• timeseries.Gammatone filter and sounds.Gammatone filtered noise classes! Thank you scipy team for mak-
ing this simple!

Minor Improvements

• 579ef1a - En route to implementing universal calibrations, load and save them in a specified place for each
hardware object instead of the horrific olde way which was built into prefs for some reason

• prefs attempts to make directories if they don’t exist

• plenty of new debugging flags!

252 Chapter 23. Changelog

https://github.com/wehr-lab/autopilot/issues/142
https://github.com/wehr-lab/autopilot/issues/142
https://github.com/wehr-lab/autopilot/commit/579ef1a41518f57721decd7ecfc289f2b358b356

Autopilot Documentation, Release 0.3.0

Bugfixes

• a775723 - Sleep before graduating tasks, lateral fix until we rework the task initiation ritual

• 360062d - pad sounds with silence or continuous sounds if they aren’t a full period length

• 6614c80 - Revert to old way of making chunks to make it work with both padded and unpadded sounds

• Import sounds module directly instead of referring from the package root in tests

• Terminal node pings pilots instead of an erroneous reference to a nonexistent Terminal.send method

• 47dd4c2 - Fix pinging by passing pilot id, and handle pressing start/stop button when subject not selected

• Fixed some GUI exceptions from trying to make blank lines in reassign window, improperly handling the Subject
class.

23.1.3 v0.4.2 (August 24th)

Minor Improvements

• Transformer can now forward processed data and input data in addition to returning the processed data. A
lateral improvement until the streaming API is finished.

• Slice now accepts arbitrary indexing objects, rather than just slice objects. Not sure why this wasn’t the case
before.

Bugfixes

• Fixed a circular import problem that prevented the stim module from being imported because the placeholder
metaclass was in the __init__.py file. Moved it to its own file.

• Fixed another instantiated but not raised value error in gpio

Documentation

• Documenting flags in networking objects

• Documenting min_size in camera stream method

• Documenting invert_gyro in I2C_9DOF

23.1.4 v0.4.1 (August 17th)

Bugfixes

• The autopilot.setup.forms.HARDWARE_FORM would incorrectly use the class object itself rather than the
class name in a few places which caused hardware names to incorrectly display and be impossible to add!

• Correctly handle module name in loggers when running interactively

• Use accelerometer calibration when computing rotation()

• Use autopilot.get() in autopilot.transform.make_transform()

23.1. Version 0.4 253

https://github.com/wehr-lab/autopilot/commit/a775723acc66e327492145066eea0e7dff59331e
https://github.com/wehr-lab/autopilot/commit/360062d3ad4cd30cdba1c53eebe5ff7d7698ffad
https://github.com/wehr-lab/autopilot/commit/6614c808ec2f3fc86e01df17b78aa976e8843b5a
https://github.com/wehr-lab/autopilot/commit/47dd4c2345df081fb5f3ca1c1705d2f696fc62c9

Autopilot Documentation, Release 0.3.0

Docs

• Document the attributes in autopilot.transform.timeseries.Kalman

23.1.5 v0.4.0 - Become Multifarious (August 3rd, 2021)

This release is primarily to introduce the new plugin system, the autopilot wiki, and their integration as a way of starting
the transformation of Autopilot into a tool with decentralized development and governance (as well as make using the
tool a whole lot easier and more powerful).

With humble thanks to Lucas Ott, Tillie Morris, Chris Rodgers, Arne Meyer , Mikkel Roald-Arbøl , David Robbe , and
an anonymous discussion board poster for being part of this release.

New Features

• Registries & Plugins - Autopilot now supports users writing their code outside of the library as plugins! To
support this, a registry system was implemented throughout the program. Plugin objects can be developed as
objects that inherit from the Autopilot object tree – eg. implementing a GPIO object by subclassing hardware.
gpio.GPIO , or a new task by subclassing Task . This system is flexible enough to allow any lineage of objects
to be included as a plugin – stimuli, tasks, and so on – and we will be working to expand registries to every
object in Autopilot, including the ability for plugins to replace core modules to make Autopilot’s flexibility verge
on ludicrous. The basic syntax of the registry system is simple and doesn’t require any additional logic beyond
inheritance to be implemented on plugin objects – autopilot.get('object_type', 'object_name') is
the basic method, with a few aliases for specific object types like autopilot.get_hardware(). Also thanks
to Arne Meyer for submitting an early draft of the registry system and Mikkel Roald-Arbøl for raising the issue.

• At long last, the Autopilot Wiki is alive!!!! - https://wiki.auto-pi-lot.com/ - The wiki is the place for communal
preservation of technical knowledge about using Autopilot, like hardware designs, build guides, parameter sets,
and beyond! This isn’t any ordinary wiki, though, we got ourselves a semantic wiki which augments traditional
wikis with a rich system of human and computer-readable linked attributes: a particular type of page will have
some set of attributes, like a page about a 3D printed part will have an associated .stl file, but rather than having
these be in plaintext they are specified in a format that is queryable, extensible, and infinitely mutable. The vision
for the wiki is much grander (but not speculative! very concrete!) than just a place to take notes, but is intended
to blend the use of Autopilot as an experimental tool with body of knowledge that supports it. Autopilot can
query the wiki with the wiki module like wiki.ask('[[Category:3D_CAD]]', 'Has STL') to get links to
all .stl files for all 3D parts on the wiki. The integration between the two makes using and submitting information
trivial, but also makes designing whole new types of community interfaces completely trivial. As a first pass, the
Wiki will be the place to index plugins, the system for submitting them, querying them, and downloading them
only took a few hours and few dozen lines of code to implement. The wiki is infinitely malleable – that’s the
point – and I am very excited to see how people use it.

• Tests & Continuous Integration with Travis! We are on the board with having nonzero tests! The travis page is
here: https://travis-ci.com/github/wehr-lab/autopilot and the coveralls page is here: https://coveralls.io/github/
wehr-lab/autopilot . At the moment we have a whopping 27% coverage, but as we build out our testing suite we
hope that it will become much easier for people to contribute to Autopilot and be confident that it works!

• New Hardware Objects
– cameras.PiCamera - A fast interface to the PiCamera, wrapping the picamera library, and using tips

from its developer to juice every bit of speed i could!

– The I2C_9DOF object was massively improved to take better advantage of its onboard DSP and expose
more of its i2c commands.

• New Transforms

254 Chapter 23. Changelog

https://github.com/cxrodgers/
https://github.com/arnefmeyer
https://github.com/roaldarbol
https://github.com/neurodavidus
https://github.com/wehr-lab/autopilot/pull/109
https://github.com/arnefmeyer
https://github.com/roaldarbol
https://wiki.auto-pi-lot.com/
https://travis-ci.com/github/wehr-lab/autopilot
https://coveralls.io/github/wehr-lab/autopilot
https://coveralls.io/github/wehr-lab/autopilot

Autopilot Documentation, Release 0.3.0

– timeseries.Kalman - adapted a Kalman filter from the wonderful filterpy package! it’s in the new
timeseries transform module

– geometry.IMU_Orientation - IMU_Orientation performs a sensor fusion algorithm with the
Kalman Filter class to combine gyroscope and accelerometer measurements into a better estimate
of earth-centric roll and pitch. This is used by the IMU class, but is made independent so it can be
used without an Autopilot hardware object/post-facto/etc.

– timeseries.Filter_IIR - Filter_IIR implements scipy’s IIR filter as a transform object.

– timeseries.Integrate - Integrate adds successive numbers together (scaled by dt if requested).
not much by itself, but when used with a kalman filter very useful :)

– geometry.Rotate - use scipy to rotate a vector by some angle in x, y, and/or z

– geometry.Spheroid - fit and transform 3d coordinates according to some spheroid - used in the
IMU’s accelerometer calibration method: given some target spheroid, and some deformed spheroid
(eg. a miscalibrated accelerometer might have the x, y, or z axis scaled or offset) either explicitly set
or estimated from a series of point measurements, transform future input given that transformation to
correct for the deformed source spheroid.

• New Prefs
– 'AUTOPLUGIN' - Attempt to import the contents of the plugin directory,

– 'PLUGIN_DB' - filename to use for the .json plugin_db that keeps track of installed plugins’,

– 'PING_INTERVAL' - How many seconds should pilots wait in between pinging the Terminal?’,

– 'TERMINAL_SETTINGS_FN' - filename to store QSettings file for Terminal’,

– 'TERMINAL_WINSIZE_BEHAVIOR' - Strategy for resizing terminal window on opening’,

– 'TERMINAL_CUSTOM_SIZE' - Custom size for window, specified as [px from left, px from top, width,
height]’,

Major Improvements

• Stereo Sound (Thank you Chris Rodgers!) - https://github.com/wehr-lab/autopilot/pull/102

• Multihop messages & direct messaging - https://github.com/wehr-lab/autopilot/pull/99 - it is now possible to
send multihop messages through multiple Station objects, as well as easier to send messages directly between
net nodes. See the examples in the network tests section of the docs.

• Multiple Children (Thank you Chris Rodgers!) - https://github.com/wehr-lab/autopilot/pull/103 - the CHILDID
field now accepts a list, allowing a Pilot to initialize child tasks on multiple children. (this syntax and the hier-
archical nature of pilots and children will be deprecated as we refactor the networking modules into a general
mesh system, but this is lovely to have for now :)

• Programmatic Setup - https://github.com/wehr-lab/autopilot/issues/33 - noninteractive setup of prefs and scripts
by using autopilot.setup -f prefs.json -p PREFNAME=VALUE -s scriptname1 -s scriptname2

• Widget to stream video, en route to more widgets for direct GUI control of hardware objects connected to pilots

• Support python 3.8 and 3.9 essentially by not insisting that the spinnaker SDK be installable by all users (which
at the time was only available for 3.7)

23.1. Version 0.4 255

https://github.com/cxrodgers/
https://github.com/wehr-lab/autopilot/pull/102
https://github.com/wehr-lab/autopilot/pull/99
https://github.com/cxrodgers/
https://github.com/wehr-lab/autopilot/pull/103
https://github.com/wehr-lab/autopilot/issues/33

Autopilot Documentation, Release 0.3.0

Minor Improvements

• Terminal can be opened maximized, or have its size and position set explicitly, preserve between launches (Thank
you Chris Rodgers!) - https://github.com/wehr-lab/autopilot/pull/70

• Pilots will periodically ping the Terminal again, Terminal can manually ping Pilots that may have gone silent -
https://github.com/wehr-lab/autopilot/pull/91

• Pilots share their prefs with the Terminal in their initial handshake - https://github.com/wehr-lab/autopilot/pull/
91

• Reintroduce router ports for net-nodes to allow them to bind a port to receive messages - https://github.com/
wehr-lab/autopilot/pull/115/commits/35be5d634d98a7983ec3d3d6c5b94da6965a2579

• Listen methods are now optional for net_nodes

• Allowed the creation of dataless tasks - https://github.com/wehr-lab/autopilot/pull/115/commits/
628e1fb9c8fcd15399b19b351fed87e4826bc9ab

• Allowed the creation of plotless tasks - https://github.com/wehr-lab/autopilot/pull/115/commits/
08d99d55a32b45f54e3853813c7c71ea230b25dc

• The I2C_9DOF clas uses memoryviews rather than buffers for a small performance boost - https://github.com/
wehr-lab/autopilot/pull/115/commits/890f2c500df8010b50d61f64e2755cd2c7a8aeed

• Phasing out using Queue s in favor of collections.deque for applications that only need thread and not
process safety because they are way faster and what we wanted in the first place anyway.

• New Scripts - i2c, picamera, env_terminal

• utils.NumpyEncoder and decoder to allow numpy arrays to be json serialized

• calibrations are now loaded by hardware objects themselves instead of the extraordinarily convoluted system in
prefs – though some zombie code still remains there.

• Net nodes know their ip now, but this is a lateral improvement pending a reworking of the networking modules.

• performance script now sets swappiness = 10 to discourage the use of swapfiles - see https://www.
raspberrypi.org/forums/viewtopic.php?t=198765

• Setting a string in the deprecation field of a pref in _DEFAULTS prints it as a warning to start actually depre-
cating responsibly.

• Logging in more places like Subject creation, manipulation, protocol assignation.

Bugfixes

• Loggers would only work for the last object that was instantiated, which was really embarassing. fixed - https:
//github.com/wehr-lab/autopilot/pull/91

• Graduation criteria were calculated incorrectly when subjects were demoted in stages of a protocol - https://
github.com/wehr-lab/autopilot/pull/91

• fix durations in solenoid class (Thank you Chris Rodgers!) - https://github.com/wehr-lab/autopilot/pull/63

• LED_RGB ignores zero - https://github.com/wehr-lab/autopilot/pull/98

• Fix batch assignment window crashing when there are subjects that are unassigned to a task - https://github.com/
wehr-lab/autopilot/pull/115/commits/e42fc5802792822ff5a53a2379041a4a8b301e9e

• Catch malformed protocols in batch assignment widget - https://github.com/wehr-lab/autopilot/pull/115/
commits/2cc8508a4bf3a6d49512197dc72433c60d0c656e

256 Chapter 23. Changelog

https://github.com/cxrodgers/
https://github.com/wehr-lab/autopilot/pull/70
https://github.com/wehr-lab/autopilot/pull/91
https://github.com/wehr-lab/autopilot/pull/91
https://github.com/wehr-lab/autopilot/pull/91
https://github.com/wehr-lab/autopilot/pull/115/commits/35be5d634d98a7983ec3d3d6c5b94da6965a2579
https://github.com/wehr-lab/autopilot/pull/115/commits/35be5d634d98a7983ec3d3d6c5b94da6965a2579
https://github.com/wehr-lab/autopilot/pull/115/commits/628e1fb9c8fcd15399b19b351fed87e4826bc9ab
https://github.com/wehr-lab/autopilot/pull/115/commits/628e1fb9c8fcd15399b19b351fed87e4826bc9ab
https://github.com/wehr-lab/autopilot/pull/115/commits/08d99d55a32b45f54e3853813c7c71ea230b25dc
https://github.com/wehr-lab/autopilot/pull/115/commits/08d99d55a32b45f54e3853813c7c71ea230b25dc
https://github.com/wehr-lab/autopilot/pull/115/commits/890f2c500df8010b50d61f64e2755cd2c7a8aeed
https://github.com/wehr-lab/autopilot/pull/115/commits/890f2c500df8010b50d61f64e2755cd2c7a8aeed
https://www.raspberrypi.org/forums/viewtopic.php?t=198765
https://www.raspberrypi.org/forums/viewtopic.php?t=198765
https://github.com/wehr-lab/autopilot/pull/91
https://github.com/wehr-lab/autopilot/pull/91
https://github.com/wehr-lab/autopilot/pull/91
https://github.com/wehr-lab/autopilot/pull/91
https://github.com/cxrodgers/
https://github.com/wehr-lab/autopilot/pull/63
https://github.com/wehr-lab/autopilot/pull/98
https://github.com/wehr-lab/autopilot/pull/115/commits/e42fc5802792822ff5a53a2379041a4a8b301e9e
https://github.com/wehr-lab/autopilot/pull/115/commits/e42fc5802792822ff5a53a2379041a4a8b301e9e
https://github.com/wehr-lab/autopilot/pull/115/commits/2cc8508a4bf3a6d49512197dc72433c60d0c656e
https://github.com/wehr-lab/autopilot/pull/115/commits/2cc8508a4bf3a6d49512197dc72433c60d0c656e

Autopilot Documentation, Release 0.3.0

• Remove broken Terminal.reset_ui method and made control panel better at adding/removing pilots - https:
//github.com/wehr-lab/autopilot/pull/91

• Subject class handles unexpected state a lot better (eg. no task assigned, no step assigned, tasks with no data.)
but is still an absolute travesty that needs to be refactored badly.

• The jackclient would crash with long-running continuous sounds as the thread feeding it samples eventually
hiccuped. Made more robust by having jackclient store samples locally int he sound server rather than being
continuously streamed from the queue.

• PySide2 references still incorrectly used QtGui rather than QtWidgets

• pigpio scripts would not be stopped and removed when a task was stopped, the gpio.clear_scripts() func-
tion now handles that.

• xcb was removed from PySide2 distributions, so it’s now listed in the requirements for the Terminal and made
available in the env_terminal script.

• LED_RGB didn’t appropriately raise a ValueError when called with a single pin - https://github.com/wehr-lab/
autopilot/issues/117

• A fistful of lingering Python 2 artifacts

Code Structure

• continuing to split out modules in autopilot.core - networking this time

• utils is now a separate module instead of being in multiple places

• the npyscreen forms in setup_autopilot were moved to a separate module

• setup_autopilotwas broken into functions instead of a very long and impenetrable script. still a bit of cleaning
to do there.

• autopilot.setup.setup_autopilot was always extremely awkward, so it’s now been aliased as
autopilot.setup

• the docs have now been split into subfolders rather than period separated names to make urls nicer – eg
/dev/hardware/cameras.htm rather than /dev/hardware.cameras.html . this should break some links when switch-
ing between versions on readthedocs but other than that be nondestructive.

Docs

• new Quickstart documentation with lots of quick examples!

Regressions

• Removed the check_compatible method in the Transforms class. We will want to make a call at some point
if we want to implement a full realtime pipelining framework or if we want to use something like luigi or joblib
or etc. for now this is an admission that type and shape checking was never really implemented but it does raise
some exceptions sometimes.

23.1. Version 0.4 257

https://github.com/wehr-lab/autopilot/pull/91
https://github.com/wehr-lab/autopilot/pull/91
https://github.com/wehr-lab/autopilot/issues/117
https://github.com/wehr-lab/autopilot/issues/117

Autopilot Documentation, Release 0.3.0

23.2 Version 0.3

23.2.1 v0.3.5 (February 22, 2021)

Bugfixes

• Very minor one, fixes to the way Terminal accesses the pilot_db.json file to use Terminal.pilots property
that makes a new pilot_db.json file if one doesn’t exist, but otherwise loads the one that is found in prefs.
get('PILOT_DB')

• Reorganized Terminal source to group properties together & minor additions of type hinting

• Fixed some bad fallback behavior looking for files in old hardcoded default directories, eg. in the ye olde utils.
get_pilotdb()

23.2.2 v0.3.4 (December 13, 2020)

Improvements

• Unify the creation of loggers!!!! See the docs ;) autopilot.core.loggers : https://github.com/wehr-lab/
autopilot/pull/52/commits/d55638f985ab38044fc95ffeff5945021c2e198e https://github.com/wehr-lab/
autopilot/issues/38

• Unify prefs, including sensible defaults, refactoring of scripts into a reasonable format, multiprocess-safety, and
just generally a big weight off my mind. Note that this is a breaking change to the way prefs are accessed. Previ-
ously one would do prefs.PREF_NAME, but that made it very difficult to provide default values or handle missing
prefs. the new syntax is prefs.get(‘PREF_NAME’) which returns defaults with a warning and None if the pref is
not set: https://github.com/wehr-lab/autopilot/pull/52/commits/c40a212bcaf5f184f2a6a606027fe15b1b4df59c
https://github.com/wehr-lab/autopilot/issues/38

• completely clean up scripts, and together that opened the path to clean up setup as well. so all things configuration
got a major promotion

• We’re on the board with CI and automated testing with a positively massive 3% code coverage!!! https://github.
com/wehr-lab/autopilot/pull/52/commits/743bb8fe67a69fcc556fa76e81f72f97f510dff7

• new scripts to eg. create autopilot alias: https://github.com/wehr-lab/autopilot/pull/52/commits/
211919b05922e18a85d8ef6216973f4000fd32c5

Bugfixes

• cleanup scripts on object deletion: https://github.com/wehr-lab/autopilot/pull/52/commits/
e8218304bd7ef2e13d2adfc236f3e781abea5f78 https://github.com/wehr-lab/autopilot/issues/41

• don’t drop ‘floats’ from gui when we say we can use them. . . : https://github.com/wehr-lab/autopilot/pull/52/
commits/743bb8fe67a69fcc556fa76e81f72f97f510dff7

• pigpio scripts dont like floats: https://github.com/wehr-lab/autopilot/pull/52/commits/
9f939cd78a5296db3bf318115bee0213bcd1afc0

258 Chapter 23. Changelog

https://github.com/wehr-lab/autopilot/pull/52/commits/d55638f985ab38044fc95ffeff5945021c2e198e
https://github.com/wehr-lab/autopilot/pull/52/commits/d55638f985ab38044fc95ffeff5945021c2e198e
https://github.com/wehr-lab/autopilot/issues/38
https://github.com/wehr-lab/autopilot/issues/38
https://github.com/wehr-lab/autopilot/pull/52/commits/c40a212bcaf5f184f2a6a606027fe15b1b4df59c
https://github.com/wehr-lab/autopilot/issues/38
https://github.com/wehr-lab/autopilot/pull/52/commits/743bb8fe67a69fcc556fa76e81f72f97f510dff7
https://github.com/wehr-lab/autopilot/pull/52/commits/743bb8fe67a69fcc556fa76e81f72f97f510dff7
https://github.com/wehr-lab/autopilot/pull/52/commits/211919b05922e18a85d8ef6216973f4000fd32c5
https://github.com/wehr-lab/autopilot/pull/52/commits/211919b05922e18a85d8ef6216973f4000fd32c5
https://github.com/wehr-lab/autopilot/pull/52/commits/e8218304bd7ef2e13d2adfc236f3e781abea5f78
https://github.com/wehr-lab/autopilot/pull/52/commits/e8218304bd7ef2e13d2adfc236f3e781abea5f78
https://github.com/wehr-lab/autopilot/issues/41
https://github.com/wehr-lab/autopilot/pull/52/commits/743bb8fe67a69fcc556fa76e81f72f97f510dff7
https://github.com/wehr-lab/autopilot/pull/52/commits/743bb8fe67a69fcc556fa76e81f72f97f510dff7
https://github.com/wehr-lab/autopilot/pull/52/commits/9f939cd78a5296db3bf318115bee0213bcd1afc0
https://github.com/wehr-lab/autopilot/pull/52/commits/9f939cd78a5296db3bf318115bee0213bcd1afc0

Autopilot Documentation, Release 0.3.0

Docs

• Clarification of supported systems: https://github.com/wehr-lab/autopilot/pull/52/commits/
ce0ddf78b7f59f5487fec2ca7e8fb3c0ad162051

• Solved an ancient sphinx riddle of how to get data objects/constants to pretty-print: https://github.com/wehr-lab/
autopilot/pull/52/commits/ec6d5a75dada05688b6bd3c1a53b3d9e5923870f

• Clarify hardware prefs https://github.com/wehr-lab/autopilot/pull/52/commits/
f3a7609995c84848004891a0f41c7847cb754aae

• what numbering system do we use: https://github.com/wehr-lab/autopilot/pull/52/commits/
64267249d7b1ec1040b522308cd60f928f2b2ee6

Logging

• catch pigpio script init exception: https://github.com/wehr-lab/autopilot/pull/52/commits/
3743f8abde7bbd3ed7766bdd75aee52afedf47e2

• more of it idk https://github.com/wehr-lab/autopilot/pull/52/commits/b682d088dbad0f206c3630543e96a5a00ceabe25

23.2.3 v0.3.3 (October 25, 2020)

Bugfixes

• Fix layout in batch reassign gui widget from python 3 float division

• Cleaner close by catching KeyboardInterrupt in networking modules

• Fixing audioserver boot options – if ‘AUDIOSERVER’ is set even if ‘AUDIO’ isn’t set in prefs, should still start
server. Not full fixed, need to make single plugin handler, single point of enabling/disabling optional services
like audio server

• Fix conflict between polarity and pull in initializing pulls in pilot

• Catch tables.HDF5ExtError if local .h5 file corrupt in pilot

• For some reason ‘fs’ wasn’t being replaced in the jackd string, reinstated.

• Fix comparison in LED_RGB that caused ‘0’ to turn on full becuse ‘value’ was being checked for its truth value
(0 is false) rather than checking if value is None.

• obj.next() to next(obj)` in jackdserver

Improvements

• Better internal handling of pigpiod – you’re now able to import and use hardware modules without needing to
explicitly start pigpiod!!

• Hopefully better killing of processes on exit, though still should work into unified process manager so don’t need
to reimplement everything (eg. as is done with launching pigpiod and jackd)

• Environment scripts have been split out into setup/scripts.py and you can now run them with python -m
autopilot.setup.run_script (use --help to see how!)

• Informative error when setup is run with too narrow terminal: https://github.com/wehr-lab/autopilot/issues/23

• More loggers, but increased need to unify logger creation!!!

23.2. Version 0.3 259

https://github.com/wehr-lab/autopilot/pull/52/commits/ce0ddf78b7f59f5487fec2ca7e8fb3c0ad162051
https://github.com/wehr-lab/autopilot/pull/52/commits/ce0ddf78b7f59f5487fec2ca7e8fb3c0ad162051
https://github.com/wehr-lab/autopilot/pull/52/commits/ec6d5a75dada05688b6bd3c1a53b3d9e5923870f
https://github.com/wehr-lab/autopilot/pull/52/commits/ec6d5a75dada05688b6bd3c1a53b3d9e5923870f
https://github.com/wehr-lab/autopilot/pull/52/commits/f3a7609995c84848004891a0f41c7847cb754aae
https://github.com/wehr-lab/autopilot/pull/52/commits/f3a7609995c84848004891a0f41c7847cb754aae
https://github.com/wehr-lab/autopilot/pull/52/commits/64267249d7b1ec1040b522308cd60f928f2b2ee6
https://github.com/wehr-lab/autopilot/pull/52/commits/64267249d7b1ec1040b522308cd60f928f2b2ee6
https://github.com/wehr-lab/autopilot/pull/52/commits/3743f8abde7bbd3ed7766bdd75aee52afedf47e2
https://github.com/wehr-lab/autopilot/pull/52/commits/3743f8abde7bbd3ed7766bdd75aee52afedf47e2
https://github.com/wehr-lab/autopilot/pull/52/commits/b682d088dbad0f206c3630543e96a5a00ceabe25
https://github.com/wehr-lab/autopilot/issues/23

Autopilot Documentation, Release 0.3.0

Cleanup

• remove unused imports in main __init__.py that made cyclical imports happen more frequently than necessary

• single-sourcing version number from __init__.py

• more cleanup of unnecessary meta and header stuff left from early days

• more debugging flags

• filter NaturalNameWarning from pytables

• quieter cleanups for hardware objects

23.2.4 v0.3.2 (September 28, 2020)

Bugfixes

• https://github.com/wehr-lab/autopilot/issues/19 - previously, I attempted to package binaries for the lightly mod-
ified pigpio and for jackd (the apt binary used to not work), but after realizing that was the worst possible way of
going about it I changed install strategies, but didn’t entirely remove the vestiges of the prior attempt. The instal-
lation expected certain directories to exist (in autopilot/external) that didn’t, which crashed and choked install.
Still need to formalize a configuration and plugin system, but getting there.

• https://github.com/wehr-lab/autopilot/issues/20 - the jackd binary in the apt repos for the raspi used to not work,
so i was in the habit of compiling jackd audio from source. I had build that into the install routine, but something
about that now causes the JACK-Client python interface to throw segfaults. Somewhere along the line someone
fixed the apt repo version of jackd so we use that now.

• previously I had only tested in a virtual environment, but now the installation routine properly handles not being
in a venv.

Cleanup

• remove bulky static files like fonts and css from /docs/ where they were never needed and god knows how they
got there

• use a forked sphinx-sass when building docs that doesn’t specify a required sphinx version (which breaks sphinx)

• removed skbuild requirements from install

• fixed pigpio install requirement in requirements_pilot.txt

• included various previously missed files in MANIFEST.in

• added installation of system libraries to the pilot configuration menu

23.2.5 v0.3.1 (August 4, 2020)

Practice version!!! still figuring out pypi

260 Chapter 23. Changelog

https://github.com/wehr-lab/autopilot/issues/19
https://github.com/wehr-lab/autopilot/issues/20

Autopilot Documentation, Release 0.3.0

23.2.6 v0.3.0 (August 4, 2020)

Major Updates

• Python 3 - We’ve finally made it to Python 3! Specifically we have brought Autopilot up to compatibility with
Python 3.8 – though the Spinnaker SDK is currently only available through Python 3.7, so we have formally
required 3.7 for now while we work on moving acquisition to Aravis. I will not attempt to keep Autopilot com-
patible with Python 2, but no decision has been made about compatibility with other versions of Python 3. Until
then, expect that Autopilot will attempt to keep up with major version changes. The switch also let up update
PySide (Qt library used for the GUI) to PySide2, which uses Qt5 and has a whole raft of other improvements.

• Continuous Data Handling - The Subject class and networking modules have been improved to handle
continuous data (eg. streaming data, generally non-trialwise or non-event-sampled data). Continuous data can
be set in a Task description either with a tables column descriptor as trial data is, but also can be set as 'infer',
for which the Subject class will wait until it receives the first data and automatically create a tables column
depending on its type and shape. While previously we intended to nudge users to be explicit about declaring their
data, this was necessary to allow for data that might be variable in type and shape to be included in a Task – eg.
it should be possible to record video data without needing to specify the resolution or bit depth as a hardcoded
parameter in a task class. I have come to like type inference, and may make it a general practice for all types of
data. That would potentially allow tasks to be written without explicitly declaring the data that they produce at
all, but I haven’t decided if that’s a good thing or not yet.

• The GPIO engine has been rebuilt, relying more on pigpio’s function interface. This means that GPIO timing is
now ~microsecond precise, important for reward delivery, LED flashing, and a number of other basic infrastruc-
tural needs. The reorganization of hardware modules resulted in general GPIO , Digital_In and Digital_Out
metaclasses, making common operations like setting polarity, triggers, and pullup/down resistors much easier.

• Setup has been greatly improved. This includes proper packaging and installation with setuptools & sk-build,
allowing us to finally join PyPI :) https://pypi.org/project/auto-pi-lot/ . Setup has been unified into a single
npyscreen-based set of prompts that allow the user to run scripts to install libraries or configure their environment
(also see run_script() and list_scripts()), set prefs, configure hardware objects (based on some very
fun signature introspection), setup autopilot as a systemd service, etc. Getting started with Autopilot is now three
commands!:

pip install auto-pi-lot
autopilot.setup.setup_autopilot
~/autopilot/launch_autopilot.sh

Minor Updates

• Logging level is now set from prefs, so where before, eg. every message through the networking modules
would be logged to stdout, now only warnings and exceptions are. This gives a surprisingly large performance
boost.

– Logging has also been much improved in networking modules, where rather than an awkward
do_logging flag that was used to avoid logging performance-critical events like streaming data, logging
is controlled by log level throughout the system. By default, logging of most messages is set at debug level
so they don’t drown out important messages in the logs as they used to.

• Networking modules now only deserialize messages if they are the final recipient, saving lots of processing time
– particularly with streamed arrays. Message objects also only re-serialize messages if they have been changed.
Message structure has been changed such that serialized messages are now of the general format:

[sender,
(optional) intermediate_node_1, intermediate_node_2, ...

(continues on next page)

23.2. Version 0.3 261

https://pypi.org/project/auto-pi-lot/

Autopilot Documentation, Release 0.3.0

(continued from previous page)

final_recipient,
message_contents]

• Configuration will continue to be a point of improvement, but a few minor updates were made:

– prefs.CONFIG will be used to signal multiple, potentially overlapping agent configurations, each of which
may have their own system dependencies, external daemons, etc. Eg. a Pilot could be configured to play
audio (which requires a jackd daemon to be started before Autopilot) and video (which requires Autopilot
to be started in a X session). Checks of prefs.CONFIG are now in rather than == to reflect that.

– prefs.PINS was renamed prefs.HARDWARE, and now allows hardware to be configured with dictionaries
rather than integers only. Initially PINS was meant to just contain pin numbering for GPIO objects, but
having a single point of hardware configuration is preferable. Task.init_hardware() now respects all
parameters set in prefs.

• Throughout the code, minimal get_this type methods have begun to be replaced with @property attributes.
This is because a) I love them and think they are magical, but b) will also be building Autopilot’s closed-
loop infrastructure around a Qt-style signal/slot architecture that wraps @property attributes so they can be
.connected to one another easily.

• Previously it was possible to control presentation by groups of stimuli, but now it is possible to control the
presentation frequency of individual stimuli.

• PySide2 has proper support for CSS Stylesheets, so the design of Autopilot’s GUI has been marginally improved,
a process that will continue in the ceaseless quest for aesthetic perfection.

• Several setup routines have been added to make installation of opencv, pyspin, etc. easier. I also wrote a routine
to download_box() files from a URL, which is mysteriously hard to do.

• The To-Do page now reflects the full ambition of Autopilot, where before this vision was contained only in the
whitepaper and a disorganized plaintext file in the repo.

• The Subject class can now export trial data to_csv(). A very minor update, but one that is the first in a number
of planned improvements to data export.

• I have also opened up a message board in google groups to make feature requests and discuss use and develop-
ment, hope to see you there :)

https://groups.google.com/forum/#!forum/autopilot-users

New Features

• TRANSFORMS have been introduced!!! Transform objects have a process() method that, well, transforms
data in some way. Multiple transforms can be added together to make a transformation chain. This module is
still very young and doesn’t have a developed API, but will be built to to automatic type compatibility checking,
coersion, parallelization, and rhythm (FIFO/FILO) control. Transforms are implemented with different modali-
ties (image, selection, logical) that imply different types of input and output data structures, but the hierarchical
structure of the modules is still quite flat.

– Autopilot is now integrated with DeepLabCut-live!!!! You can now use realtime pose tracking in your
experiments. See the dlclive_example

• HARDWARE has been substantially refactored to give objects an appropriate inheritance structure. This sub-
stantially reduces effort duplication across hardware objects and makes a bunch of obvious capabilities avail-
able to all of them, for example all hardware objects are now network (init_networking()) and logging
(init_logging()) capable.

262 Chapter 23. Changelog

https://www.biorxiv.org/content/10.1101/807693v1
https://github.com/wehr-lab/autopilot/blob/master/notes/todo
https://groups.google.com/forum/#!forum/autopilot-users
https://github.com/DeepLabCut/DeepLabCut-live/
https://github.com/wehr-lab/autopilot/blob/2to3/examples/example_transformation_dlc.ipynb

Autopilot Documentation, Release 0.3.0

– Cameras: The cameras.Camera_CV class allows webcams/other simple cameras to be accessed through
OpenCV, and the cameras.Camera_Spinnaker class allows FLIR and other cameras to be accessed
through the Spinnaker SDK. Cameras are capable of encoding videos locally (with x264), streaming frames
over the network, and making acquired frames available to other objects on the same computer. The
Camera_Spinnaker class provides simple @property setter/getter methods for common parameters, but
also makes all PySpin attributes available to the user with its get() and set() methods. The cameras.
Camera metaclass is written so that new camera types can be added by overriding a few methods. A new
Video_Child can be used to run a camera on a Child agent.

– 9DOF Motion Sensor: The i2c.I2C_9DOF class can use the LSM9DS1 sensor to collect accelerometer,
magnetometer, and gyroscopic data to compute unambiguous position and orientation information. We
will be including calibration and computation routines that make it easier to extract properties of interest –
eg. computing vertical motion by combining readings from the three sensors.

– Temperature Sensor: The i2c.MLX90640 class can use the MLX90640 sensor to measure temperature.
The sensor is 32x24px, which the class can interpolate(). The class also allows frames to be integrated
and averaged over time, substantially reducing noise. I modified the driver library to enable capture at the
full 64fps on the Raspberry Pi.

• NETWORKING modules can stream continuous data better in a few ways:

– Net_Node modules were given a get_stream() method that lets objects, well, stream data. Specifically,
they are given a queue.Queue to shovel data into, which is then picked up by a dedicated zmq.Socket in
its own thread, which handles batching, serialization, and load balancing. Streamed messages are batched
(ie. contain multiple messages), but behave like normal message when received – they are split and contain
an inner_key that is used to call the listen with each message (see l_stream()).

– networking objects also now compress arrays-in-transit with the superfast blosc compression library. This
increases their throughput dramatically, as many data streams in neuroscience are relatively low-entropy
(eg. the pixels in a video of a mostly-white arena are mostly unchanged frame-to-frame and are thus highly
compressible). See the Message._serialize_numpy() and Message._deserialize_numpy() meth-
ods.

• STIMULI - The JackClient can now play continuous sounds rather than discrete sounds. An example can be
found in the Nafc_Gap task, which plays continuous white noise. All sounds now have a play_continuous()
method, which continually dumps samples in a cycle into a queue for the JackClient. The continuous sound
will be interrupted if another sound has its Jack_Sound.play() method called, but the continuous sound will
resume seamlessly even if number of samples in the played sound aren’t a multiple of the jack buffer size. We
use this for gaps in noise (using the new Gap class), which we have confirmed are sample-accurate.

• UI & VIZ
– A Video window has been created to display streaming video. The Terminal_Networking.
l_continuous() method meters frames such that even if high-speed video is being acquired, frames
are only sent at a rate of prefs.DRAWFPS. The Video class uses the ImageItem_TimedUpdate object,
a slight modification of pyqtgraph.ImageItem, that calls its update method according to a PySide2.
QtCore.QTimer.

– A plots_menu menu has been added to the Terminal, and a GUI dialog (gui.Psychometric) has been
added to create simple psychometric curves with the viz.psychometricmodule, which uses altair. Plans
for developing visualization are described in To-Do.

– A general gui.pop_dialog() function simplifies displaying messages to the user using the Terminal UI.
This was an initial step towards improving status/error reporting from other agents, further detailed in To-
Do.

23.2. Version 0.3 263

https://www.flir.com/products/spinnaker-sdk/
https://www.melexis.com/en/product/MLX90640/Far-Infrared-Thermal-Sensor-Array
https://docs.python.org/3/library/queue.html#queue.Queue
https://pyzmq.readthedocs.io/en/latest/api/zmq.html#zmq.Socket
http://python-blosc.blosc.org/
https://pyqtgraph.readthedocs.io/en/latest/graphicsItems/imageitem.html#pyqtgraph.ImageItem
https://altair-viz.github.io/

Autopilot Documentation, Release 0.3.0

Bugfixes

• Some objects, particularly several gui objects, had the old mouse/mice terminology updated to subject/subjects.

• Net_Node objects were only implicitly destroyed by their release method which ends the threaded loop by
setting the closing event.

• Embarassingly, Pilot objects were not prevented from running multiple tasks at a time. This led to some
very confusing and hard-to-debug problems, as well as frequent conflicts over hardware access and resources.
Typically what would happen is the Terminal would send a START message to begin a task, and if it wouldn’t
received a message receipt quickly enough would resend it, resulting in two tasks being started – but this would
happen whenever two START messages were sent to a pilot. This was fixed with a simple check of Pilot.state
before a task is initialized. Similar bugs were fixed in Plot objects.

• The Subject class would sometimes fail to get and increment the trial session. This has been fixed by saving
the session number as an attribute in the info node.

• The Subject class would reset the session counter even when the same task was being reassigned (eg. if up-
dated), now it preserves session number if the protocol name is unchanged.

• The update_protocols() method didn’t report which subjects had their protocols updated, and so if there was
some exception when setting new protocols it happened silently, making it so a user would never know their task
was never updated. This was fixed with a noisier protocol update method for the Subject class and by displaying
a list of subjects that were updated after the method is called.

• Correction trials were being calculated incorrectly by the Stim_Manager, such that rather than only repeating a
stimulus if the subject got the previous trial incorrect, the stimulus was always repeated at least once.

Code Structure

• Modified versions of external libraries have been added as git submodules in autopilot/external.

• Requirements files have been split out to better differentiate between different agents and use-cases. eg. re-
quirements for Terminal agents are in requirements/requirements_terminal.txt, requirements for build
the docs are in requirements/requirements_docs.txt, etc. This is a temporary arrangement, as a future
design goal is restructuring setup routines so that they can flexibly install components as-needed (see To-Do)

• autopilot.core.hardware has been refactored into its own module, autopilot.hardware, and split by
device type, currently. . .

– autopilot.cameras

– autopilot.gpio - devices that use the GPIO pins for standard digital I/O logic

– autopilot.i2c - devices that use the GPIO pins for I2C

– autopilot.usb

• The docs are hosted on readthedocs again, so the docs structure has been collapsed to a single folder without
built documentation

• The autopilot user directory is now ~/autopilot rather than /usr/autopilot, which was always a mistake
anyway. Autopilot creates a wayfinder ~/.autopilot file that is used to find the user directory if it’s set else-
where

264 Chapter 23. Changelog

Autopilot Documentation, Release 0.3.0

External Libraries

• External libraries can now be built and packaged along with autopilot using cmake, see CMakeLists.txt. Still uh
having a little bit of trouble getting this to work, so code is in place to build and package the custom pigpio repo
and jack audio but this will likely need some more work.

• pigpio https://github.com/sneakers-the-rat/pigpio/

– Added the ability to return absolute timestamps rather than system ticks. pigpio typically returns 1 32-bit
integer of ticks since the daemon started, absolute timestamps are 64-bit, so the pigpio daemon and python
interface (pi) were given two new methods:

∗ synchronize gets several (default 5) sets of paired timestamps and ticks using get_sync_time. It then
computes an offset for translating ticks to timestamps

∗ ticks_to_timestamp converts ticks to timestamps based on the offset found with synchronize

∗ get_current_time sends two requests to the daemon to get the seconds and microseconds of the com-
plete timestamp and returns an isoformatted string

• mlx90640-library https://github.com/pimoroni/mlx90640-library

– Removed building examples by default which require additional dependencies

– When using the raspi I2C driver, the baudrate would never be set to 1MHz, which is necessary to achieve
full 64fps. This was fixed to use 1MHz by default.

Regressions

• Message confirmation (holding a message to resend if confirmation isn’t received) was causing a huge amount of
problems and needed to be rethought. There are in general very low rates (near-zero) of messages being dropped
without some larger bug causing them, so confirmation has been disabled for now.

• The same is true of heartbeat() - which polled for status of connected pilots. this will be repaired and restored,
as the terminal currently has a pretty bad idea of the status of what’s connected to it. this will be part of a broader
networking overhaul

23.3 Version 0.2

23.3.1 v0.2.0 (October 26, 2019)

Can’t change what just started existing!

Release version of autopilot consistent with explanation in https://www.biorxiv.org/content/10.1101/807693v1

Development Roadmap, Minor To-dos, and all future plans :)

23.3. Version 0.2 265

https://github.com/sneakers-the-rat/pigpio/
https://github.com/pimoroni/mlx90640-library
https://www.biorxiv.org/content/10.1101/807693v1

Autopilot Documentation, Release 0.3.0

266 Chapter 23. Changelog

CHAPTER

TWENTYFOUR

TO-DO

24.1 Visions

The long view: design, ux, and major functionality projects roughly corresponding to minor semantic versions

24.1.1 Integrations

Make autopilot work with. . .

Open Ephys Integration

• write a C extension to the Rhythm API similar to that used by the OpenEphys Rhythm Node.

• Enable existing OE configuration files to be loaded and used to configure plugin, so ephys data can be collected
natively alongside behavioral data.

Multiphoton & High-performance Image Integration

• Integrate the Thorlabs multiphoton imaging SDK to allow 2p image acquisition during behavior

• Integrate the Aravis camera drivers to get away from the closed-source spinnaker SDK

Bonsai Integration

• Write source and sink modules so Bonsai pipelines can be used within Autopilot for image processing, acquisition
etc.

267

https://github.com/open-ephys/plugin-GUI/tree/master/Plugins/RhythmNode
https://bonsai-rx.org/

Autopilot Documentation, Release 0.3.0

24.1.2 Closed-Loop Behavior & Processing Pipelines

• design a signal/slot architecture like Qt so that hardware devices

and data streams can be connected with low latency. Ideally something like:

directly connecting acceleration in x direction
to an LED's brightness
accelerometer.acceleration.connect('x', LED.brightness)

process some video frame and use it to control task stage logic
camera.frame.transform(

DLC, **kwargs
).connect(

task.subject_position
)

• The pipelining framework should be concurrent, but shouldn’t rely on multiprocessing.Queue
s and the like for performance, as transferring data between processes requires it to be pick-
led/unpickled. Instead it should use shared memory, like multiprocessing.shared_memory
available in Python 3.8

• The pipelining framework should be evented, such that changes in the source parameter are automat-
ically pushed through the pipeline without polling. This could be done with a decorator around the
setter method for the sender,

• The pipelining framework need not be written from scratch, and could use one of Python’s existing
pipelining frameworks, like

– Joblib

– Luigi

– pyperator

– streamz (love the ux of this but doesn’t seem v mature)

• Agents
– The Agent infrastructure is still immature—the terminal, pilot, and child agents are written as independent

classes, rather than with a shared inheritance structure. The first step is to build a metaclass for autopilot
agents that includes the different prefs setups they need and their runtime requirements. Many of the further
improvements are discussed in the setup section

– Child agents need to be easier to spawn and configure, and child tasks lack any formalization at all.

• Parameters
– Autopilot has a lot of types of parameters, and at the moment they all have their own styles. This makes a

number of things difficult, but primarily it makes it hard to predict which style is needed at any particular
time. Instead Autopilot needs a generalized ``Param``eter class. It should be able to represent the human
readable name of that parameter, the parameter’s value, the expected data type, whether that parameter is
optional, and so on.

– The parameter class should also be recursive, so parameter sets are not treated distinctly from an individual
parameter – eg. a task needs a set of parameters, one of which is a list of hardware. one hardware object in
that list will have its own list of parameters, and so forth.

– The parameter class should operate in both directions – ie. it should be able to represent set parameters, as
well as be able to be used as a specifier of parameters that need to be set

268 Chapter 24. To-Do

https://docs.python.org/3/library/multiprocessing.html#multiprocessing.Queue
https://joblib.readthedocs.io/en/latest/
https://luigi.readthedocs.io/en/stable/index.html
https://github.com/baffelli/pyperator
https://streamz.readthedocs.io/en/latest/core.html

Autopilot Documentation, Release 0.3.0

– The parameter class should be cascading, where parameters apply to lower ‘levels’ of parameterization
unless specified otherwise. For example, one may want to set correction_trials on for all stimuli in a
task, but be able to turn them off for one stimulus in particular. To avoid needing to manually implement
layered logic for all objects, handlers should be able to assume that a parameter will be passed from parent
objects to their children.

– GUI elements should be automatically populating – some GUI elements are, like the protocol wizard is
capable of populating a list of parameters from a task description, but it is incapable of choosing different
types of stimulus managers, reading all their parameters, and so on. Instead it should be possible to de-
scend through all levels of parameters for all objects in all GUI windows without duplicating the effort of
implementing the parameterization logic every time.

• Configuration & Setup
– Setup routines and configuration options are currently hard-coded into npyscreen forms (see
PilotSetupForm). prefs setup needs to be separated into a model-view-controller type design where
the available prefs and values are made separate from their form.

– Setup routines should include both the ability to install necessary resources and the ability to check if
those resources have been installed so that hardware objects can be instantiated freely without setup and
configuration becoming cumbersome.

– Currently, Autopilot creates a crude bash script with setup_pilot.sh to start external processes before
Autopilot. This makes handling multiple environment types difficult – ie. one needs to close the program
entirely, edit the startup script, and restart in order to switch from a primarily auditory to primarily visual
experiment. Management of external processes should be brought into Autopilot, potentially by using
sargehttps://sarge.readthedocs.io/en/latest/index.html or some other process management tool.

– Autopilot should both install to a virtual environment by default and should have docker containers built
for it. Further it should be possible to package up your environment for the purposes of experimental
replication.

• UI/UX
– The GUI code is now the oldest in the entire library. It needs to be generally overhauled to make use of the

tools that have been developed since it was written (eg. use of networking modules rather than passing sets
of variables around).

– It should be much easier to read the status of, interact with, and reconfigure agents that are connected to the
terminal. Currently control of Pilots is relatively opaque and limited, and often requires the user to go read
the logs stored on each individual pilot to determine what is happening with it. Instead Autopilot should
have an additional window that can be used to set the parameters, reconfigure, and test each individual
Pilot.

– There are some data -> graphical object mappings available to tasks, but Autopilot needs a fuller grammar
of graphics. It should be possible to reconfigure plotting in the terminal GUI, and it should be possible to
modify short-term parameters like bin widths for rolling means.

– Autopilot shouldn’t sprawl into a data visualization library, but it should have some basic post-experiment
plotting features like plotting task performance and stages over time.

– Autopilot should have a web interface for browsing data. We are undecided about building a web interface
for controlling tasks, but it should be possible to download data, do basic visualization, and observe the
status of the system from a web portal.

• Tasks
– Task design is a bit too open at the moment. Tasks need to feel like they have more ‘guarantees’ on their oper-

ation. eg. there should be a generalized callback api for triggering events. the existing handle_trigger()
is quite limited. There should be an obvious way for users to implement saving/reporting data from their
tasks.

24.1. Visions 269

https://npyscreen.readthedocs.io/
sargehttps://sarge.readthedocs.io/en/latest/index.html

Autopilot Documentation, Release 0.3.0

∗ Relatedly, the creation of triggers is pretty awkward and not strictly threadsafe, it should be possible
to identify triggers in subclasses (eg. a superclass creates some trigger, a subclass should be able to
unambiguously identify it without having to parse method names, etc)

– It’s possible already to use a python generator to have more complex ordering of task stages, eg. instead
of using an itertools.cycle one could write a generator function that yields task stages based on some
parameters of the task. There should be an additional manager type, the Trial_Manager, that implements
some common stage schemes – cycles, yes, but also DAGs, timed switches, etc. This way tasks could blend
some intuitive features of finite-state machines while also not being beholden by them.

• Mesh Networking
– Autopilot’s networking system at the moment risks either a) being bottlenecked by having to route all

data through a hierarchical network tree, or b) being indicipherable and impossible to program with as
individual objects and streams are capable of setting up arbitrary connections that need to potentially be
manually configured. This goal is very abstract, but Autopilot should have a mesh-networking protocol.

– It should be possible for any object to communicate with any other object in the network without name
collisions

– It should be possible to stream data efficiently both point-to-point but also from one producer to many
consumers.

– It should be possible for networking connections to be recovered automatically in the case a node temporar-
ily becomes unavailable.

– Accordingly, Autopilot should adapt Zyre for general communications, and improve its file transfer capa-
bilities so that it resembles something like bittorrent.

• Data
– Autopilot’s data format shouldn’t be yet another standard incompatible with all the others that exist. Au-

topilot should at least implement data translators for, if not adopt outright the Neurodata Without Borders
standard.

– For distributed data acquisition, it makes sense to use a distributed database, so we should consider switch-
ing data collection infrastructure from .hdf5 files to a database system like PostgreSQL.

• Hardware Library
– Populate https://auto-pi-lot.com/hardware with hardware designs, CAD files, BOMs, and assembly instruc-

tions

– Make a ‘thingiverse for experimental hardware’ that allows users to browse hardware based on application,
materials, etc.

24.2 Improvements

The shorter view: smaller, specific tweaks to improve functionality of existing features roughly corresponding to patches
in semantic versioning.

• Logging
– ensure that all events worth logging are logged across all objects.

– ensure that the structure of logfiles is intuitive – one logfile per object type (networking, hardware rather
than one per each hardware device)

– logging of experimental conditions is incomplete – only the git hash of the pilot is stored, but the git hash
of all relevant agents should be stored, and logging should be expanded to include params and system
configuration (like pip freeze)

270 Chapter 24. To-Do

https://github.com/zeromq/zyre
https://auto-pi-lot.com/hardware

Autopilot Documentation, Release 0.3.0

– logs should also be made both human and machine readable – use prettyprint for python objects, and stan-
dardize fields present in logger messages.

– File and Console log handlers should be split so that users can configure what they want to see
vs. what they want stored separately (See https://docs.python.org/3/howto/logging-cookbook.html#
multiple-handlers-and-formatters)

• UI/UX
– Batch subject creation.

– Double-clicking a subject should open a window to edit and view task parameters.

– Drag-and-drop subjects between pilots.

– Plot parameters should be editable - window roll size, etc.

– Make a messaging routine where a pilot can display some message on the terminal. this should be used to
alert the user about any errors in task operation rather than having to inspect the logs on the pilot.

– The Subject_List remains selectable/editable once a subject has started running, making it unclear which
subject is running. It should become fixed once a subject is running, or otherwise unambiguously indicate
which subject is running.

– Plot elements should have tooltips that give their value – eg. when hovering over a rolling mean, a tooltip
should display the current value of the rolling mean as well as other configuration params like how many
trials it is being computed over.

– Elements in the GUI should be smarter about resizing, particularly the main window should be able to use
a scroll bar once the number of subjects forces them off the screen.

• Hardware
– Sound calibration - implement a calibration algorithm that allows speakers to be flattened

– Implement OpenCL for image processing, specifically decoding on acquisition with OpenCV, with VC4CL.
See

∗ https://github.com/doe300/VC4CL/issues/29

∗ https://github.com/thortex/rpi3-opencv/

∗ https://github.com/thortex/rpi3-vc4cl/

– Have hardware objects sense if they are configured on instantiation – eg. when an audio device is configured,
check if the system has been configured as well as the hifiberry is in setup/presetup_pilot.sh

• Synchronization
– Autopilot needs a unified system to generate timestamps and synchronize events across pilots. Currently we

rely on implicit NTP-based synchronization across Pilots, which has ~ms jitter when configured optimally,
but is ultimately not ideal for precise alignment of data streams, eg. ephys sampled at 30kHz. pigpio
should be extended such that a Pilot can generate a clock signal that its children synchronize to. With the
recent addition of timestamp generation within pigpio, that would be one parsimonious way of

– In order to synchronize audio events with behavioral events, the JackClient needs to add a call to
jack_last_frame_time in order to get an accurate time of when sound stimuli start and stop (See
https://jackaudio.org/api/group__TimeFunctions.html)

– Time synchronization between Terminal and Pilot agents is less important, but having them synchronized
as much as possible is good. The Terminal should be set up to be an NTP server that Pilots follow.

• Networking

24.2. Improvements 271

https://docs.python.org/3/howto/logging-cookbook.html#multiple-handlers-and-formatters
https://docs.python.org/3/howto/logging-cookbook.html#multiple-handlers-and-formatters
https://github.com/doe300/VC4CL/issues/29
https://github.com/thortex/rpi3-opencv/
https://github.com/thortex/rpi3-vc4cl/
https://jackaudio.org/api/group__TimeFunctions.html

Autopilot Documentation, Release 0.3.0

– Multihop messages (eg. send to C through A and B) are clumsy. This may be irrelevant if Autopilot’s
network infrastructure is converted a true meshnet, but in the meantime networking modules should be
better at tracking and using trees of connected nodes.

– The system of zmq routers and dealers is somewhat cumbersome, and the new radio/dish pattern in zmq
might be better suited. Previously, we had chosen not to use pub/sub as the publisher is relatively inefficient
– it sends every message to every recipient, who filter messages based on their id, but the radio/dish method
may be more efficient.

– Network modules should use a thread pool for handling messages, as spawning a new thread for each
message is needlessly costly

• Data
– Data specification needs to be formalized further – currently data for a task is described with tables

specifiers, TrialData and ContinuousData, but there are always additional fields – particularly from
stimuli. The Subject class should be able to create columns and tables for

∗ Task data as specified in the task description

∗ Stimulus data as specified by a stimulus manager that initializes them. eg. the stimulus manager
initializes all stimuli for a task, and then is able to yield a description of all columns needed for all
initialized stimuli. So, for a task that uses

• Tests - Currently Autopilot has no unit tests (shocked ghasps, monocles falling into brandy glasses). We need to
implement an automated test suite and continuous integration system in order to make community development
of Autopilot manageable.

• Configuration
– Rather than require all tasks be developed within the directory structure of Autopilot, Tasks and hardware

objects should be able to be added to the system in a way that mimcs tensor2tensor’s registry For example,
users could specify a list of user directories in prefs, and user-created Hardware/Tasks could be decorated
with a @registry.register_task.

∗ This would additionally solve the awkward tasks.TASK_LIST method of making tasks available by
name that is used now by having a more formal task registry.

• Cleanliness & Beauty
– Intra-autopilot imports are a bit messy. They should be streamlined so that importing one class from one

module doesn’t spiral out of control and import literally everything in the package.

– Replace getter- and setter-type methods throughout with @properties when it would improve the
object, eg. in the JackClient, the storage/retrieval of all the global module variables could be made much
neater with @property methods.

– Like the Hardware class, top-level metaclasses should be moved to the __init__ file for the module to
avoid awkward imports and extra files like autopilot.tasks.task.Task

– Use enum.Enum s all over! eg. things like autopilot.hardware.gpio.TRIGGER_MAP etc.

• Concurrency
– Autopilot could be a lot smarter about the way it manages threads and processes! It should have a centralized

registry of threads and processes to keep track on their status

– Networking modules and other thread-creating modules should probably create thread pools to avoid the
overhead of constantly spawning them

• Decorators - specific improvements to make autopilot objects magic!

– hardware.gpio - try/catch release decorator so don’t have to check for attribute error in every subclass!

272 Chapter 24. To-Do

https://github.com/tensorflow/tensor2tensor
https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/registry.py
https://docs.python.org/3/library/enum.html#enum.Enum

Autopilot Documentation, Release 0.3.0

24.3 Bugs

Known bugs that have eluded us thus far

• The Pilot_Button doesn’t always reflect the availability/unavailability of connected pilots. The button model
as well as the general heartbeating/status indication routines need to be made robust.

• The pilot_db.json and Subject_List doesn’t check for duplicate subjects across Pilots. That shouldn’t be a
problem generally, but if a subject is switched between Pilots that may not be reflected in the generated metadata.
Pilot ID needs to be more intimately linked to the Subject.

• If Autopilot needs to be quit harshly, some pigpio-based hardware objects don’t quit nicely, and the pigpiod
service can remain stuck on. Resource release needs to be made more robust

• Network connectivity can be lost if the network hardware is disturbed (in our case the router gets kicked from the
network it is connected to) and is only reliably recovered by restarting the system. Network connections should
be able to recover disturbance.

• The use of off and on is inconsistent between Digital_Out and PWM – since the PWM cleans values (inverts
logic, expands range),

• There is ambiguity in setting PWM ranges: using PWM.set() with 0-1 uses the whole range off to on, but
numbers from 0-PWM.range can be used as well – 0-1 is the preferred behavior, but should using 0-range still
be supported as well?

24.4 Completed

good god we did it

• v0.3.5 (February 22, 2021) - Integrate DeepLabCut

• v0.3.5 (February 22, 2021) - Unify installation

• v0.3.5 (February 22, 2021) - Upgrade to Python 3

• v0.3.5 (February 22, 2021) - Upgrade to PySide 2 & Qt5

• v0.3.5 (February 22, 2021) - Generate full timestamps from pigpio rather than ticks

• v0.3.5 (February 22, 2021) - Continuous data handling

• v0.3.5 (February 22, 2021) - GPIO uses pigpio functions rather than python timing

• v0.3.5 (February 22, 2021) - networking modules compress arrays before transfer

• v0.3.5 (February 22, 2021) - Images can be acquired from cameras

24.5 Lowest Priority

Improvements that are very unimportant or strictly for unproductive joy

• Classic Mode - in honor of an ancient piece of software that Autopilot may have descended from, add a
hidden key that when pressed causes the entire terminal screen to flicker whenever any subject in any pilot
gets a trial incorrect.

24.3. Bugs 273

Autopilot Documentation, Release 0.3.0

274 Chapter 24. To-Do

CHAPTER

TWENTYFIVE

REFERENCES

275

Autopilot Documentation, Release 0.3.0

276 Chapter 25. References

CHAPTER

TWENTYSIX

TESTS

26.1 Networking

Networking Tests.

Assumptions
• In docstring examples, listens callbacks are often omitted for clarity

Functions:

test_node(node_params) Net_Node s can be initialized with their default param-
eters

test_node_to_node(node_params) Net_Node s can directly send messages to each other
with ROUTER/DEALER pairs.

test_multihop(node_params, station_params) Message s can be routed through multiple Station ob-
jects by using a list in the to field

test_node(node_params)
Net_Node s can be initialized with their default parameters

test_node_to_node(node_params)
Net_Node s can directly send messages to each other with ROUTER/DEALER pairs.

>>> node_1 = Net_Node(id='a', router_port=5000)
>>> node_2 = Net_Node(id='b', upstream='a', port=5000)
>>> node_2.send('a', 'KEY', 'VALUE')
>>> node_2.send('b', 'KEY', 'VALUE')

test_multihop(node_params, station_params)
Message s can be routed through multiple Station objects by using a list in the to field

send message:
node_1 -> station_1 -> station_2 -> station_3 -> node_3
>>> station_1 = Station(id='station_1', listen_port=6000,

pusher=True, push_port=6001, push_id='station_2')
>>> station_2 = Station(id='station_2', listen_port=6001,

pusher=True, push_port=6002, push_id='station_3',)
>>> station_3 = Station(id='station_3', listen_port=6002)
>>> node_1 = Net_Node(id='node_1',

upstream='station_1', port=6000)
(continues on next page)

277

Autopilot Documentation, Release 0.3.0

(continued from previous page)

>>> node_3 = Net_Node(id='node_3',
upstream='station_3', port=6002)

>>> node_1.send(key='KEY', value='VALUE',
to=['station_1', 'station_2', 'station_3', 'node_3'])

26.2 Plugins

Functions:

hardware_plugin(default_dirs) Make a basic plugin that inherits from the Hardware
class, clean it up on exit

test_hardware_plugin(hardware_plugin) A subclass of autopilot.hardware.Hardware in the
PLUGINDIR can be accessed with autopilot.get().

test_autoplugin() the autopilot.utils.registry.get() func-
tion should automatically load plugins if the pref
AUTOPLUGIN is True and the plugins argument is
True

hardware_plugin(default_dirs)→ Tuple[pathlib.Path, str]
Make a basic plugin that inherits from the Hardware class, clean it up on exit

Returns path to created plugin file

Return type Path

test_hardware_plugin(hardware_plugin)
A subclass of autopilot.hardware.Hardware in the PLUGINDIR can be accessed with autopilot.get().

For example, for the following class declared in some .py file in the plugin dir:

from autopilot.hardware import Hardware

class Test_Hardware_Plugin(Hardware):
def __init__(self, *args, **kwargs):

super(Test_Hardware_Plugin, self).__init__(*args, **kwargs)

def release(self):
pass

one would be able to access it throughout autopilot with:

autopilot.get('hardware', 'Test_Hardware_Plugin')
or
autopilot.get_hardware('Test_Hardware_Plugin')

test_autoplugin()

the autopilot.utils.registry.get() function should automatically load plugins if the pref AUTOPLUGIN
is True and the plugins argument is True

278 Chapter 26. Tests

https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str

Autopilot Documentation, Release 0.3.0

26.3 Prefs

Functions:

clean_prefs(request) Clear and stash prefs, restore on finishing
test_prefs_defaults(default_pref, clean_prefs)

test_prefs_warnings(default_pref, clean_prefs) Test that getting a default pref warns once and only once
test_prefs_deprecation() If there is a string in the 'deprecation' field of a pref

in _DEFAULTS, a warning is raised printing the string.

clean_prefs(request)
Clear and stash prefs, restore on finishing

test_prefs_defaults(default_pref, clean_prefs)

test_prefs_warnings(default_pref, clean_prefs)
Test that getting a default pref warns once and only once

test_prefs_deprecation()

If there is a string in the 'deprecation' field of a pref in _DEFAULTS, a warning is raised printing the string.

26.4 Registry

Data:

_EXPECTED_HARDWARE A list of all the hardware we expect to have at the mo-
ment.

Functions:

logger_registry_get(caplog)

test_get_one(base_class, class_name) Get one autopilot object with a specified base class
and class name using a string, an enum in autopi-
lot.utils.registry.REGISTRIES, or an object itself

test_get_all(base_class) Test that calling get with no class_name argument re-
turns all the objects for that registry

test_get_subtree(logger_registry_get, caplog) Test that calling getwith a child of a top-level object (eg
GPIO rather than Hardware) gets all its children, (using
GPIO as the test case)

test_get_hardware() use the autopilot.utils.registry.
get_hardware() alias

test_get_task() use the autopilot.utils.registry.get_task()
alias

test_get_equivalence() Test that the same object is gotten regardless of method
of specifying base_class

test_except_on_failure() Ensure a exceptions are raised for nonsense

26.3. Prefs 279

Autopilot Documentation, Release 0.3.0

_EXPECTED_HARDWARE = ('autopilot.hardware.cameras.Camera',
'autopilot.hardware.cameras.Camera_CV', 'autopilot.hardware.cameras.Camera_Spinnaker',
'autopilot.hardware.gpio.Digital_In', 'autopilot.hardware.gpio.Digital_Out',
'autopilot.hardware.gpio.GPIO', 'autopilot.hardware.gpio.LED_RGB',
'autopilot.hardware.gpio.PWM', 'autopilot.hardware.gpio.Solenoid',
'autopilot.hardware.i2c.I2C_9DOF', 'autopilot.hardware.i2c.MLX90640',
'autopilot.hardware.usb.Scale', 'autopilot.hardware.usb.Wheel')

A list of all the hardware we expect to have at the moment.

This doesn’t need to be maintained exactly, but is just used as an independent source of expectation for which
Hardware objects we can expect.

So in all tests that use it, this tests a minimal expectation, ie. that we get all the values that we should get if this
were up to date, knowing that it might not be.

logger_registry_get(caplog)

test_get_one(base_class, class_name)
Get one autopilot object with a specified base class and class name using a string, an enum in autopi-
lot.utils.registry.REGISTRIES, or an object itself

test_get_all(base_class)
Test that calling get with no class_name argument returns all the objects for that registry

test_get_subtree(logger_registry_get, caplog)
Test that calling get with a child of a top-level object (eg GPIO rather than Hardware) gets all its children, (using
GPIO as the test case)

test_get_hardware()

use the autopilot.utils.registry.get_hardware() alias

mostly a formality to keep it working since the underlying function is tested elsewhere

test_get_task()

use the autopilot.utils.registry.get_task() alias

mostly a formality to keep it working since the underlying function is tested elsewhere

test_get_equivalence()

Test that the same object is gotten regardless of method of specifying base_class

test_except_on_failure()

Ensure a exceptions are raised for nonsense

26.5 Setup

Functions:

test_make_alias()

test_quiet_mode() Autopilot can be setup programmatically by calling
setup_autopilot with --quiet and passing prefs and
scripts manually

test_make_alias()

280 Chapter 26. Tests

Autopilot Documentation, Release 0.3.0

test_quiet_mode()

Autopilot can be setup programmatically by calling setup_autopilot with –quiet and passing prefs and scripts
manually

26.6 Sounds

Tests for generating sound stimuli.

This script runs tests that generate different sound stimuli and verifies that they are initialized correctly.

Currently these only work if AUDIOSERVER is ‘jack’. ‘pyo’ is not tested. ‘docs’ doesn’t actually generate waveforms.

This doesn’t require (or test) a running jackd or even a JackClient. Instead, these tests short-circuit those dependencies
by manually setting FS and BLOCKSIZE in autopilot.stim.sound.jackclient.

A TODO is to test the JackClient itself.

Currently only the sound Noise is tested.

These tests cover multiple durations and amplitudes of mono and multi-channel Noise, including some edges cases like
very short durations or zero amplitude.

The rest of this docstring addresses the workaround used to short-circuit jackd and JackClient.

Here is the sequence of events that leads to FS and BLOCKSIZE. * If an autopilot.core.pilot.Pilot is initialized: **
autopilot.core.pilot.Pilot.__init__ checks prefs.AUDIOSERVER,

and calls autopilot.core.pilot.Pilot.init_audio.

** autopilot.core.pilot.Pilot.init_audio calls autopilot.external.__init__.start_jackd.

** autopilot.external.__init__.start_jackd takes the JACKDSTRING pref and replaces the token ‘-rfs’ in it with
the FS pref. The jackd process is launched and stored in autopilot.external.JACKD_PROCESS. That process
may fail or not, we continue anyway.

** Next, autopilot.core.pilot.Pilot.init_audio instantiates an autopilot.stim.sound.jackclient.JackClient()

** autopilot.stim.sound.jackclient.JackClient.__init__ initalizes a jack.Client

** autopilot.stim.sound.jackclient.JackClient.fs is set to jack.Client.samplerate. Note that this is either the re-
quested sample rate, or some default value from jack (not Autopilot) if the client did not actually succeed in
booting.

** autopilot.stim.sound.jackclient.FS (a global variable) is set to autopilot.stim.sound.jackclient.JackClient.fs

• Later, a sound (e.g., Noise) is initialized.

** autopilot.stim.sound.sounds.Noise.__init__ calls super().__init__, ** which is autopi-
lot.stim.sound.sounds.Jack_Sound.__init__ ** autopilot.stim.sound.sounds.Jack_Sound.__init__

sets self.fs to jackclient.FS

** autopilot.stim.sound.sounds.Noise.__init__ calls autopilot.stim.sound.sounds.Noise.init_sound

** autopilot.stim.sound.sounds.Noise.init_sound calls autopilot.stim.sound.sounds.Jack_Sound.get_nsamples

** autopilot.stim.sound.sounds.Jack_Sound.get_nsamples inspects self.fs

To remove the dependence on jackd2 and JackClient, the entire first block of code can be circumvented by setting these:
autopilot.stim.sound.jackclient.FS autopilot.stim.sound.jackclient.BLOCKSIZE

Functions:

26.6. Sounds 281

Autopilot Documentation, Release 0.3.0

test_init_noise(duration_ms, amplitude, ...) Initialize and check a mono (single-channel) noise.
test_init_multichannel_noise(duration_ms, ...) Initialize and check a multi-channel noise.
test_unpadded_gap() A gap in a continous sound should not be padded (had

its last chunk filled with zeros).

test_init_noise(duration_ms, amplitude, check_duration_samples, check_n_chunks_expected)
Initialize and check a mono (single-channel) noise.

A mono Noise is initialized with specified duration and amplitude. The following things are checked: * The
attributes should be correctly set * The table should be the right dtype and the right duration,

given the sampling rate

• The chunks should be correct, given the block size. The last chunk should be zero-padded.

• The waveform should not exceed amplitude anywhere

• As long as the waveform is sufficiently long, it should exceed 90% of the amplitude somewhere

• Concatenating the chunks should generate a result equal to the table, albeit zero-padded to a multiple of
the block size.

• Specifying channel as None should give identical results to leaving it unspecified.

duration_ms : passed as duration amplitude : passed as amplitude check_duration_samples : int or None

If not None, the length of the sounds table should be this

check_n_chunks_expected [int or None] If not None, the length of the sounds chunks should be this

test_init_multichannel_noise(duration_ms, amplitude, channel, check_duration_samples,
check_n_chunks_expected)

Initialize and check a multi-channel noise.

A multi-channel Noise is initialized with specified duration, amplitude, and channel. The following things are
checked: * The attributes should be correctly set * The table should be the right dtype and the right duration,

given the sampling rate

• The chunks should be correct, given the block size. The last chunk should be zero-padded.

• The column channel should contain non-zero data and all other columns should contain zero data.

• The waveform should not exceed amplitude anywhere

• As long as the waveform is sufficiently long, it should exceed 90% of the amplitude somewhere

• Concatenating the chunks should generate a result equal to the

duration_ms : passed to Noise as duration amplitude : passed to Noise as amplitude channel : passed to Noise
as channel check_duration_samples : int or None

If not None, the length of the sounds table should be this

check_n_chunks_expected [int or None] If not None, the length of the sounds chunks should be this

test_unpadded_gap()

A gap in a continous sound should not be padded (had its last chunk filled with zeros).

282 Chapter 26. Tests

Autopilot Documentation, Release 0.3.0

26.7 Terminal

26.8 Transforms

26.9 Utils

26.7. Terminal 283

Autopilot Documentation, Release 0.3.0

284 Chapter 26. Tests

CHAPTER

TWENTYSEVEN

INDICES AND TABLES

• genindex

• modindex

• search

285

Autopilot Documentation, Release 0.3.0

286 Chapter 27. Indices and tables

BIBLIOGRAPHY

[ABCO15] Fatemeh Abyarjoo, Armando Barreto, Jonathan Cofino, and Francisco R. Ortega. Implementing a Sensor
Fusion Algorithm for 3D Orientation Detection with Inertial/Magnetic Sensors. In Tarek Sobh and Khaled
Elleithy, editors, Innovations and Advances in Computing, Informatics, Systems Sciences, Networking and
Engineering, Lecture Notes in Electrical Engineering, 305–310. Cham, 2015. Springer International Pub-
lishing. doi:10.1007/978-3-319-06773-5_41.

[KLS+20] Gary A Kane, Gonçalo Lopes, Jonny L Saunders, Alexander Mathis, and Mackenzie W Mathis. Real-time,
low-latency closed-loop feedback using markerless posture tracking. eLife, 9:e61909, December 2020.
doi:10.7554/eLife.61909.

[PPT+18] Photis Patonis, Petros Patias, Ilias N. Tziavos, Dimitrios Rossikopoulos, and Konstantinos G. Margaritis. A
Fusion Method for Combining Low-Cost IMU/Magnetometer Outputs for Use in Applications on Mobile
Devices. Sensors (Basel, Switzerland), August 2018. doi:10.3390/s18082616.

[PQLC11] Dilip K. Prasad, Chai Quek, Maylor K.H Leung, and Siu-Yeung Cho. A parameter independent line
fitting method. In The First Asian Conference on Pattern Recognition, 441–445. November 2011.
doi:10.1109/ACPR.2011.6166585.

[Sla97] M. Slaney. An Efficient Implementation of the Patterson-Holdsworth Auditory Filter Bank. undefined,
1997.

287

https://doi.org/10.1007/978-3-319-06773-5_41
https://doi.org/10.7554/eLife.61909
https://doi.org/10.3390/s18082616
https://doi.org/10.1109/ACPR.2011.6166585

Autopilot Documentation, Release 0.3.0

288 Bibliography

PYTHON MODULE INDEX

a
autopilot.core, 75
autopilot.core.loggers, 75
autopilot.core.pilot, 79
autopilot.core.styles, 84
autopilot.data, 85
autopilot.data.interfaces, 92
autopilot.data.modeling, 92
autopilot.data.modeling.base, 92
autopilot.data.models, 95
autopilot.data.subject, 85
autopilot.data.units, 95
autopilot.hardware, 97
autopilot.hardware.cameras, 100
autopilot.hardware.gpio, 116
autopilot.hardware.i2c, 129
autopilot.hardware.usb, 135
autopilot.networking, 139
autopilot.networking.message, 152
autopilot.networking.node, 148
autopilot.networking.station, 140
autopilot.prefs, 241
autopilot.setup.run_script, 239
autopilot.setup.scripts, 236
autopilot.setup.setup_autopilot, 235
autopilot.stim, 155
autopilot.stim.managers, 155
autopilot.stim.sound, 162
autopilot.stim.sound.base, 166
autopilot.stim.sound.jackclient, 162
autopilot.stim.sound.pyoserver, 166
autopilot.stim.sound.sounds, 172
autopilot.tasks, 177
autopilot.tasks.children, 180
autopilot.tasks.free_water, 183
autopilot.tasks.graduation, 185
autopilot.tasks.nafc, 187
autopilot.tasks.task, 177
autopilot.transform, 191
autopilot.transform.coercion, 194
autopilot.transform.geometry, 194
autopilot.transform.image, 202

autopilot.transform.logical, 204
autopilot.transform.selection, 205
autopilot.transform.timeseries, 207
autopilot.transform.transforms, 192
autopilot.transform.units, 212
autopilot.utils, 217
autopilot.utils.common, 217
autopilot.utils.decorators, 222
autopilot.utils.hydration, 223
autopilot.utils.invoker, 224
autopilot.utils.log_parsers, 224
autopilot.utils.plugins, 225
autopilot.utils.registry, 226
autopilot.utils.requires, 229
autopilot.utils.types, 232
autopilot.utils.wiki, 232
autopilot.viz, 215
autopilot.viz.psychometric, 216
autopilot.viz.trial_viewer, 215

t
tests.test_networking, 277
tests.test_plugins, 278
tests.test_prefs, 279
tests.test_registry, 279
tests.test_setup, 280
tests.test_sound, 281
tests.test_utils, 283

289

Autopilot Documentation, Release 0.3.0

290 Python Module Index

INDEX

Symbols
_DEFAULTS (in module autopilot.prefs), 245
_EXPECTED_HARDWARE (in module tests.test_registry),

279
_LOGGERS (in module autopilot.core.loggers), 75
_PREF_MANAGER (in module autopilot.prefs), 243
_TASK_LIST (in module autopilot.utils.registry), 228
_WARNED (in module autopilot.prefs), 247
__add__() (Requirements method), 232
__add__() (Transform method), 194
__contains__() (Message method), 154
__delitem__() (Message method), 154
__getitem__() (Message method), 153
__setitem__() (Message method), 154
_capture() (Camera method), 103
_check_stop() (Station method), 143
_data_thread() (Subject method), 90
_ellipsoid_func() (in module autopi-

lot.transform.geometry), 198
_find_protocol() (Subject method), 90
_get_step_data() (Subject method), 91
_get_timestamp() (Subject method), 91
_grab() (Camera method), 104
_grab() (Camera_CV method), 109
_grab() (Camera_Spinnaker method), 112
_grab() (MLX90640 method), 134
_grab() (PiCamera method), 108
_graduate() (Subject method), 92
_h5f() (Subject method), 88
_init_arrays() (Kalman method), 211
_init_continuous() (Jack_Sound method), 170
_make_protocol_structure() (Subject method), 90
_pad_continuous() (JackClient method), 166
_pinger() (Pilot_Station method), 146
_process() (Camera method), 103
_process() (Camera_Spinnaker method), 112
_reshape_z() (Kalman method), 212
_serialize_numpy() (Message method), 154
_series_script() (Digital_Out method), 120
_series_script() (LED_RGB method), 126
_threaded_capture() (MLX90640 method), 134
_timestamp() (Camera method), 105

_timestamp() (Camera_CV method), 110
_timestamp() (Camera_Spinnaker method), 113
_timestamp() (MLX90640 method), 134
_update_current() (in module autopilot.data.subject),

92
_update_structure() (Subject method), 92
_wait_for_end() (JackClient method), 166
_write_deinit() (Camera method), 104
_write_deinit() (Camera_Spinnaker method), 113
_write_frame() (Camera method), 104
_write_frame() (Camera_Spinnaker method), 113

A
accel_range (I2C_9DOF property), 131
acceleration (I2C_9DOF property), 131
ACCELRANGE_16G (I2C_9DOF attribute), 130
ACCELRANGE_2G (I2C_9DOF attribute), 130
ACCELRANGE_4G (I2C_9DOF attribute), 130
ACCELRANGE_8G (I2C_9DOF attribute), 130
Accuracy (class in autopilot.tasks.graduation), 185
acquisition_mode (Camera_Spinnaker property), 114
add() (in module autopilot.prefs), 248
Agent_Prefs (class in autopilot.prefs), 244
ALLOWED_FPS (MLX90640 attribute), 134
alpha (Kalman property), 212
Angle (class in autopilot.transform.geometry), 195
args (Group attribute), 94
args (Node attribute), 95
ask() (in module autopilot.utils.wiki), 233
assign_cb() (Digital_In method), 123
assign_cb() (Hardware method), 99
assign_cb() (Wheel method), 136
assign_protocol() (Subject method), 90
ATTR_TYPE_NAMES (Camera_Spinnaker attribute), 112
ATTR_TYPES (Camera_Spinnaker attribute), 112
Attributes (class in autopilot.data.modeling.base), 94
AUDIO (Scopes attribute), 243
Audio_Prefs (class in autopilot.prefs), 245
autopilot.core

module, 75
autopilot.core.loggers

module, 75

291

Autopilot Documentation, Release 0.3.0

autopilot.core.pilot
module, 79

autopilot.core.styles
module, 84

autopilot.data
module, 85

autopilot.data.interfaces
module, 92

autopilot.data.modeling
module, 92

autopilot.data.modeling.base
module, 92

autopilot.data.models
module, 95

autopilot.data.subject
module, 85

autopilot.data.units
module, 95

autopilot.hardware
module, 97

autopilot.hardware.cameras
module, 100

autopilot.hardware.gpio
module, 116

autopilot.hardware.i2c
module, 129

autopilot.hardware.usb
module, 135

autopilot.networking
module, 139

autopilot.networking.message
module, 152

autopilot.networking.node
module, 148

autopilot.networking.station
module, 140

autopilot.prefs
module, 241

autopilot.setup.run_script
module, 239

autopilot.setup.scripts
module, 236

autopilot.setup.setup_autopilot
module, 235

autopilot.stim
module, 155

autopilot.stim.managers
module, 155

autopilot.stim.sound
module, 162

autopilot.stim.sound.base
module, 166

autopilot.stim.sound.jackclient
module, 162

autopilot.stim.sound.pyoserver
module, 166

autopilot.stim.sound.sounds
module, 172

autopilot.tasks
module, 177

autopilot.tasks.children
module, 180

autopilot.tasks.free_water
module, 183

autopilot.tasks.graduation
module, 185

autopilot.tasks.nafc
module, 187

autopilot.tasks.task
module, 177

autopilot.transform
module, 191

autopilot.transform.coercion
module, 194

autopilot.transform.geometry
module, 194

autopilot.transform.image
module, 202

autopilot.transform.logical
module, 204

autopilot.transform.selection
module, 205

autopilot.transform.timeseries
module, 207

autopilot.transform.transforms
module, 192

autopilot.transform.units
module, 212

autopilot.utils
module, 217

autopilot.utils.common
module, 217

autopilot.utils.decorators
module, 222

autopilot.utils.hydration
module, 223

autopilot.utils.invoker
module, 224

autopilot.utils.log_parsers
module, 224

autopilot.utils.plugins
module, 225

autopilot.utils.registry
module, 226

autopilot.utils.requires
module, 229

autopilot.utils.types
module, 232

292 Index

Autopilot Documentation, Release 0.3.0

autopilot.utils.wiki
module, 232

autopilot.viz
module, 215

autopilot.viz.psychometric
module, 216

autopilot.viz.trial_viewer
module, 215

B
backend (Camera_CV property), 110
BCM_TO_BOARD (in module autopilot.hardware), 98
Bias_Correction (class in autopilot.stim.managers),

160
bin (Camera_Spinnaker property), 113
bio (Subject property), 88
blank_LEDs() (Pilot method), 83
BLOCKSIZE (in module autopilot.stim.sound.jackclient),

162
BOARD_TO_BCM (in module autopilot.hardware), 97
boot_server() (JackClient method), 165
branch (Git_Spec attribute), 230
browse() (in module autopilot.utils.wiki), 233
buffer() (Gap method), 175
buffer() (Jack_Sound method), 170
buffer_continuous() (Jack_Sound method), 170

C
calc_move() (Wheel method), 136
calc_psychometric() (in module autopi-

lot.viz.psychometric), 216
calibrate() (I2C_9DOF method), 132
calibrate_port() (Pilot method), 82
calibration (Hardware property), 99
calibration_curve() (Pilot method), 83
call_series() (in module autopilot.setup.run_script),

239
cam (Camera property), 104
Camera (class in autopilot.hardware.cameras), 100
Camera_CV (class in autopilot.hardware.cameras), 108
Camera_Spinnaker (class in autopi-

lot.hardware.cameras), 110
capture() (Camera method), 103
capture_deinit() (Camera method), 105
capture_deinit() (Camera_Spinnaker method), 112
capture_deinit() (PiCamera method), 108
capture_init() (Camera method), 105
capture_init() (Camera_Spinnaker method), 112
capture_init() (MLX90640 method), 134
capture_init() (PiCamera method), 107
check_compatible() (Transform method), 193
check_slice() (DLCSlice method), 207
check_thresh() (Wheel method), 136
Child (class in autopilot.tasks.children), 180

CHILDREN (REGISTRIES attribute), 227
chunk() (Gap method), 175
chunk() (Jack_Sound method), 170
clean_prefs() (in module tests.test_prefs), 279
clear() (in module autopilot.prefs), 248
clear_cb() (Digital_In method), 123
clear_scripts() (in module autopilot.hardware.gpio),

117
closing (Net_Node attribute), 150
coerce_discrete() (in module autopi-

lot.utils.common), 219
Color (class in autopilot.transform.units), 213
Colorspaces (class in autopilot.transform.units), 213
COLS (Accuracy attribute), 186
COLS (Graduation attribute), 185
columns (Free_Water.TrialData attribute), 184
columns (Nafc.TrialData attribute), 189
columns (Task.TrialData attribute), 179
commit (Git_Spec attribute), 230
COMMON (Scopes attribute), 243
Common_Prefs (class in autopilot.prefs), 243
Compare (class in autopilot.transform.logical), 205
compute_calibration() (in module autopilot.prefs),

248
compute_correction() (Stim_Manager method), 158
Condition (class in autopilot.transform.logical), 204
context (Net_Node attribute), 150
CONTINUOUS (in module autopilot.stim.sound.jackclient),

163
CONTINUOUS_LOOP (in module autopi-

lot.stim.sound.jackclient), 163
CONTINUOUS_QUEUE (in module autopi-

lot.stim.sound.jackclient), 163
CONVERSIONS (Color attribute), 214
conversions (Log_Format attribute), 76
create_modelzoo() (DLC method), 204
current_trial (Subject property), 88

D
Data (class in autopilot.data.modeling.base), 93
data (Data_Extract attribute), 225
DATA (Free_Water attribute), 184
Data_Extract (class in autopilot.utils.log_parsers), 225
default() (NumpyEncoder method), 221
dehydrate() (in module autopilot.utils.hydration), 224
delete_all_scripts() (Digital_Out method), 121
delete_script() (Digital_Out method), 121
device_info (Camera_Spinnaker property), 115
Digital_In (class in autopilot.hardware.gpio), 121
Digital_Out (class in autopilot.hardware.gpio), 119
DIRECTORY (Scopes attribute), 243
Directory_Prefs (class in autopilot.prefs), 243
Directory_Prefs.Config (class in autopilot.prefs),

244

Index 293

Autopilot Documentation, Release 0.3.0

discrim() (Nafc method), 190
Distance (class in autopilot.transform.geometry), 194
DLC (class in autopilot.transform.image), 202
dlc_dir (DLC property), 204
dlc_paths (DLC property), 203
DLCSlice (class in autopilot.transform.selection), 206
do_bias() (Stim_Manager method), 157
do_correction() (Stim_Manager method), 157
dur_from_vol() (Solenoid method), 128
duration (Solenoid property), 128
DURATION_MIN (Solenoid attribute), 128

E
ENABLED (in module autopilot.hardware.gpio), 117
end() (Free_Water method), 185
end() (Jack_Sound method), 171
end() (Stim_Manager method), 158
end() (Task method), 180
end() (Wheel_Child method), 181
entries (Log attribute), 78
env_prefix (Directory_Prefs.Config attribute), 244
env_prefix (Pilot_Prefs.Config attribute), 245
env_prefix (Terminal_Prefs.Config attribute), 244
example (Log_Format attribute), 76
expand() (Message method), 154
export_model() (DLC method), 204
exposure (Camera_Spinnaker property), 113
extract_data() (in module autopi-

lot.utils.log_parsers), 225

F
FIFO (TransformRhythm attribute), 192
File (class in autopilot.stim.sound.sounds), 174
file_block (Pilot attribute), 81
FILO (TransformRhythm attribute), 192
Filter_IIR (class in autopilot.transform.timeseries),

207
find_class() (in module autopilot.utils.common), 218
find_key_recursive() (in module autopi-

lot.utils.common), 219
find_key_value() (in module autopilot.utils.common),

219
fit() (Spheroid method), 198
flash() (LED_RGB method), 126
flash_leds() (Nafc method), 190
flash_leds() (Task method), 180
format (Log_Format attribute), 76
format_in (Angle attribute), 195
format_in (Color attribute), 214
format_in (Condition property), 205
format_in (Distance attribute), 195
format_in (DLC property), 204
format_in (DLCSlice attribute), 207
format_in (Image property), 202

format_in (Rescale attribute), 213
format_in (Slice attribute), 206
format_in (Transform property), 193
format_out (Angle attribute), 195
format_out (Color attribute), 214
format_out (Condition property), 205
format_out (Distance attribute), 195
format_out (DLC property), 204
format_out (DLCSlice attribute), 207
format_out (Image property), 202
format_out (Rescale attribute), 213
format_out (Slice attribute), 206
format_out (Transform property), 193
forward() (Transformer method), 182
fps (Camera_CV property), 109
fps (Camera_Spinnaker property), 114
fps (MLX90640 property), 134
fps (PiCamera property), 107
frame_trigger (Camera_Spinnaker property), 114
Free_Water (class in autopilot.tasks.free_water), 183
Free_Water.TrialData (class in autopi-

lot.tasks.free_water), 184
from_logfile() (Log class method), 78
from_pytables_description() (Table class method),

94
from_string() (LogEntry class method), 78
FS (in module autopilot.stim.sound.jackclient), 162

G
Gammatone (class in autopilot.stim.sound.sounds), 176
Gammatone (class in autopilot.transform.timeseries), 208
Gap (class in autopilot.stim.sound.sounds), 175
generate() (Spheroid method), 198
get() (Camera_Spinnaker method), 114
get() (in module autopilot.prefs), 247
get() (in module autopilot.utils.registry), 227
get_hardware() (in module autopilot.utils.registry),

228
get_invoker() (in module autopilot.utils.invoker), 224
get_ip() (Pilot method), 81
get_ip() (Station method), 143
get_name() (Hardware method), 99
get_names() (in module autopilot.utils.registry), 227
get_nsamples() (Jack_Sound method), 170
get_nsamples() (Sound method), 167
get_sound_class() (in module autopi-

lot.stim.sound.base), 171
get_stream() (Net_Node method), 152
get_task() (in module autopilot.utils.registry), 228
get_timestamp() (Message method), 154
get_trial_data() (Subject method), 91
get_weight() (Subject method), 91
git (Python_Package attribute), 231
Git_Spec (class in autopilot.utils.requires), 229

294 Index

Autopilot Documentation, Release 0.3.0

git_version() (in module autopilot.prefs), 248
GPIO (class in autopilot.hardware.gpio), 117
Graduation (class in autopilot.tasks.graduation), 185
GRADUATION (REGISTRIES attribute), 227
Group (class in autopilot.data.modeling.base), 94
gyro (I2C_9DOF property), 132
gyro_filter (I2C_9DOF property), 131
GYRO_HPF_CUTOFF (I2C_9DOF attribute), 131
gyro_polarity (I2C_9DOF property), 131
gyro_scale (I2C_9DOF property), 131
GYROSCALE_2000DPS (I2C_9DOF attribute), 131
GYROSCALE_245DPS (I2C_9DOF attribute), 131
GYROSCALE_500DPS (I2C_9DOF attribute), 131

H
handle_listen() (Net_Node method), 150
handle_listen() (Station method), 143
handle_trigger() (Task method), 179
handshake() (Pilot method), 81
Hardware (class in autopilot.hardware), 98
HARDWARE (Free_Water attribute), 184
HARDWARE (Nafc attribute), 189
HARDWARE (REGISTRIES attribute), 227
HARDWARE (Task attribute), 179
HARDWARE (Wheel_Child attribute), 181
hardware_plugin() (in module tests.test_plugins), 278
Hardware_Pref (class in autopilot.prefs), 245
hashes (Subject property), 89
header (Data_Extract attribute), 225
history (Subject property), 89
HLS (Colorspaces attribute), 213
HSV (Colorspaces attribute), 213
hydrate() (in module autopilot.utils.hydration), 224

I
I2C_9DOF (class in autopilot.hardware.i2c), 129
id (Net_Node attribute), 150
Image (class in autopilot.transform.image), 202
import_dlc() (DLC method), 204
import_plugins() (in module autopilot.utils.plugins),

225
import_spec (Python_Package property), 231
IMU_Orientation (class in autopi-

lot.transform.geometry), 195
info (Subject property), 88
init() (in module autopilot.prefs), 248
init_audio() (Pilot method), 83
init_cam() (Camera method), 105
init_cam() (Camera_CV method), 110
init_cam() (Camera_Spinnaker method), 112
init_cam() (MLX90640 method), 134
init_cam() (PiCamera method), 107
init_hardware() (Task method), 179
init_logger() (in module autopilot.core.loggers), 75

init_manager() (in module autopilot.stim.managers),
155

init_networking() (Hardware method), 99
init_networking() (Net_Node method), 150
init_pigpio() (GPIO method), 118
init_pigpio() (Pilot method), 83
init_sound() (File method), 175
init_sound() (Gap method), 175
init_sound() (Jack_Sound method), 169
init_sound() (Noise method), 174
init_sound() (Tone method), 173
init_sounds() (Stim_Manager method), 157
init_sounds_grouped() (Proportional method), 159
init_sounds_individual() (Proportional method),

160
input (Camera attribute), 102
input (Digital_In attribute), 123
input (Hardware attribute), 99
input (Wheel attribute), 136
int_to_float() (in module autopi-

lot.stim.sound.sounds), 176
Integrate (class in autopilot.transform.timeseries), 212
integrate_frames (MLX90640 property), 134
interpolate (MLX90640 property), 134
interpolate_frame() (MLX90640 method), 134
Introspect (class in autopilot.utils.decorators), 222
ip (Net_Node property), 152
is_trigger (Digital_In attribute), 123
is_trigger (Hardware attribute), 99
iter_continuous() (Jack_Sound method), 171
iter_continuous() (Noise method), 174

J
Jack_Sound (class in autopilot.stim.sound.base), 168
JackClient (class in autopilot.stim.sound.jackclient),

163
join() (ReturnThread method), 218

K
Kalman (class in autopilot.transform.timeseries), 210
kwargs (Group attribute), 94
kwargs (Node attribute), 95

L
l_bandwidth() (Pilot method), 82
l_cal_port() (Pilot method), 82
l_cal_result() (Pilot method), 82
l_change() (Pilot_Station method), 147
l_change() (Terminal_Station method), 145
l_child() (Pilot_Station method), 147
l_clear() (Wheel method), 137
l_cohere() (Pilot_Station method), 147
l_confirm() (Net_Node method), 151
l_confirm() (Station method), 143

Index 295

Autopilot Documentation, Release 0.3.0

l_continuous() (Pilot_Station method), 147
l_continuous() (Terminal_Station method), 145
l_data() (Terminal_Station method), 145
l_file() (Pilot_Station method), 147
l_file() (Terminal_Station method), 145
l_forward() (Pilot_Station method), 148
l_handshake() (Terminal_Station method), 145
l_init() (Terminal_Station method), 144
l_kill() (Terminal_Station method), 145
l_measure() (Wheel method), 137
l_noop() (Pilot_Station method), 146
l_param() (Pilot method), 82
l_ping() (Pilot_Station method), 147
l_ping() (Terminal_Station method), 144
l_process() (Transformer method), 182
l_start() (Camera method), 103
l_start() (Pilot method), 81
l_start() (Pilot_Station method), 147
l_state() (Pilot_Station method), 147
l_state() (Terminal_Station method), 145
l_stop() (Camera method), 104
l_stop() (Pilot method), 82
l_stop() (Pilot_Station method), 147
l_stop() (Wheel method), 137
l_stopall() (Terminal_Station method), 145
l_stream() (Net_Node method), 151
l_stream() (Station method), 143
l_stream_video() (Pilot method), 82
LED_RGB (class in autopilot.hardware.gpio), 125
level (LogEntry attribute), 77
LINEAGE (Scopes attribute), 243
Linefit_Prasad (class in autopi-

lot.transform.geometry), 199
list_classes() (in module autopilot.utils.common),

217
list_modelzoo() (DLC class method), 204
list_options() (Camera_Spinnaker method), 115
list_scripts() (in module autopilot.setup.run_script),

240
list_spinnaker_cameras() (in module autopi-

lot.hardware.cameras), 116
list_subjects() (in module autopilot.utils.common),

219
list_wiki_plugins() (in module autopi-

lot.utils.plugins), 226
listens (Net_Node attribute), 150
load_model() (DLC method), 204
load_pilotdb() (in module autopilot.utils.common),

219
load_subject_data() (in module autopi-

lot.viz.trial_viewer), 215
load_subject_dir() (in module autopi-

lot.viz.trial_viewer), 215

locate_user_dir() (in module autopi-
lot.setup.setup_autopilot), 236

Log (class in autopilot.core.loggers), 78
Log_Format (class in autopilot.core.loggers), 76
LOG_FORMATS (in module autopilot.core.loggers), 76
LogEntry (class in autopilot.core.loggers), 77
logger (Digital_In attribute), 123
logger (Digital_Out attribute), 121
logger (Hardware attribute), 99
logger (I2C_9DOF attribute), 132
logger (LED_RGB attribute), 126
logger (MLX90640 attribute), 134
logger (Pilot attribute), 81
logger (PWM attribute), 124
logger (Scale attribute), 137
logger (Solenoid attribute), 128
logger (Wheel attribute), 137
logger_registry_get() (in module

tests.test_registry), 280
loop (Net_Node attribute), 150
loop_thread (Net_Node attribute), 150

M
mag_gain (I2C_9DOF property), 131
MAGGAIN_12GAUSS (I2C_9DOF attribute), 131
MAGGAIN_16GAUSS (I2C_9DOF attribute), 131
MAGGAIN_4GAUSS (I2C_9DOF attribute), 130
MAGGAIN_8GAUSS (I2C_9DOF attribute), 131
magnetic (I2C_9DOF property), 131
main() (in module autopilot.setup.setup_autopilot), 236
make_alias() (in module autopi-

lot.setup.setup_autopilot), 235
make_ask_string() (in module autopilot.utils.wiki),

233
make_browse_string() (in module autopi-

lot.utils.wiki), 234
make_dir() (in module autopilot.setup.setup_autopilot),

235
make_ectopic_dirnames() (in module autopi-

lot.setup.setup_autopilot), 236
make_launch_script() (in module autopi-

lot.setup.setup_autopilot), 236
make_punishment() (Stim_Manager method), 158
make_systemd() (in module autopi-

lot.setup.setup_autopilot), 236
make_transform() (in module autopilot.transform), 191
maximum (Condition property), 205
measurement_of_state() (Kalman method), 212
Message (class in autopilot.networking.message), 152
message (LogEntry attribute), 77
MESSAGE_FORMATS (in module autopilot.core.loggers), 77
met (Python_Package property), 231
met (Requirement property), 229
met (Requirements property), 232

296 Index

Autopilot Documentation, Release 0.3.0

minimum (Condition property), 205
MLX90640 (class in autopilot.hardware.i2c), 132
model (DLC property), 203
MODEL (Scale attribute), 137
model_dir (DLC property), 203
MODES (Wheel attribute), 136
module

autopilot.core, 75
autopilot.core.loggers, 75
autopilot.core.pilot, 79
autopilot.core.styles, 84
autopilot.data, 85
autopilot.data.interfaces, 92
autopilot.data.modeling, 92
autopilot.data.modeling.base, 92
autopilot.data.models, 95
autopilot.data.subject, 85
autopilot.data.units, 95
autopilot.hardware, 97
autopilot.hardware.cameras, 100
autopilot.hardware.gpio, 116
autopilot.hardware.i2c, 129
autopilot.hardware.usb, 135
autopilot.networking, 139
autopilot.networking.message, 152
autopilot.networking.node, 148
autopilot.networking.station, 140
autopilot.prefs, 241
autopilot.setup.run_script, 239
autopilot.setup.scripts, 236
autopilot.setup.setup_autopilot, 235
autopilot.stim, 155
autopilot.stim.managers, 155
autopilot.stim.sound, 162
autopilot.stim.sound.base, 166
autopilot.stim.sound.jackclient, 162
autopilot.stim.sound.pyoserver, 166
autopilot.stim.sound.sounds, 172
autopilot.tasks, 177
autopilot.tasks.children, 180
autopilot.tasks.free_water, 183
autopilot.tasks.graduation, 185
autopilot.tasks.nafc, 187
autopilot.tasks.task, 177
autopilot.transform, 191
autopilot.transform.coercion, 194
autopilot.transform.geometry, 194
autopilot.transform.image, 202
autopilot.transform.logical, 204
autopilot.transform.selection, 205
autopilot.transform.timeseries, 207
autopilot.transform.transforms, 192
autopilot.transform.units, 212
autopilot.utils, 217

autopilot.utils.common, 217
autopilot.utils.decorators, 222
autopilot.utils.hydration, 223
autopilot.utils.invoker, 224
autopilot.utils.log_parsers, 224
autopilot.utils.plugins, 225
autopilot.utils.registry, 226
autopilot.utils.requires, 229
autopilot.utils.types, 232
autopilot.utils.wiki, 232
autopilot.viz, 215
autopilot.viz.psychometric, 216
autopilot.viz.trial_viewer, 215
tests.test_networking, 277
tests.test_plugins, 278
tests.test_prefs, 279
tests.test_registry, 279
tests.test_setup, 280
tests.test_sound, 281
tests.test_utils, 283

MOVE_DTYPE (Wheel attribute), 136

N
Nafc (class in autopilot.tasks.nafc), 187
Nafc.TrialData (class in autopilot.tasks.nafc), 189
name (LogEntry attribute), 77
name (Python_Package attribute), 231
name (Requirement attribute), 229
name (System_Library attribute), 231
Net_Node (class in autopilot.networking.node), 148
networking (Pilot attribute), 81
new() (Subject class method), 89
next_bias() (Bias_Correction method), 161
next_stim() (Proportional method), 160
next_stim() (Stim_Manager method), 158
Node (class in autopilot.data.modeling.base), 95
node (Pilot attribute), 81
Noise (class in autopilot.stim.sound.sounds), 173
noop() (Transformer method), 182
noop() (Video_Child method), 181
noop() (Wheel_Child method), 181
NTrials (class in autopilot.tasks.graduation), 186
NumpyDecoder (class in autopilot.utils.common), 221
NumpyEncoder (class in autopilot.utils.common), 220

O
object_hook() (NumpyDecoder method), 222
open() (Solenoid method), 128
open_file() (Pilot method), 83
OPENCV_LAST_INIT_TIME (in module autopi-

lot.hardware.cameras), 100
Order_Points (class in autopilot.transform.geometry),

199
output (Digital_Out attribute), 120

Index 297

Autopilot Documentation, Release 0.3.0

output (Hardware attribute), 99
output (LED_RGB attribute), 125
output (PWM attribute), 124
output (Solenoid attribute), 128
output_filename (Camera property), 104

P
package_name (Python_Package attribute), 231
package_version (Python_Package property), 231
PARAMS (Accuracy attribute), 186
PARAMS (File attribute), 174
PARAMS (Free_Water attribute), 184
PARAMS (Gammatone attribute), 176
PARAMS (Gap attribute), 175
PARAMS (Graduation attribute), 185
PARAMS (Jack_Sound attribute), 169
PARAMS (Nafc attribute), 189
PARAMS (Noise attribute), 173
PARAMS (NTrials attribute), 187
PARAMS (Sound attribute), 167
PARAMS (Task attribute), 179
PARAMS (Tone attribute), 173
PARAMS (Video_Child attribute), 181
PARAMS (Wheel_Child attribute), 181
parent (Transform property), 193
parse() (Log_Format method), 76
parse_args() (in module autopi-

lot.setup.setup_autopilot), 236
parse_manual_prefs() (in module autopi-

lot.setup.setup_autopilot), 236
parse_message() (LogEntry method), 78
ParseError, 76
PiCamera (class in autopilot.hardware.cameras), 105
PiCamera.PiCamera_Writer (class in autopi-

lot.hardware.cameras), 108
pig (Digital_In attribute), 123
pig (Digital_Out attribute), 121
pig (LED_RGB attribute), 126
pig (PWM attribute), 124
pig (Solenoid attribute), 128
pigs_function (Digital_Out attribute), 120
pigs_function (PWM attribute), 124
Pilot (class in autopilot.core.pilot), 79
PILOT (Scopes attribute), 243
Pilot_Prefs (class in autopilot.prefs), 244
Pilot_Prefs.Config (class in autopilot.prefs), 245
Pilot_Station (class in autopilot.networking.station),

146
pin (GPIO property), 118
pin (Hardware attribute), 99
pin (LED_RGB property), 127
pin_bcm (LED_RGB property), 127
PLAY (in module autopilot.stim.sound.jackclient), 163
play() (Gap method), 175

play() (Jack_Sound method), 170
play() (Pyo_Sound method), 168
play_continuous() (Jack_Sound method), 171
play_punishment() (Stim_Manager method), 158
play_started (JackClient attribute), 165
PLOT (Free_Water attribute), 184
PLOT (Nafc attribute), 189
PLOT (Task attribute), 179
plot_psychometric() (in module autopi-

lot.viz.psychometric), 216
plot_timer (Terminal_Station attribute), 144
polarity (GPIO property), 119
polarity (PWM property), 124
port (Net_Node attribute), 150
predict() (Kalman method), 211
prepare_message() (Net_Node method), 152
prepare_message() (Station method), 142
prepare_run() (Subject method), 90
process() (Angle method), 195
process() (Color method), 214
process() (Compare method), 205
process() (Condition method), 205
process() (Distance method), 195
process() (DLC method), 203
process() (DLCSlice method), 207
process() (Filter_IIR method), 208
process() (Gammatone method), 210
process() (IMU_Orientation method), 196
process() (Integrate method), 212
process() (JackClient method), 165
process() (Kalman method), 212
process() (Linefit_Prasad method), 202
process() (Order_Points method), 199
process() (Rescale method), 213
process() (Rotate method), 196
process() (Slice method), 206
process() (Spheroid method), 198
process() (Transform method), 193
Proportional (class in autopilot.stim.managers), 158
protocol (Subject property), 88
protocol_name (Subject property), 88
pull (GPIO property), 118
pull (LED_RGB property), 127
pulse() (Digital_Out method), 120
pulse() (LED_RGB method), 126
punish() (Nafc method), 190
push() (Station method), 142
pusher (Pilot_Station attribute), 146
pusher (Station attribute), 142
pusher (Terminal_Station attribute), 144
PWM (class in autopilot.hardware.gpio), 123
pyo_server() (in module autopi-

lot.stim.sound.pyoserver), 166
Pyo_Sound (class in autopilot.stim.sound.base), 167

298 Index

Autopilot Documentation, Release 0.3.0

Python_Package (class in autopilot.utils.requires), 230

Q
Q_LOCK (in module autopilot.stim.sound.jackclient), 163
quantize_duration() (Jack_Sound method), 170
QUEUE (in module autopilot.stim.sound.jackclient), 163
queue() (Camera method), 104
quit() (JackClient method), 165
quitting (Pilot attribute), 81

R
range (LED_RGB property), 125
range (PWM property), 124
readable_attributes (Camera_Spinnaker property),

114
record_event() (Digital_In method), 123
recurse_subclasses() (in module autopi-

lot.utils.common), 218
REGISTRIES (class in autopilot.utils.registry), 226
reinforcement() (Nafc method), 190
release() (Camera method), 105
release() (Camera_CV method), 110
release() (Camera_Spinnaker method), 115
release() (Digital_In method), 123
release() (Digital_Out method), 121
release() (GPIO method), 119
release() (Hardware method), 99
release() (LED_RGB method), 127
release() (MLX90640 method), 134
release() (Net_Node method), 152
release() (PiCamera method), 108
release() (PWM method), 124
release() (Station method), 143
release() (Wheel method), 137
repeat() (Net_Node method), 151
repeat() (Station method), 143
repeat_interval (Net_Node attribute), 150
repeat_interval (Station attribute), 142
repository (Python_Package attribute), 231
request() (Nafc method), 189
Requirement (class in autopilot.utils.requires), 229
Requirements (class in autopilot.utils.requires), 231
requirements (Requirements attribute), 232
Rescale (class in autopilot.transform.units), 212
reset() (Transform method), 193
residual_of() (Kalman method), 212
resolution (PiCamera property), 107
resolve() (Python_Package method), 231
resolve() (Requirement method), 229
resolve() (Requirements method), 232
respond() (Nafc method), 190
response() (Free_Water method), 184
results_string() (in module autopi-

lot.setup.setup_autopilot), 236

ReturnThread (class in autopilot.utils.common), 218
RGB (Colorspaces attribute), 213
rhythm (Transform property), 193
Rotate (class in autopilot.transform.geometry), 196
rotation (I2C_9DOF property), 132
rotation (PiCamera property), 107
router (Net_Node attribute), 150
run() (JackClient method), 165
run() (ReturnThread method), 218
run() (Station method), 142
run() (Video_Writer method), 116
run_form() (in module autopilot.setup.setup_autopilot),

236
run_script() (in module autopilot.setup.run_script),

239
run_scripts() (in module autopilot.setup.run_script),

239
run_task() (Pilot method), 83
running (Pilot attribute), 81
RW_MODES (Camera_Spinnaker attribute), 112

S
save_data() (Subject method), 91
save_prefs() (in module autopilot.prefs), 247
Scale (class in autopilot.hardware.usb), 137
Schema (class in autopilot.data.modeling.base), 94
Scopes (class in autopilot.prefs), 242
SCRIPTS (in module autopilot.setup.scripts), 237
send() (Net_Node method), 151
send() (Station method), 142
senders (Net_Node attribute), 150
sensor_mode (PiCamera property), 107
sent_plot (Terminal_Station attribute), 144
serialize() (Message method), 154
serialize_array() (in module autopilot.networking),

139
series() (Digital_Out method), 121
SERVER (in module autopilot.stim.sound.jackclient), 162
server (Pilot attribute), 81
server_type (Jack_Sound attribute), 169
server_type (Sound attribute), 167
session (Subject property), 88
session_uuid (Subject property), 88
set() (Camera_Spinnaker method), 115
set() (Digital_Out method), 120
set() (in module autopilot.prefs), 247
set() (LED_RGB method), 125
set() (PWM method), 124
set_leds() (Task method), 180
set_reward() (Task method), 179
set_trigger() (Jack_Sound method), 170
set_trigger() (Pyo_Sound method), 168
set_triggers() (Proportional method), 160
set_triggers() (Stim_Manager method), 157

Index 299

Autopilot Documentation, Release 0.3.0

set_weight() (Subject method), 92
shape (Camera_CV property), 109
shape (Image property), 202
SHAPE_SENSOR (MLX90640 attribute), 134
Slice (class in autopilot.transform.selection), 205
Solenoid (class in autopilot.hardware.gpio), 127
Sound (class in autopilot.stim.sound.base), 167
SOUND (REGISTRIES attribute), 227
Spheroid (class in autopilot.transform.geometry), 197
stage_block (Pilot attribute), 81
STAGE_NAMES (Free_Water attribute), 184
STAGE_NAMES (Nafc attribute), 189
STAGE_NAMES (Task attribute), 179
STAGE_NAMES (Wheel_Child attribute), 181
start() (Video_Child method), 181
start() (Wheel method), 136
start_plot_timer() (Terminal_Station method), 144
state (GPIO property), 118
Station (class in autopilot.networking.station), 140
step (Subject property), 88
step_viewer() (in module autopilot.viz.trial_viewer),

215
stim_end() (Nafc method), 190
Stim_Manager (class in autopilot.stim.managers), 155
stim_start() (Nafc method), 190
STOP (in module autopilot.stim.sound.jackclient), 163
stop() (Camera method), 105
stop() (Video_Child method), 181
stop_continuous() (Jack_Sound method), 171
stop_run() (Subject method), 91
stop_script() (Digital_Out method), 121
store_groups() (Proportional method), 160
store_series() (Digital_Out method), 121
stream() (Camera method), 103
STRING_PARAMS (in module autopi-

lot.stim.sound.sounds), 176
Subject (class in autopilot.data.subject), 85
System_Library (class in autopilot.utils.requires), 231

T
Table (class in autopilot.data.modeling.base), 93
table (Sound attribute), 167
table_wrap() (Pyo_Sound method), 168
tag (Git_Spec attribute), 230
Task (class in autopilot.tasks.task), 177
TASK (REGISTRIES attribute), 227
task (Subject property), 88
Task.TrialData (class in autopilot.tasks.task), 179
temperature (I2C_9DOF property), 132
TERMINAL (Scopes attribute), 243
Terminal_Prefs (class in autopilot.prefs), 244
Terminal_Prefs.Config (class in autopilot.prefs), 244
Terminal_Station (class in autopi-

lot.networking.station), 143

test_autoplugin() (in module tests.test_plugins), 278
test_except_on_failure() (in module

tests.test_registry), 280
test_get_all() (in module tests.test_registry), 280
test_get_equivalence() (in module

tests.test_registry), 280
test_get_hardware() (in module tests.test_registry),

280
test_get_one() (in module tests.test_registry), 280
test_get_subtree() (in module tests.test_registry),

280
test_get_task() (in module tests.test_registry), 280
test_hardware_plugin() (in module

tests.test_plugins), 278
test_init_multichannel_noise() (in module

tests.test_sound), 282
test_init_noise() (in module tests.test_sound), 282
test_make_alias() (in module tests.test_setup), 280
test_multihop() (in module tests.test_networking),

277
test_node() (in module tests.test_networking), 277
test_node_to_node() (in module

tests.test_networking), 277
test_prefs_defaults() (in module tests.test_prefs),

279
test_prefs_deprecation() (in module

tests.test_prefs), 279
test_prefs_warnings() (in module tests.test_prefs),

279
test_quiet_mode() (in module tests.test_setup), 280
test_unpadded_gap() (in module tests.test_sound),

282
tests.test_networking

module, 277
tests.test_plugins

module, 278
tests.test_prefs

module, 279
tests.test_registry

module, 279
tests.test_setup

module, 280
tests.test_sound

module, 281
tests.test_utils

module, 283
threaded_loop() (Net_Node method), 150
thresh_trig() (Wheel method), 136
THRESH_TYPES (Wheel attribute), 136
thresholded_linear() (Bias_Correction method),

161
timestamp (LogEntry attribute), 77
to_df() (Table method), 94
to_pytables_description() (Table class method), 94

300 Index

Autopilot Documentation, Release 0.3.0

toggle() (Digital_Out method), 120
toggle() (LED_RGB method), 126
Tone (class in autopilot.stim.sound.sounds), 172
Transform (class in autopilot.transform.transforms), 192
TRANSFORM (REGISTRIES attribute), 227
Transformer (class in autopilot.tasks.children), 181
TransformRhythm (class in autopi-

lot.transform.transforms), 192
trial_viewer() (in module autopilot.viz.trial_viewer),

215
trigger (GPIO property), 119
trigger (Wheel attribute), 136
turn() (Digital_Out method), 120
type (Camera attribute), 102
type (Digital_In attribute), 123
type (Digital_Out attribute), 120
type (File attribute), 174
type (Gammatone attribute), 176
type (Gap attribute), 175
type (Hardware attribute), 99
type (Jack_Sound attribute), 169
type (LED_RGB attribute), 125
type (MLX90640 attribute), 133
type (Noise attribute), 174
type (PWM attribute), 124
type (Solenoid attribute), 128
type (Sound attribute), 167
type (Tone attribute), 173
type (Wheel attribute), 136

U
unload_plugins() (in module autopilot.utils.plugins),

226
update() (Accuracy method), 186
update() (Bias_Correction method), 161
update() (Graduation method), 185
update() (Kalman method), 211
update() (NTrials method), 187
update() (Stim_Manager method), 158
update_history() (Subject method), 89
update_state() (Pilot method), 81
update_weights() (Subject method), 92
upstream (Net_Node attribute), 150
URL (class in autopilot.utils.types), 232
url (Git_Spec attribute), 230

V
v4l_info (Camera_CV property), 110
validate() (Message method), 154
version (Requirement attribute), 229
Video_Child (class in autopilot.tasks.children), 181
Video_Writer (class in autopilot.hardware.cameras),

115

W
wait_trigger() (Jack_Sound method), 170
walk_dicts() (in module autopilot.utils.common), 220
water() (Free_Water method), 184
weights (Subject property), 89
Wheel (class in autopilot.hardware.usb), 135
Wheel_Child (class in autopilot.tasks.children), 180
writable_attributes (Camera_Spinnaker property),

114
write() (Camera method), 104
write() (Camera_Spinnaker method), 113
write() (PiCamera.PiCamera_Writer method), 108
write_to_outports() (JackClient method), 165

Y
YIQ (Colorspaces attribute), 213

Index 301

	Program Structure
	Tasks
	Module Tour
	Quickstart
	Minimal Installation
	Blink an LED
	Capture Video
	Communicate Between Computers
	Realtime DeepLabCut
	Put it Together - Close a Loop!
	Pilot 1 - Image Capture
	GPU Computer
	Pilot 2 - LED

	What Next?

	Installation
	Supported Systems
	Pre-installation
	On the Pilot device
	On the Terminal device

	Installing Autopilot
	Optional dependencies
	Method 1: Installation from PyPI
	Method 2: Installation from source
	Extra Dependencies

	Configuration
	Select agent
	Select scripts
	Configure Agent
	Configure Hardware

	Networking
	IP Addresses
	Ports

	Testing the Installation

	Training a Subject
	Connecting the Pilot
	Creating a Protocol
	Using the Protocol Wizard
	Manual Protocol Creation

	Creating a Subject
	Running the Task
	Debugging a Task

	Writing a Task
	The Nafc Task
	The Task class
	Four Task Attributes
	PARAMS
	Data
	PLOT
	HARDWARE

	Initialization
	Stage Methods
	Request
	Discrim
	Reinforcement

	Additional Methods

	Distributed Go/No-Go - Using Child Agents
	Additional Prefs
	Go/No-Go Parameterization
	Initialization
	The Child Task
	A Very Smart Wheel
	Go/No-Go Stage Methods

	Writing a Hardware Class
	GPIO with pigpio

	Plugins & The Wiki
	Plugins
	Registries
	The Wiki API
	Plugins on the Wiki

	Examples
	Blink
	Preamble
	Params
	TrialData
	Hardware

	Initialization
	Stage Methods
	Full Source

	core
	gui
	loggers
	pilot
	plots
	styles
	terminal

	data
	subject
	interfaces
	modeling
	basic classes

	models
	units

	hardware
	cameras
	gpio
	i2c
	usb

	networking
	station
	node
	Message

	stim
	managers
	sound
	jackclient
	pyoserver
	base - sound
	sounds

	tasks
	task
	children
	free_water
	graduation
	nafc

	Transformations
	Coercion
	Geometry
	Image
	Logical
	Selection
	Timeseries
	Units

	viz
	trial_viewer
	psychometric

	Utils
	Common Utils
	Decorators
	Hydration
	GUI Invoker
	Log Parsers
	Plugins
	Registry
	Requires
	Types
	Wiki

	setup
	scripts
	run_script

	prefs
	external
	Changelog
	Version 0.4
	v0.4.4 - Timing and Sound (February 2nd, 2022)
	New
	Improvements
	Bugfixes
	Docs

	v0.4.3 (October 20th, 2021)
	New Features
	Minor Improvements
	Bugfixes

	v0.4.2 (August 24th)
	Minor Improvements
	Bugfixes
	Documentation

	v0.4.1 (August 17th)
	Bugfixes
	Docs

	v0.4.0 - Become Multifarious (August 3rd, 2021)
	New Features
	Major Improvements
	Minor Improvements
	Bugfixes
	Code Structure
	Docs
	Regressions

	Version 0.3
	v0.3.5 (February 22, 2021)
	Bugfixes

	v0.3.4 (December 13, 2020)
	Improvements
	Bugfixes
	Docs
	Logging

	v0.3.3 (October 25, 2020)
	Bugfixes
	Improvements
	Cleanup

	v0.3.2 (September 28, 2020)
	Bugfixes
	Cleanup

	v0.3.1 (August 4, 2020)
	v0.3.0 (August 4, 2020)
	Major Updates
	Minor Updates
	New Features
	Bugfixes
	Code Structure
	External Libraries
	Regressions

	Version 0.2
	v0.2.0 (October 26, 2019)

	To-Do
	Visions
	Integrations
	Open Ephys Integration
	Multiphoton & High-performance Image Integration
	Bonsai Integration

	Closed-Loop Behavior & Processing Pipelines

	Improvements
	Bugs
	Completed
	Lowest Priority

	References
	Tests
	Networking
	Plugins
	Prefs
	Registry
	Setup
	Sounds
	Terminal
	Transforms
	Utils

	Indices and tables
	Bibliography
	Python Module Index
	Index

